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We define a general curvilinear Radon transform in R3, and we develop the
microlocal properties of this transform. There are no inversion formulas for this
transform, in general, and we give a local reconstruction method that recovers
singularities of the object that are stably visible from the data. This is a type of
regularization since we do not recover the function itself but singularities of the
function that are stably reconstructed in a Sobolev sense. Our method is moti-
vated by Lambda tomography, and it is a filtered back projection algorithm with a
derivative filter. We characterize the singularities this algorithm reconstructs, and
we show that some singularities are added to the reconstruction. Added singulari-
ties are inherent in any standard backprojection algorithm for this problem by the
nature of the backprojection. Using our characterization of added singularities, we
choose a derivative filter that will de-emphasize some of the added singularities.
These results, their proofs, and reconstructions will appear in [3].

In single object electron tomography (ET), images are taken of a single object
over a finite number of rotations (called tilts) of the object in the electron beam.
The standard model for single object ET assumes that electrons travel over lines
and that the electron count at the detector is affected by the electrostatic potential
f of the object. A more complete model will include the optics of the electron
microscope, and information about the complete model is given in [1], as discussed
in the talk of H. Kohr at this conference.

The theoretical work we describe here is motivated by practical work of Albert
Lawrence, et al., that shows when imaging larger objects using broader electron
beams, the electrons farther from the center beam travel in helix-like curves. They
have developed a reconstruction algorithm, TxBR [2], that uses gold markers in
the projections to find the curves that the electrons travel over.

We now describe our general microlocal theory of a curvilinear Radon transform
in R3. For each θ ∈ ]a, b[ (representing a tilt angle) and each y ∈ R2 (representing
a point on the detector plane for tilt θ), a smooth projection pθ : R3 → R2 defines
the curves, which are given for (θ,y) ∈ Y = ]a, b[ ×R2 by

γθ,y := pθ
−1({y}).

The Curvilinear X-ray Transform is given by

Ppf(θ,y) :=

∫
x∈γθ,y

f(x)ds.

The backprojection operator is given by

P∗pg(x) :=

∫
θ∈ ]a,b[

ϕ(θ)g (θ,pθ(x)) dθ
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where ϕ is a cutoff function on ]a, b[ that is equal to one on most of ]a, b[ and is
in C∞c ( ]a, b[ ). Since x ∈ γθ,pθ(x), P∗pg(x) is just an integral of g over all curves
through x.

Finally, our singularity detection operator is

L(f) := P∗pDPpf

where D is a second order differential operator in y that is chosen to de-emphasize
certain added singularities that we will describe below.

Clearly some conditions on the curves are necessary, and we will now describe
our conditions and what they mean geometrically. We will let ∂θ be the derivative
in the theta direction, and ∂x will be the gradient in x.

(1) For each θ ∈ ]a, b[ , the curves γθ,y are smooth, unbounded, and don’t in-
tersect. Precisely, we assume that (x, θ) 7→ pθ(x) ∈ R2 is a C∞ map.
Fixing θ, pθ is a fiber map in x with fibers diffeomorphic to lines. This
assumption will imply that ∂xpθ(x) has maximal rank (two).

(2) The curves γθ,y are different for different (θ,y) ∈ Y .
(3) Curves move differently at different points as θ changes. The precise as-

sumption is that for all (θ,y) ∈ Y and for any two distinct points x0 and
x1 in γθ,y, the derivatives ∂θpθ(x0) and ∂θpθ(x1) are not equal.

(4) The curves wiggle enough as θ changes. Precisely, The 4 × 3 matrix(
∂xpθ(x)
∂θ∂xpθ(x)

)
has maximal rank (three). One can show this means that

the normal plane to γθ,y at x ∈ γθ,y changes as θ changes infinitesimally.

We now understand in an elementary way how our algorithm detects singular-
ities. Let x ∈ R3. Note that for each θ ∈ ]a, b[ , x ∈ γθ,pθ(x). Therefore, the union
of all curves in Y through x is

Σx :=
⋃

θ∈ ]a,b[

γθ,pθ(x)

By assumption (3), Σx is smooth immersed surface except at x, where it comes
to a point [3].

For x ∈ R3 and f a function of compact support P∗pPpf(x) first integrates f
over each curve through x and then averages over the curves through x. Therefore,

P∗pPpf(x) =

∫
z∈Σx

f(z)W (z,x) dA

where W (z,x) is a smooth weight on Σx \ {x}. So, P∗pPpf(x) is an integral of
f over the surface Σx. Since L is essentially P∗pPp with a differential operator in
the middle, Lf detects singularities in essentially the same way as P∗pPp.

We use this idea to explain intuitively how L detects singularities. Let x0 ∈ R3.
If a singularity of f at x0 is conormal to some curve γθ,pθ(x) then it should be
detected by Ppf [3]. To see this, let’s do a thought experiment in which f is a
characteristic function of a ball, B, and γθ,pθ(x0) is tangent to the ball at x0. Then,
Ppf will not be smooth near (θ,pθ(x0)) since Ppf will go from 0 to nonzero as the
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curve moves in and out of the ball. Such singularities (which are called “visible”)
will be detected by L (see [3] for a precise statement).

However, singularities from far away on Σx0
can also affect the reconstruction

at x0. Imagine that Σx0 is tangent to the support of f , B at a point besides x0.
Then, the integral P∗pPpf will not be smooth at x0 since it will go from being
zero to nonzero in a non-smooth way as x moves so that Σx moves in and out of
the ball B. This adds singularities to the reconstruction at x0.

Precisely, in [3], we prove that Pp is a Fourier integral operator associated with
Lagrangian manifold Γ = N∗Z \ 0 where Z is the incidence relation

Z := {(θ,y,x) ∈ Y × R3
∣∣x ∈ γθ,y}

and N∗Z is its conormal bundle. Then L is a singular operator associated to
the canonical relation Γt ◦ Γ and this relation above x0 is basically the visible
directions (those conormal to curves through x0) × N∗(Σx0

) \ 0. So, singularities
of f conormal at x0 to curves in the data set (visible singularities) will be detected
by Lf at x0, and singularities conormal to Σx0 at other points will be added to
the reconstruction at x0. This is illustrated by our thought experiments above
and is proven in [3].

In [3], we use our microlocal characterization of the added singularities to choose
a differential operator D for L that will de-emphasize added singularities that are
near to the reconstruction, and we show the algorithm works well to de-emphasize
the added singularities.
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