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Local Tomography in 3-D SPECT

Eric Todd Quinto, Tania Bakhos, and Sohhyun Chung

ABSTRACT. We present slant-hole SPECT and describe the microlo-
cal analysis of the SPECT operator. We present three Lambda type
local reconstruction methods, and we analyze how singularities are
added to reconstructions using each method. We demonstrate how
one method adds weaker singularities than the others in reconstruc-
tions and we give the microlocal analysis of the forward operator.

1. Introduction and Notation

Single Photon Emission Computed Tomography (SPECT) is a diag-
nostic medical modality to detect metabolic processes or body structure.
The physical resolution is not usually as good as with X-ray tomography,
but it can be useful to detect metabolic processes. These maps of meta-
bolic processes are used to pinpoint tumors, which absorb nutrients faster
than the surrounding tissue and in epilepsy research to map activities in
the brain when someone has a seizure.

A patient ingests a nutrient with a radioactive tracer attached. The
SPECT scanner measures the emissions from the body in a range of di-
rections, and a tomography algorithm determines where the nutrients are
located. Detectors are collimated to detect only the emissions that are
on fixed lines. For each line, the data collected represents the number
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of emissions from points on that line in the direction of the detector. In
standard SPECT, the detector array moves around the body and takes
data over lines with directions perpendicular the axis of rotation. This is
a time consuming process because the heavy detector array has to phys-
ically move around the body. Slant-Hole SPECT is a novel data acqui-
sition method in which the circular detector array rotates about its cen-
ter, and the array itself does not need to be moved around the patient.
This means that a full data set for this specific geometry can be acquired
more quickly than for standard data [50]. Several algorithms for slant-
hole SPECT have been developed [31, 50] if one has full data, but, to
the author’s knowledge, there is no algorithm for local data except the
one presented here. In Section 3, we explain practical reasons why local
algorithms are needed.

The article is organized as followed. In Section 2, we describe X-ray
computed tomography then the basic model for SPECT. We also develop
the notation for the article. In Section 3, we introduce the geometry and
mathematics for SPECT and present three basic algorithms for slant-hole
SPECT. We discuss singularities and wavefront sets in Section 4, and in
the appendix, we give the proofs of the microlocal results.

2. The models for X-ray Computerized Tomography and SPECT

We consider three-dimensional tomographic data over parallel lines.
So, we consider the parallel-beam parameterization of lines in space. To
specify lines, we provide the direction of the line and a point on the line.
Let θ ∈ S2 and let

θ⊥ = {y ∈ R3
∣∣y · θ = 0}

be the plane through the origin perpendicular to θ. For θ ∈ S2 and
y ∈ θ⊥, we denote the line through y in direction θ by

L(y, θ) = {y + tθ
∣∣t ∈ R}.

This allows us to parameterize all the lines in space by the set

Y = {(y, θ)
∣∣θ ∈ S2, y ∈ θ⊥} . (2.1)

Beer’s law dictates how radiation is attenuated as it passes through
the body. We denote the attenuation coefficient (or absorption) of the
body at point x by µ(x). Although µ depends on frequency of the radia-
tion, for monochromatic radiation, µ(x) is proportional to the density of
the body at x. Denote the intensity of radiation at x by f(x) and assume
the emitter of X-rays is at the point x0 on a line L and the detector is at
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x1 ∈ L. According to Beer’s Law,

df

dx
= −µ(x)f(x)

where d/dx is the derivative along the line in the direction of the detector.
It is very easy to integrate this separable differential equation, and the
result is

f(x1)
f(x0)

= exp

(
−
∫ x1

x0

µ(x)dx

)
. (2.2)

That is, knowing f(x0) and f(x1) one can measure the line integral of µ
from x0 to x1 along L. We assume x1 is outside the convex hull of the
body and the detector is at x1 and is collimated along the ray from x0 to
x1. Then this integral is the divergent beam transform of µ from source
x0 in direction θ:

Dx0µ(θ) :=
∫ ∞

s=0
µ(x0 + sθ) ds .

We can now rewrite (2.2) to become

f(x1) = exp
(
−Dx0µ(θ)

)
f(x0) . (2.3)

In X-ray tomography, x0 is the source of X-rays and it is on one side of
the body and x1 is the detector on the other side.

In Single Photon Emission Computed Tomography (SPECT), the
patient ingests a radioactive substance with a nutrient (sugar, etc.) at-
tached. The goal is to find the locations where the nutrient collects by
counting emissions. We assume that µ(x), the attenuation coefficient of
the body at x, is known, and we let f(x) be the concentration of radioac-
tive emitters at x. Collimated detectors are placed around the body and
emissions are counted along the collimated lines to the detectors. As-
sume a detector is collimated in direction θ to detect data on L(y, θ) (i.e.,
the detector is in the θ direction from the body along L(y, θ).

According to Beer’s law, emissions from x0 ∈ L(y, θ) at the detector
is given by (2.3), so the total emissions along L(y, θ) are just the integral
of (2.3) over x0 ∈ L(y, θ). This transform is called the Attenuated Radon
Transform and, if d`(x) is the measure on the line L(y, θ), it is

Rµf(y, θ) :=
∫

x∈L(y,θ)
f(x) exp

(
−
∫ ∞

s=0
µ(x + sθ)ds

)
d`(x)

=
∫ ∞

t=−∞
f(y + tθ) exp

(
−
∫ ∞

s=t
µ(y + sθ)ds

)
dt .

(2.4)
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This is a complicated transform, and a simplifying assumption is of-
ten made. One assumes the attenuation is some constant, ν, in a convex
region of the body including the emitters, supp f . After multiplying the
data by a known factor depending on the shape of the convex set on which
µ is constant, we get the Exponential Radon transform:

Eνf(y, θ) :=
∫ ∞

t=−∞
f(y + tθ)eνtdt, P := E0 . (2.5)

This reduction is derived, for example, in [29, 3]. We call P = E0 the
parallel beam transform. We assume that we know ν and are trying only
to find f .

In standard SPECT, the detectors are collimated to a set of parallel
lines that are perpendicular to the axis of rotation, and the detector array
rotates around that axis. In this case, the lines are all in parallel planes,
and the problem can be viewed as a planar problem.

Much beautiful mathematics has been created in attempts to invert
the planar attenuated transform. In 1980, Tretiak and Metz [48] proved
a filtered back projection type inversion formula for the much simpler
exponential transform. Markoe [33] developed a Fourier reconstruction
method for this transform. Using integral equation techniques Quinto
was able to prove injectivity for the class of rotation invariant Radon
transforms (which includes the exponential transform) [43]. Motivated
by his result, Quinto hoped that one could prove injectivity for not only
the attenuated transform (with smooth µ) but also for any Radon line
transform with smooth positive weight (see (A.4)). However, in the mid-
1980s, Jan Boman gave a beautiful counterexample to injectivity for a
smooth positive weight [4]. At around the same time Finch showed in
an elegant article [11] that the general attenuated transform was injective
as long as the attenuation, µ was bounded in relation to the support of
f (the exact condition is ‖µ‖∞diam(Ω) < 5.37). He used clever energy
estimates inspired by work Mukhometov from the 1970s [34]. Derevtsov,
Dietz, Schuster, and Louis test best approximation and approximate in-
verse on two dimensional SPECT in [7]. This transform was not inverted
until 2002 with beautiful ground-breaking work of Bukhgeim [2] and
Novikov [39], and these formulas were implemented in [18, 30, 36].

The question of how to find both µ and f , is even more difficult.
For the exponential transform, one can show that, as long as f is not
radial, then one can reconstruct both ν and f from Eνf [47]. Natterer
discovered necessary range conditions for the general attenuated trans-
form (e.g., [37]), and he used these in very clever ways to find µ under
the assumption that supp f is a finite set [35]. One can read about these
developments in [29, 10].
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Now, we leave planar SPECT. Our goal is to explore a new 3-D data
acquisition geometry.

3. Slant-Hole SPECT

Slant-hole SPECT involves a new data acquisition geometry in which
the collimated detectors are slanted at an angle of φ ∈ (0, π/2) from a
vertical axis at the center of the detector array. The array rotates around
this center to collect data. The resulting set of lines all are at angle φ
from this vertical axis, so they are parallel any cone with opening angle
φ from the vertical axis. As can be guessed from Figure 1, data acqui-
sition is faster [50] with slant-hole SPECT than standard SPECT, since
the detector array does not have to be moved all around the patient. It
just needs to be rotated about its axis. In Section 4 we will explain that
some singularities of f are not detected from this data. So, sometimes the
detector array is rotated to a second position so as to get more complete
data. Bakhos tested this for the data set of Figure 2 with excellent results
[3].

FIGURE 1. (a): Detector array for standard SPECT. To
collect data, the entire array rotates about an axis through
the body that is perpendicular to the direction of the col-
limators. (b): Detector array for slant-hole SPECT. To
collect data, the array stays at the same position in space
and just rotates about its center.

Since slant-hole SPECT is so much newer than standard SPECT,
much less is known. For the exponential transform, Kunyansky[31] and
Wagner, Noo, and Clackodyle [50] have developed clever inversion meth-
ods if all data are given. For the parallel beam transform (ν = 0) Orlov
[40] developed an inversion method using the projection slice theorem.
We will discuss this in Remark 4.10.

The author knows of no inversion method for the general attenuated
transform and slant-hole data. In beautiful work, Greenleaf and Uhlmann
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[16, 17] developed the microlocal analysis of more general X-ray trans-
forms on so-called admissible line complexes on manifolds, and the sets
of lines we consider are special cases. Boman and Quinto [5] studied the
microlocal analysis for X-ray transforms on admissible line complexes in
R3 including the sets of lines we study here.

Another important limitation of slant-hole SPECT is the fact that, to
image all of a cross-section of the torso, the detector array has to be very
large. To see this, assume φ = π/4 and the torso is 40 cm wide and the
detector array is 30 cm above the center of the body. Then the array has
to have diameter 100 cm. in order that lines from the edge of the body at
angle π/4 reach the array if the detector is like the one in Figure 1.

This issue also explains why region of interest algorithms are prac-
tically important. In region of interest tomography, the goal is to recon-
struct a smaller region in the body. In slant-hole SPECT, a smaller array
could be used than for the entire torso. With the geometry given above,
the detector would have diameter the diameter of the region of interest
plus 60 cm. Also, the current algorithms for slant-hole SPECT [31, 50]
require all data through the body, and that would require an even larger
detector.

Now we introduce the mathematical notation needed to solve our
problem.

DEFINITION 3.1. Let φ ∈ (0, π/2). We let Cφ be the vertical cone
through the origin with angle φ from the z−axis. We let Cφ = Cφ ∩ S2.
Then, Cφ is a latitude circle on S2. We define

Yφ = {(y, θ)
∣∣θ ∈ Cφ, y ∈ θ⊥} (3.1)

and call Yφ the slant-hole SPECT line complex.

Yφ is the set of lines in the slant-hole SPECT data set and the set of
lines in Yφ are parallel the cone Cφ. Equivalently, they and have directions
on the latitude circle Cφ.

This setup can be made more general by considering different curves
of directions on S2. Let C be a smooth regular curve on S2 and then we
can consider

YC = {(y, θ)
∣∣θ ∈ C, y ∈ θ⊥} (3.2)

the set of lines in directions parallel directions on C. The analysis and
reconstruction operators presented here are valid in this more general set-
ting as shown in Theorem A.1 and [46].

Let x ∈ R3, then x− (x ·θ)θ is the projection of x onto θ⊥. The dual
operator to Eν on the complex Yφ is called the backprojection operator
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and it is defined for g ∈ C(Yφ) as

E∗
νg(x) :=

∫
θ∈Cφ

eνx·θg(x− (x · θ)θ, θ)dθ . (3.3)

It is the weighted average of g over all lines through x. Similar formulas
are valid if C is an arbitrary differentiable, regular curve on S2 as is
discussed in [46].

3.1. Basic Backprojection. A natural and very simple reconstruc-
tion method is just to compose Eν and its dual. The analogous algo-
rithm was one of the earliest reconstruction methods in X-ray tomogra-
phy. However, for Eν , it is better to compose with E∗

−ν .

THEOREM 3.2. Let f ∈ Cc(R3). Then,

E∗
−νEνf(x) =

∫
y∈Cφ

f(x + y)
‖y‖

eνs
∣∣
y=sθ

dy . (3.4)

Coauthors Sohhyun (Holly) Chung [6] and Tania Bakhos [3] showed
that the composition of E∗

νEν is more complicated and has a some-
what worse kernel than E∗

−νEν . Bakhos and Chung discovered and then
proved the properties of the operators we will soon define (e.g., (3.7)).
They both made rigorous tests of the algorithms, and some of their re-
constructions will be presented here.

PROOF. The proof of Theorem 3.2 is a simple calculation. We start
with the definitions and then rearrange terms.

E∗
−νEνf(x) =

∫
θ∈C

e−νx·θ
∫ ∞

−∞
f(x− (x · θ)θ + tθ)eνtdtdθ

=
∫

θ∈C
e−νx·θ

∫ ∞

−∞
f(x +

(
t− (x · θ)

)
θ)eνtdtdθ

Now, let s = t− (x · θ) so t = s + (x · θ), and we get

E∗
−νEνf(x) =

∫
θ∈C

∫ ∞

−∞
f(x + sθ)eνsdsdθ

Next, we note that the measure on the cone Cφ is dy = |s| dsdθ so

E∗
−νEνf(x) =

∫
θ∈Cφ

∫
s∈R

f(x + sθ)eνsdsdθ (3.5)

=
∫

y∈Cφ

f(x + y)
‖y‖

eνs
∣∣
y=sθ

dy

�
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FIGURE 2. Cross-section with the x− y plane of phan-
tom (left) and backprojection reconstruction (right) of
disks with center (0,0,0) radius 1/2, center (0,0,1) ra-
dius 1/2 center (1,1,1) radius 1/4 center (-1,-1,-1/2) ra-
dius 1/4. The disks above the x − y-plane have density
two and the others have density one. The angle with the
z−axis φ = π/4. The center of the figure is the origin
and the range in x and y is from −2 to 2.

Note that in (3.4), the integral of f(x + ·) over the cone Cφ; values
of f near x are emphasized as well as values of f on the cone above x
(when s >> 0)!

Obviously, the reconstructions in Figure 2 is interesting but not ac-
ceptable. A better idea is to use some sort of derivative sharpening, as in
planar Lambda CT, before backprojecting.

3.2. Planar Lambda CT. We will now briefly review Lambda to-
mography, an elegant local reconstruction method for the X-ray trans-
form in the plane. For f ∈ Cc(R2), we let

Pf(y, θ) :=
∫ ∞

t=−∞
f(y + tθ)dt

where θ ∈ S1 and y ∈ θ⊥ = {z ∈ R2
∣∣z · θ = 0} is the line through

the origin perpendicular to θ. The transform P is, of course, the planar
analogue of the parallel beam transform E0.

For planar X-ray CT, filtered back projection gives f = 1
4πP ∗ΛyPf

where Λy =
√
−d2/dy2 [38]. Here d/dy is the derivative in the direction

π/2 units in the counterclockwise direction from θ in the line θ⊥.
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Lambda X-ray Tomography [8, 49] replaces the non-local operator
Λy =

√
−d2/dy2 by the second derivative

Λxf(x) = P ∗−d2

dy2
Pf(x) . (3.6)

This operator is local in the sense that one needs only values of Pf on
lines near x to calculate P ∗ −d2

dy2 Pf(x), since P ∗ integrates over lines

through x, and to calculate the derivative −d2

dy2 Pf , one needs only data
over lines near x. The result is a local operator, and it reconstructs singu-
larities (e.g., boundaries) not density values. Λx is an elliptic pseudodif-
ferential operator since it is a multiple of

√
−∆. An important addition

that Kennan Smith originally suggested [9] is to add a factor of P ∗Pf to
provide contour. The resulting transform is P ∗(−(d2/dy2)+k

)
Pf . This

was thoroughly researched and justified in [9, 8]. This has been general-
ized to limited data problems in the plane and to more general weights in
[28].

Louis and Maaß have generalized Lambda CT to cone-beam CT [32]
by replacing d2/dp2 by the Laplacian in the detector plane. Subsequently,
Katsevich [27, 26], Anastasio et al. [1] and Ye et al. [51] have general-
ized this in ways analogous to what we do in SPECT. Quinto and Öktem
[46] developed our methods for a related problem in electron microscopy.

3.3. Lambda CT for slant-hole SPECT. We now develop general-
izations of Lambda CT to the slant-hole geometry. Recall for angle θ, the
detector plane is the plane through the origin perpendicular to theta: θ⊥.
Let ∆θ⊥ be the Laplacian in the detector plane θ⊥. Our first method is to
replace −d2/dy2 by −∆θ⊥ . Then we form

L∆f(x) = E∗
−ν

(
−∆θ⊥Eνf)(x) (3.7)

Note that the calculation of L∆f from data Eνf is a local operation (for
the same reasons as for Lambda CT), so the algorithm works for region
of interest SPECT and for arbitrary curves on S2 (see [46]).

To understand L∆, we note that

L∆f(x) = −∆
(
E∗
−νEνf

)
+ ν2E∗

−νEνf (3.8)

Now, (3.8) shows that L∆ has gives a sharpening term, −∆(E∗
−νEνf),

plus a smoothing term, ν2E∗
−νEνf . The proof of (3.8) is given at the end

of this section after appropriate coordinates are introduced.
The reconstructions in Figure 3 are better than in Figure 2, but why

are there halos that seem to be below or above the out-of-plane disks? If
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FIGURE 3. Cross-section with the x − y plane of L∆

reconstruction of phantom given in Figure 2. The angle
with the z−axis φ = π/4.

we isolate the individual derivatives, we will see where they come from.
We let θ : [0, 2π] → Cφ be the standard parameterization of Cφ:

θ(a) = (cos φ cos a, cos φ sin a, sinφ) .

Then the unit vector in the direction of the curve is α(a) and the vector
perpendicular to θ(a) and α(a) is β(a):

α(a) =
θ′(a)
‖θ′(a)‖

= (− sin a, cos a, 0), β(a) = θ(a)× α(a) (3.9)

This gives coordinates on θ⊥(a)

(r, s) 7→ rα(a) + sβ(a) (3.10)

and allows us to write the Laplacian on the detector plane

∆θ⊥ =
d2

dr2
+

d2

ds2
.

This gives two more operators

Lr = E∗
−ν

(
−d2

dr2
Eν

)
f(x) , (3.11)

which takes a second derivative in the α direction, a direction tangent to
the curve Cφ at θ(a) and

Ls = E∗
−ν

(
−d2

ds2
Eν

)
f(x) , (3.12)

which takes a second derivative in the β direction, a direction perpendic-
ular to the curve Cφ at θ(a).
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Of course, L∆ = Lr + Ls, but separating the derivatives shows the
effects of each on the reconstructions in Figure 4. As one can see, Ls

adds singularities. If one looks closely at the Lr reconstruction without
smoothing, then one can see weaker singularities at the same places.
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Lr reconstruction: Ls reconstruction:

FIGURE 4. Cross-section with the x− y plane of recon-
structions of disks given in Figure 2. The angle with the
z−axis φ = π/4.

So, we see in the Ls reconstruction in Figure 5, singularities are
added. We can see them more clearly in the plane x = y, which is the
plane containing the centers and the axis of rotation of the scanner.
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FIGURE 5. Phantom (left) and Ls reconstruction (right)
in the plane x = y of disks given in Figure 2.

We point out that Ms. Bakhos has improved reconstructions that in-
clude noise and smoothing [3]. Furthermore, she and Ms. Chung have
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added a factor kE∗
−νEν to provide the contour that Kennan Smith devel-

oped for standard planar lambda CT in [9] (see the discussion at the end
of Section 3.2). Those reconstructions are better than the ones displayed
here, but the singularities are not as visible, and the point of this article is
to explore those singularities.

These reconstructions bring up two important questions. Why are
some singularities (object boundaries) more clearly visible in our limited
data reconstructions than others? Why are some singularities added to
the Ls and Lr reconstructions? Why do the Ls reconstructions seem to
add stronger singularities? To answer these questions, we first need to
establish what a singularity is, which we do in the next section.

PROOF OF (3.8). One starts with ∆E∗
−νEνf and brings the Lapla-

cian inside E∗
−νEν in expression (3.5). This shows that

∆E∗
−νEνf(x) =

∫
a∈[0,2π]

∫
s∈R

∆f(x + pθ(a))eνp sinφ dp da (3.13)

Now, inside the inner integral, one writes ∆f in terms of the coordinates
(r, s, t) 7→ rα(a) + sβ(a) + tθ(a) for fixed a ∈ [0, 2π]. Thus, ∆f(x +
pθ(a)) becomes(

∂2

∂r2
+

∂2

∂s2
+

∂2

∂t2

)
f(x + rα(a) + sβ(a) + (t + p)θ(a))

∣∣∣
(r,s,t)=~0

Since the t derivative is evaluated at t = 0, we can replace the t derivative
by the second derivative in p. Next, we separate the inner integral into two
integrals, pull ∂2

∂r2 + ∂2

∂s2 out of the first integral and do two integrations
by parts in p (using the fact that f has compact support) in the second
integral. The end result can be rearranged to get (3.8). �

4. Singularities and wavefront sets

To understand what our operators do to singularities, we need to un-
derstand what singularities are. Practically they are density (absorption)
jumps, boundaries between regions. Mathematically, they are where a
function is not smooth, and we can characterize smoothness using the
Fourier transform:

(Ff)(ξ) = f̃(ξ) =
∫

x∈Rn

e−ix·ξf(x)dx,

f(x) =
1

(2π)n

∫
ξ∈Rn

eix·ξ(Ff)(ξ)dξ .

(4.1)
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The key idea is that rapid decrease at ∞ (faster than 1/‖ξ‖m ∀m ∈ N) of
Ff is equivalent to smoothness of f . The following simple proposition
makes this precise.

PROPOSITION 4.1. Let f be a compactly supported integrable func-
tion. Then, Ff is rapidly decreasing at ∞ (decreasing faster than any
power of 1/‖x‖) if and only if f is equal almost everywhere to a C∞

function.

PROOF. If Ff is rapidly decreasing at ∞, then one can take deriva-
tives of all orders inside the integral in the inversion formula (4.1) and
show that f is smooth. If f is smooth and of compact support, then Ff
is rapidly decreasing at ∞ as can be shown by proving the Fourier trans-
forms of derivatives of f are bounded and are polynomials timesFf . �

Sobolev spaces [41] are a natural generalization to L2 integrability
of this relationship between the Fourier transform and smoothness. A
function smooth of Sobolev order s ∈ N has s derivatives in an L2 sense.

DEFINITION 4.1. Let s ∈ R and let f be a distribution such that Ff
is a locally integrable function. Then f ∈ Hs(Rn) if

‖f‖s =

(∫
Rn

∣∣Ff(ξ)
∣∣2(1 + ‖ξ‖2)sdξ

)1/2

is finite.

One can localize smoothness at a point x0 by multiplying f by a
smooth cut off function, ϕ ∈ C∞

c (Rn) with ϕ(x0) 6= 0. If one does this,
one develops the concept of Sobolev singular support.

DEFINITION 4.2. Let s ∈ R and x0 ∈ Rn, and let f be a distribution.
Assume there is a cut off function that is nonzero near x0, ϕ ∈ C∞

c (Rn),
such that the localized function ϕf is in Hs(Rn). Then we say f is
locally in Hs at x0. The Hs−singular support of f is the complement of
the set of points at which f is locally in Hs

The profound idea of Hörmander [25] and others is to microlocalize
to characterize singularities more precisely. That is to find directions
where F(ϕ f) is not rapidly decreasing at ∞.

DEFINITION 4.3. Let s ∈ R, x0 ∈ Rn and ξ0 ∈ Rn \0. The function
f is in Hs at x0 in direction ξ0 if there exists a cut-off function ϕ near x0

and an open cone V with ξ0 ∈ V such that∫
ξ∈V

∣∣F(ϕ f
)
(ξ)
∣∣2(1 + ‖ξ‖2)s dξ (4.2)
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is finite
On the other hand, (x0, ξ0) ∈ WFs(f) if f is not in Hs at x0 in

direction ξ0.

The wavefront set can be defined for functions of (y, θ) using coor-
dinates since WFs is defined by cutoff functions.

EXAMPLE 4.4. If f : R2 → R is equal to one on the right half plane
and equal to zero on the left, then WF1(f) is the set of normals to the
y−axis. One can prove this by calculating a localized Fourier transform
of f at points on the y−axis. It can be shown [25] that one can use a
special class of cut off functions that are products of functions in x with
functions in y. This reduces the proof to doing integrations by parts in
the x integral.

Moreover, the following generalization holds: if f has a jump sin-
gularity on a smooth closed surface S without boundary and is smooth
elsewhere, then {(x, ξ)

∣∣x ∈ S, ξ ⊥ S at x} = WFs(f) for s suffi-
ciently large.

4.1. Singularity Detection in SPECT. In this section, we give the
correspondence of singularities under Eν . The key idea is that Radon
transforms, such as Eν , detect singularities perpendicular to the line (or
plane or surface) being integrated over. However, some operators do not
detect all perpendicular singularities, and in Definition 4.6 we describe
the different types of singularities for Eν . There are pure mathematical
reasons for this [20, 22, 16, 46]. To clarify these singularities, before
stating our main theorem, we define a geometric concept and then define
three different types of singularities.

DEFINITION 4.5. Let C be a differentiable regular curve on the unit
sphere parameterized by θ : (a1, a2) → S2. Let a ∈ (a1, a2) and θ0 =
θ(a) ∈ C. Let ξ ∈ R3 \ 0. We say ξ is perpendicular to C at θ0 if
ξ · θ′(a) = 0.

DEFINITION 4.6. Let L0 = L(y0, θ0) with a ∈ [0, 2π], θ0 = θ(a) ∈
Cφ, y0 ∈ θ⊥0 . Let ξ ∈ Rn \ 0.

(1) We say ξ is an invisible direction along L0 if ξ is not perpendic-
ular to L0. Equivalently, ξ /∈ θ⊥0 .

(2) We say ξ is a bad direction along L0 if ξ is perpendicular to L0

and perpendicular to Cφ at θ0. Equivalently, ξ is parallel β(a).
(3) We say ξ is a good direction along L0 if ξ is perpendicular to

L0 but not perpendicular to Cφ at θ0. Equivalently, ξ ∈ θ⊥0 and
ξ is not parallel β(a).
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Note that the good, bad, and invisible directions in Definition 4.6
depend only on the direction, θ0, of the line L0.

THEOREM 4.7 (Microlocal Regularity of Eν). Let L0 = L(y0, θ0)
with θ0 ∈ Cφ, y0 ∈ θ⊥0 . Let f be a distribution of compact support.

i) If Eνf is locally in Hs at (y0, θ0), then f is in Hs−1/2 in directions
η0 at every point on L0 for all good directions η0.

ii) If Eνf is not locally in Hs at (y0, θ0), then for some point x ∈ L0

and some ξ0 ∈ θ⊥0 , (x, ξ) ∈ WFs−1/2(f).
iii) Wavefront of f at invisible directions along L0 does not affect the

wavefront of Eνf near L0.

To summarize, this theorem implies that the exponential transform,
Eν , with limited data should detect a singularity of f when the line is
perpendicular to the singularity (e.g., tangent to a boundary of part of
the object) and the singularity is good. At bad directions, wavefront can
be detected for some functions (as demonstrated by the streaks in our
reconstructions starting from bad wavefront points), but not for others
(see Example 4.11). If a singularity is invisible (not perpendicular to any
line in the data set), then it will be harder to reconstruct stably. In Remark
4.13, we discuss what this all means for L∆, Lr, and Ls.

Why does Eν see singularities? Guillemin [19, 20] showed that
Radon transforms are elliptic Fourier integral operators associated with
a particular Lagrangian manifold (see also [42]). Then, Greenleaf and
Uhlmann [16] developed the microlocal analysis of the X-ray transform
on admissible complexes on manifolds. In the appendix we will use these
ideas to prove a stronger version of Theorem 4.7 that gives the exact mi-
crolocal correspondence for good singularities and is true for Eν , Rµ and
any transform on the more general complex YC (3.2) and any smooth
nowhere zero weight (see (A.4)). Similarly, our reconstruction methods
are valid for any curve C on S2 [46] and any smooth measures.

4.2. Examples and Observations. We will now go through a series
of examples that illustrate the different types of singularities and how Eν

detects them. Our next example shows heuristically how Eν can detect
singularities perpendicular to the line being integrated over but not others.

EXAMPLE 4.8. Let f be equal to one inside the unit disk, B and zero
outside. Let S be the boundary of B. Then, the only wavefront of f is at
points on the S in directions normal S. In other words, WF(f) is the set
of (x, ξ) with x ∈ S, ξ perpendicular to S at x [25]. Let (y0, θ0) ∈ Yφ

and assume the line L0 = L(y0, θ0) is tangent to S at the point x0. Let ξ0

be normal to S at x0. Then, we know (x0, ξ0) ∈ WF(f) and f is smooth
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at all other points x 6= x0 on L0. Note that ξ0 is normal to L0, because
L0 is tangent to S at x0. Also, the function

θ⊥0 3 y 7→ Eνf(y, θ0)

is not smooth at y0 since Eνf(·, θ0) becomes nonzero in a non-smooth
way as y and L(y, θ0) move into B. Thus, in this simple case, this sin-
gularity perpendicular to L0 is detected by the data Eνf . Note that if
L(y, θ0) meets the interior of the disk, then Eνf(y, θ0) is smooth until
the line becomes tangent again to the boundary of the disk. When the
line L(y, θ0) meets the interior of B, then f has no singularities perpen-
dicular to the line (the singularities of f along the line are at boundary
points and the directions are not perpendicular to the line). This illustrates
iii) of Theorem 4.7.

Example 4.8 shows heuristically that Eν detects only singularities
perpendicular to the line being integrated over. However, Eν does un-
predictable things to bad singularities. We will now describe the bad
directions geometrically.

EXAMPLE 4.9. Let θ0 = θ(a) ∈ Cφ and y0 ∈ θ⊥0 . Now let L0 =
L(y0, θ0).

Here is one way to describe the bad directions geometrically. Recall
that Cφ is the cone through the origin with opening angle φ with the
z−axis. Let x ∈ L0. Consider the cone x+Cφ. Then, L0 is a line on this
cone and there is a plane Px that is tangent to x + Cφ and contains L0.
The vector ξ is perpendicular to this tangent plane iff it is bad. To see this,
first assume ξ is perpendicular to Px. Then, ξ is perpendicular to L0 since
L0 ⊂ Px, and furthermore, ξ must be perpendicular to Cφ at θ0 because
ξ is perpendicular to x + Cφ along L0 and therefore perpendicular to Cφ

along the line L(0, θ0). That means that ξ is perpendicular to the circle
Cφ ⊂ Cφ at θ0. Reverse these arguments to prove the other direction.

It should be pointed out that the condition that Px is the same plane
for each x ∈ L0 is part of the definition of admissible line complex [13,
14, 15, 20].

A second way is to describe bad directions is as directions that are
parallel β(a) (see (3.9)).

Finally, the direction ξ is bad along L0 iff it is perpendicular to θ(a)
and in the plane containing θ(a) and the z−axis. Here is why. By shifting
the argument above to x = 0, ξ is bad along L0 iff ξ perpendicular the
plane P0 that contains L(0, θ0) and is tangent to the cone Cφ. Since P0 is
tangent to Cφ, to be perpendicular to P0 is equivalent to being perpendic-
ular to θ0 and in the plane containing θ0 and the z−axis (the axis of the
cone Cφ).
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REMARK 4.10. We can learn from some useful observations of Orlov
for the parallel beam transform P = E0 with directions on a curve C. Let
θ ∈ C and let Fy be the Fourier transform on the plane θ⊥, Fyg(σ, θ) =∫
y∈θ⊥ g(y, θ)e−iy·σdy for σ ∈ θ⊥. Then the well-known Projection Slice

Theorem [38] for θ ∈ S2 and for σ ∈ θ⊥ is

Ff(σ) = Fy

(
Pf(σ, θ)

)
(4.3)

Therefore, if data Pf(y, θ) is given for (y, θ) ∈ YC = {(y, θ)
∣∣θ ∈

C, y ∈ θ⊥} (see (3.2)), then the Fourier transform Ff(σ) is known on
the dual cone to C, the cone ⋃

θ∈C

θ⊥ . (4.4)

For Yφ, this dual cone is exactly the cone generated by the spherical band
in Figure 6 (the vectors in a sphere centered at the origin are normal to the
sphere). In fact, these are exactly the directions in which the wavefront of
f is visible plus the bad directions by Theorem 4.7. Note that Ff known
from this data only at directions in the dual cone. Using (4.3), Orlov [40]
developed an inversion method for P as long as all Fourier directions are
recovered from integrals over lines in the complex YC . Orlov’s condition
for invertibility is that R3 = ∪θ∈Cθ⊥. Under Orlov’s condition, Ff is
known on all of R3, so f can be recovered by Fourier inversion.

EXAMPLE 4.11. In our reconstructions, you have seen how singular-
ities of f in the bad directions can be spread. In this example, we show
the opposite, namely how wavefront in the bad directions can be unde-
tected. It is easiest to do this for P = E0 because of the Projection Slice
Theorem (4.3). Let φ ∈ (0, π/2). Let ξ0 be a bad direction. We construct
a function f with Pf ≡ 0 on Yφ (so Pf is smooth on Yφ) but f has wave-
front in this bad direction. This example also shows that P restricted to
data on Yφ is not injective for functions not of compact support.

First we describe the Fourier transform, Ff . Let CP be the solid
cone about the ξ3−axis with opening angle π/2− φ. Note that CP is the
complement of the dual cone to Cφ (see (4.4)). To define Ff , first take
a homogeneous function of sufficiently negative degree that is supported
in a conic neighborhood of ξ0, nonzero at ξ0, and smooth away from the
origin. Then, alter the function near 0 to make it zero near the origin and
smooth on R3. Finally, make it zero off of CP . Call the result ĥ. Next,
(to make f integrable) we define

F(f)(ξ) = ĥ(ξ)
( ξ

‖ξ‖
· (0, 0, 1)− cos φ

)k
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for sufficiently large k ∈ N. By construction, Ff is rapidly decreasing
in no neighborhood of ξ0. Therefore, ξ0 is not in the limit cone at infinity
of suppFf , and so, by [25, Lemma 8.1.7, p. 258], for any point x ∈ R3,
(x, ξ0) ∈ WF(f). Therefore (x, ξ) ∈ WFs(f) for sufficiently large s.

Because Ff is homogeneous of high negative degree at infinity and
goes to zero like

( ξ
‖ξ‖ ·(0, 0, 1)−cos φ

)k near bd(CP ) if k is large enough,
Ff is sufficiently smooth and integrable for f to be integrable.

Finally, because Ff is zero on the dual cone to Cφ, by the Projection
Slice Theorem argument in the last example, Pf ≡ 0 on Yφ. For any bad
direction, we have constructed a nonzero function f that is integrable,
Pf ≡ 0 and (x, ξ0) ∈ WF(f) for all x ∈ R3.

FIGURE 6. This figure, illustrating Example 4.12,
shows the points on the unit sphere S = bd(B) cor-
responding to good, bad, and invisible wavefront direc-
tions when φ = π/4. The z−axis, the axis of rotation
of the equatorial band, is the axis coming up out of the
sphere. The open equatorial band represents points on
the sphere with singularities in good directions. The lat-
itude circles at the boundary of the band represent points
with singularities in the bad directions. The top and bot-
tom spherical caps correspond to points with invisible
singularities.

EXAMPLE 4.12. In Figure 6, we show the good, bad, and invisible
singularities for a special case related to the phantom in our reconstruc-
tions. If f is the characteristic function of the unit disk, B, then WF(f)
is the set of normals to S := bd(D), and Figure 6 shows points on the
boundary with good, bad, and invisible singularities. Since S is the unit
sphere, each point on S is also normal to S. The invisible singularities
correspond to points on S not normal to any line in Yφ, and these are
exactly the spherical caps at the north and south pole.
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By Definition 4.6, good and bad singularities are in the dual cone to
the circle Cφ (see (4.4) and Theorem 4.7):

Dφ =
⋃

θ∈Cφ

θ⊥

and by the correspondence between normal directions and points on S,
points corresponding to good and bad singularities are on S ∩Dφ, that is
all points with angle from the z−axis greater than or equal to π/2− φ.

We now explain why the bad singularities are at points on the bound-
ary of this spherical band. Let x0 be a point on S corresponding to a bad
direction. Since x0 is normal to S at x0, x0 must be a bad direction it-
self. Since bad directions correspond to singularities in planes containing
θ ∈ Cφ and the z−axis (see Definition 4.6 (2) and the discussion at the
end of Example 4.9), the angle between x0 and the z−axis is π/2 − φ.
Thus, x0 is at the boundary of the spherical band.

Let L0 = L(y0, θ0) be the line in the complex Yφ tangent to S at x0.
Because θ0 and x0 are in the same plane as the z−axis, L0 must be in
that plane and so L0 intersects the z−axis. Furthermore, using geometry,
one sees that the union of the lines for all points x0 on the top (or bottom)
boundary of the band form a cone with center on the z−axis and opening
angle φ, that is a cone parallel Cφ and tangent to S along a circle.

L∆, Lr, or Ls can spread singularities of f that are in bad directions.
We can see this from the reconstructions in Figures 3, 4, 5. Now that
we have a geometric way of understanding bad directions, we see the
singularities are spread along lines in the data set that are perpendicular
to bad directions. In the case of this characteristic function f , we have
shown that those lines form the two cones that are parallel Cφ and tangent
to S. Looking at the reconstructions in Figures 2, 3, 4, 5 we see that the
singularities are spread along these cones that are tangent to each sphere,
and they cause the halo circles or lines in those reconstructions.

REMARK 4.13. The microlocal reason why Lr and Ls add singu-
larities is beyond this article and we plan to prove this in a subsequent
article. The general phenomenon is discussed in [16] and for cone beam
tomography (a related but different transform from ours) in [12, 27, 26].
The reasons, as we will prove in a subsequent article, are that L∆, Lr

and Ls are pseudodifferential operators that are singular in the bad direc-
tions. The reconstructions (and examples in [46]) show how singularities
in the bad directions can be smeared. Lr doesn’t take derivatives in the
bad directions (the β(a) direction, perpendicular to C at θ), and recon-
structions don’t accentuate the added singularities in this bad direction.
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Because Ls takes derivatives in the bad directions, the added singulari-
ties are stronger (less differentiable in Sobolev scale). Note that the idea
behind Lr–taking a derivative in a good direction in the detector plane–is
the reason the improved cone beam algorithms of [1, 26, 51] work well.

REMARK 4.14. Wavefront singularities are defined by slow decay at
∞ of Ff . But, one can argue that slow decay is not measurable from nu-
merical data. However, for the standard discontinuities of tomographic
data, this slow decay occurs sufficiently close to zero to be numerically
visible. This has not been quantified, but Rullgård and Quinto are work-
ing on local band-limited Sobolev seminorms to do this.

Eν is injective for functions of compact support because, of course,
there are inversion formulas. But, the restricted region of interest trans-
form is not injective. For ν = 0, this can be seen by a modification of
a two-dimensional counterexample to injectivity for the interior problem
[3].

Null functions for region of interest slant-hole SPECT, the ones that
cause problems for reconstruction algorithms, are oscillatory (large high
Fourier coefficients), and good reconstruction methods filter them out.
Also, singularity detection methods like Lambda CT and our methods re-
cover singularities of an object, and this is a sort of regularization. We
don’t try to recover the values of the data, but only the singularities that
are stably visible from the data according to Theorem 4.7 (in good direc-
tions).

Appendix A. Microlocal properties of Eν and the generalized
transform Pm

We consider general X-ray transforms over arbitrary curves. Let
a1 < a2 and consider the curve C that is parameterized by the smooth
regular function θ : (a1, a2) → S2. We can assume that the parameteri-
zation θ is chosen so ‖θ′‖ ≡ 1 without loss of generality.

We use the following notation

α(a) = θ′(a), β(a) = θ(a)× α(a) (A.1)

Note that α(a), β(a), θ(a) form an orthonormal basis of R3 and α(a)
and β(a) form an orthonormal basis of θ⊥(a).

We assume the following curvature condition

∀a ∈ (a1, a2), θ′′(a) · θ(a) 6= 0 . (A.2)

This is easily seen to be true for the slant-hole geometry.
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We use coordinates on YC (3.2) to make the calculation easier

YC = R2 × (a1, a2) 3 (r, s, a) 7→ (rα(a) + sβ(a), θ(a)) ∈ YC

L(r, s, a) = L(rα(a) + sβ(a), θ(a))
(A.3)

and we consider the parallel beam transform on YC with arbitrary C∞

weight that is nowhere zero

Pm(f)(r, s, a) =
∫

x∈L(r,s,a)
f(x)m

(
x, (r, s, a)

)
dxL . (A.4)

Of course, both Eν and Rµ fit into this framework with YC = Yφ as long
as, for Rµ, the attenuation µ is smooth.

Wavefront sets are defined on cotangent spaces, and we will ob-
serve this convention now so that readers who compare our results to
the classical ones can easily see the relation. We need to change some
notation. Instead of using tangent vectors, we use the dual cotangent
vectors. Let x = (x1, x2, x3) ∈ R3. Associated to the tangent vector
ξ1

∂
∂x1

+ ξ2
∂

∂x2
+ ξ3

∂
∂x3

is its dual cotangent vector,

(x; ξdx) where ξ := (ξ1, ξ2, ξ3) and
ξdx := ξ1dx1 + ξ2dx2 + ξ3dx3 .

We make a similar convention for T ∗(YC), namely, the covector above
(r, s, a) on YC is denoted(

(r, s, a); ηrdr + ηsds + ηada
)
. (A.5)

THEOREM A.1. Let f be a distribution of compact support on R3.
Assume Pm(f) is given on an open set U ⊂ YC . Let (r, s, a) ∈ U and
let ξ be a non-zero vector perpendicular to θ(a) written as

ξ = ξrα(a) + ξsβ(a).

Finally, let x ∈ L(r, s, a). If ξr 6= 0 (i.e., ξ is not parallel β(a)), then

(x; ξdx) ∈ WFα(f) if and only if(
(r, s, a); ξrdr + ξsds + x ·

(
ξrθ

′′(a) + ξsθ(a)× θ′′(a)
)
da
)

∈ WFα+1/2
(
Pm(f)

)
.

(A.6)

Note that the condition ξr 6= 0 is equivalent to ξ being a good direc-
tion (one that is not parallel β(a)).

PROOF. The proof follows from more general results in [16] (see
also [5]). We provide a proof for completeness. First, we calculate the
canonical relation [24] of Pm, which is given in the following lemma.
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LEMMA A.2. Pm is an elliptic Fourier integral operator (FIO) of
order −1/2 with canonical relation

C =
{(

x, (r, s, a);
(
ηrα(a) + ηsβ(a)

)
dx,

ηrdr + ηsds + x ·
(
ηrθ

′′(a) + ηs(θ(a)× θ′′(a)
)
da
)

∣∣∣ (ηr, ηs) 6= 0, x · α(a)− r = 0, x · β(a)− s = 0
}

.

(A.7)

PROOF. The incidence relation of a Radon transform is defined to be
the set of ordered pairs of points x and manifolds of integration L ∈ Y
such that x ∈ L. So, the incidence relation of Pm [23, 15] can be written
in our coordinates

Z := {
(
x, (r, s, a)

)∣∣x · α(a)− r = 0, x · β(a)− s = 0} (A.8)

since x ∈ L(r, s, a) if and only if the equations given in (A.8) hold. Then,
the following properties were shown in general for Radon transforms [19,
21, 42] and, as we will explain, apply to Pm. First, the Schwartz kernel
of any Radon transform is integration over its incidence relation, Z [42,
Proposition 1.1]. Thus, the Schwartz kernel is a conormal distribution
associated with Lagrangian manifold the conormal bundle of Z, N∗(Z)\
0, [19, 42]. Furthermore, under assumptions we will establish for Pm,
the Radon transform is an elliptic Fourier Integral Operator (FIO) that is
associated with the Lagrangian manifold N∗Z \ {0}. To show this for
Pm, we need to calculate N∗Z \ {0} for this transform. Z is defined,
(A.8), by equations x · α(a) − r = 0, x · β(a) − s = 0, and so above
each

(
x, (r, s, a)

)
∈ Z, N∗Z has as basis

α(a)dx− dr− x · α′(a)da, β(a)dx− ds− x · β′(a)da, (A.9)

and any covector above (x, (r, s, a)
)

is a linear combination of these cov-
ectors. Since α′(a) = θ′′(a) and β′(a) = θ(a)× θ′′(a) we see that

N∗Z \ {0} =
{(

x, (r, s, a);
(
ηrα(a) + ηsβ(a)

)
dx,

−ηrdr− ηsds− x ·
(
ηrθ

′′(a) + ηsθ(a)× θ′′(a)
)
da
)

∣∣∣ (ηr, ηs) 6= 0, x · α(a)− r = 0, x · β(a)− s = 0
}

.

(A.10)
The canonical relation of an operator is gotten from its Lagrangian man-
ifold by multiplying the last coordinates (the cotangent coordinates in
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dr, ds, and da, those above YC) by −1. This concludes the proof of
Lemma A.2. �

The proof of (A.6) follows from Lemma A.2. Let pY : C → T ∗(YC)
be the projection on the second coordinates,

pY

(
x, (r, s, a);

(
ηrα(a) + ηsβ(a)

)
dx,

ηrdr + ηsds + x ·
(
ηrθ

′′(a) + ηsθ(a)× θ′′(a)
)
da
)

:=
(
(r, s, a); ηrdr + ηsds + x ·

(
ηrθ

′′(a) + ηsθ(a)× θ′′(a)
)
da
)

(A.11)

and let pX : C → T ∗(R3) be the projection

pX

(
x, (r, s, a);

(
ηrα(a) + ηsβ(a)

)
dx,

ηrdr + ηsds + x ·
(
ηrθ

′′(a) + ηsθ(a)× θ′′(a)
)
da
)

:=
(
x;
(
ηrα(a) + ηsβ(a)

)
dx
)
. (A.12)

We need to check that pY maps C to T ∗(YC)\{0}. This is clear from
(A.11) since (ηr, ηs) 6= (0, 0). Similarly the projection pX to T ∗(R3)
maps to T ∗(R3)\{0}. These conditions show that Pm is a FIO [24]. Pm

is elliptic because its symbol is smooth, nowhere zero, and constant in
the cotangent variable (see [42, (14), (15)]). Because the codimension of
Z in R3 × YC is two, Pm has order −1/2 [21, 16].

Define

N =
{(

x, (r, s, a); ηsβ(a)dx, ηs

(
ds + x · (θ(a)× θ′′(a)

)
da
)

∣∣x ∈ L(r, s, a), ηs 6= 0
}

,

(A.13)
and note that N is just the set of points in C for which ηr = 0. The set N
corresponds to the bad directions.

We finally need to check that pY : (C \ N ) → T ∗(YC) is an injec-
tive immersion. This is a microlocal Bolker assumption [21] [42, (9)].
Under this assumption, one can compose Pm and a dual transform mi-
crolocalized to be zero near N and use the calculus of microlocally ellip-
tic pseudodifferential and Fourier integral operators to show (A.6) (e.g.,
[21, 42]). Here is the proof of the microlocal Bolker assumption. From
the image in (A.11), we know r, s, a, ηr, ηs as well as

xθ⊥ := rα(a) + sβ(a), ξdx =
(
ηrα(a) + ηsβ(a)

)
dx,

A := ηrx · θ′′(a) + ηsx ·
(
θ(a)× θ′′(a)

)
.

(A.14)
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Note that A is the coefficient of da in the image in (A.11). Since xθ⊥ is
the projection of x to the plane θ⊥,

x ·
(
θ(a)× θ′′(a)

)
= xθ⊥ ·

(
θ(a)× θ′′(a)

)
.

So, the only information we need in order to find (x, ξdx) and prove pY

is an injective immersion when ηr 6= 0 is to find t in the expression

x = tθ(a) + xθ⊥ . (A.15)

By plugging (A.15) into the formula for A in (A.14), one can easily show
that

t =
A− xθ⊥ ·

(
ηrθ

′′(a) + ηsθ(a)× θ′′(a)
)

ηrθ(a) · θ′′(a)
(A.16)

and so t is smoothly determined, and pY is an injective immersion off
of N . Note that here we are using the curvature condition (A.2) and our
assumption that we are off ofN (ηr 6= 0) to know that the denominator in
(A.16) is not zero. Then, in exactly the same way as in [42], for example,
this shows that the Bolker Assumption holds off of N .

The map pX is an immersion off of N because pY is an immersion
and N∗(Z) \ {0} is Lagrangian [24]. If the curve C does not include
antipodal points (if θ ∈ C then −θ /∈ C), then that pX is injective off of
N . This can be seen because, as long as ηa 6= 0, the plane ξ⊥ intersects
C transversely. In case the curve of directions C includes a point θ and
its antipodal point, −θ, one can just localize C around θ and use the
microlocal analysis we will now give for this localized curve. In either
case, this argument and standard microlocal analysis [24] shows that as
long as ηr 6= 0 (off of N ),

(x, ξ) ∈ WF(f) iff pY ◦ (pX)−1(x, ξdx) ∈ WF
(
Pm(f)

)
. (A.17)

When one traces (A.17) back, one gets exactly (A.6) for smooth wave-
front set. To get (A.6) for Sobolev wavefront set, one needs to use that
Pm is an elliptic FIO of order −1/2 associated to a local canonical graph
off of N , and Sobolev continuity of order −1/2 holds for such operators
(when localized away from N ). This is very similar to the arguments in
[44, 46, 45] for Sobolev and real-analytic wavefront set. This concludes
the proof of Theorem A.1. �

It should be pointed out that N in (A.13) is the set on which pY is
not an injective immersion and it causes singularities of f ∈ E ′(R3) to
be moved if one forms P∗

mPmf , as shown in [16]. This is also observed
for other tomographic transforms including the ones for cone beam CT
[16, 27, 12] and for electron microscopy [46].
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