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Abstract. The problem of injectivity for a Radon transform over level sets of poly-
nomials in Rn is studied. The main results concern the spherical mean operator

defined on compactly supported continuous functions. Related problems and more

general transforms are discussed.

0. Introduction

Integral geometry deals with the reconstruction of functions, measures, or dis-
tributions from their integrals over certain geometric objects. Various problems
in analysis lead to integration over level sets of polynomials, i.e. algebraic curves
or surfaces, and therefore, to the corresponding Radon transform. The classical
example is the usual Radon transform over lines or planes and this corresponds to
(rotations and translations of) polynomials degree 1. We will first give the general
set up, then carefully look at a specific example, the spherical mean transform and
discuss applications. Then, we will outline the proofs of our results. Finally, we
give results and conjectures for higher dimensional spaces.

Let P be a given polynomial in Rn with real coefficients. We will associate a
Radon transform, RP , on functions f belonging to some linear subspace F of the
space C(Rn) of all continuous functions in Rn (or of the dual space (C(Rn))′ in
(1e)). The main case will be F = Cc(Rn), the subspace of C(Rn) consisting of
functions with compact support.

To define this transform we need sets to integrate over and measures of inte-
gration. The sets will be the algebraic varieties:

(1a) Mx,α = {ξ ∈ Rn
∣∣ P (ξ − x) = α}, x ∈ Rn, α ∈ R.
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A natural choice of measure on Mx,α is the measure µx,α defined as follows. For
each x ∈ Rn we represent Rn as the union of sheets of the spread

(1b) Ξx = {Mx,α}α∈R, Rn =
⋃
α∈R

Mx,α.

We choose measures µx,α so that for any x ∈ Rn the decomposition

(1c) dξ = dµx,α(ξ)× dv(α) holds for an appropriate measure dv(α).

Now, we define the Radon transform, RP for f ∈ F by

(1d) RP f(x, α) =
∫
P (ξ−x)=α

f(ξ)dµx,α(ξ)

The integral transform (1d) with the measure from (1c) is considered in the book
[E] of Ehrenpreis in connection with the nonlinear Fourier transform.

This transform can easily be defined as a transform from C ′(Rn) to the set of
functions from Rn to measures on R. For each x ∈ Rn, RP (x, ·) is the measure on
R defined for g ∈ C(R) by

(1e)
∫
α∈R

g(α)dRPµ(x, α) : =
∫

Rn

g(P (ξ − x))dµ(ξ).

If µ = f(ξ)dξ with f ∈ Cc(Rn), this definition is consistent with (1a-d); the measure
corresponding to RP f is (RP f(x, α))dν(α) where ν is the measure in (1c). If Γ is
a manifold and P is sufficiently regular so that RP can be defined using the double
fibration [He1, GS] with consistent smooth manifolds Mx,α and consistent smooth
measures, RP can be defined on distributions in a consistent way with (1a-e).

Now we are going to formulate the main problem. Let Γ ⊂ Rn. Formula (1)
defines the linear operator

(2) RP : F → C(Γ× R)

Definition. A set Γ is said to be a set of injectivity (for the transform RP on the
space F ), or, transform Rp is injective on Γ, if and only if the operator (2) is
injective.

In other words RP is injective on Γ (on domain F ) if, whenever RP f(x, α) = 0
for all f ∈ F and all (x, α) ∈ Γ×R, then f = 0. The main subject of this paper is
the following.

Problem 1. Given a polynomial P and a linear space F ⊂ C(Rn), describe sets
of injectivity of the transform RP on F .

This problem is also mentioned in the Ehrenpreis book [E]. The kernel of the
transform RP on a set Γ is defined by:

(3) kerΓRP = {f ∈ F
∣∣ RP f(x, α) = 0 for all (x, α) ∈ Γ× R}

Problem 1 is contained in the more general problem:



THE SPHERICAL MEAN OPERATOR 3

Problem 2. Given a set Γ ⊂ Rn, describe kerΓRP .

For any f ∈ F define the set

(4) S[f ] = {x ∈ Rn
∣∣ RP f(x, α) = 0 for all α ∈ R}.

Clearly, sets of injectivity, Γ, are characterized by the property: Γ ⊂ S[f ] implies
f ≡ 0. Thus the problem can be formulated also as follows:

Problem 3. Given f ∈ F , describe the set S[f ].

1. Equivalent Problems

1.1. Approximation of functions of several variables.
The subject of this section is strongly related to papers of V. Lin and A. Pinkus

[LP1, LP2]. Having been motivated by Hilbert’s 13th problem on superpositions,
they considered the following interesting problem.

Fix a set Φ ⊂ C(Rn) and consider the linear space of finite linear combinations

(5)
∑

αigi(ϕi|x|).

where αi ∈ R, gi ∈ C(R), and ϕi ∈ Φ.

Question. (Lin-Pinkus [LP2]). For which sets Φ are finite linear combinations
(5) dense in the space C(Rn) equipped with the topology of uniform convergence on
compact sets?

As suggested in [LP2], it is natural to choose a fixed function, ϕ and define
Φ to be some set of translations of ϕ. In turn, it is natural to choose ϕ to be a
polynomial.

Thus, given a polynomial P in Rn and a set Γ ⊂ Rn, define the linear space
L(P,Γ) = span{g(P (x− x0))

∣∣ g ∈ C(R), x0 ∈ Γ}.

Problem 4. [LP2]. Given a polynomial P , describe all sets Γ ⊂ Rn such that the
space L(P,Γ) is dense in C(Rn).

Obviously, for linear P the space L(P,Γ) is never dense, hence the first inter-
esting case is degP = 2.

By the Hahn-Banach theorem, Problem 4 is equivalent to finding all sets Γ ⊂
Rn such that the only compactly supported measure µ ∈ C(Rn)′ which annihilates
L(P,Γ) is zero (L(P,Γ)⊥ = {0}).

In general, the condition µ ∈ L(P,Γ)⊥ is equivalent to RPµ = 0 where RP
is defined on measures by (1e). Thus, we arrive at the injectivity problem for
the transform RP defined by (1e). Of course, if µ = f(ξ)dξ, f ∈ Cc(Rn), then
µ ∈ L(P,Γ)⊥ is equivalent to RP f(x, α) = 0 for all (x, α) ∈ Γ × R. Moreover,
for certain polynomials P , denseness of L(P,Γ) and injectivity on functions of the
operator RP and Γ are equivalent. See Proposition 1.1 below.
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1.2 Decompositions into Spherical Waves.
Let us consider the simplest and most interesting case (cf. [LP2]):

P (x) = |x|2 = x2
1 + . . .+ x2

n, x = (x1, . . . , xn).

Then, the Spherical Mean Operator (s.m.o.) is defined for f ∈ Cc(Rn) as in (1) by

(6) Rf(x, r) =
∫
S(x,r)

f(ξ)dA(ξ).

Here dA is the normalized area measure on the space S(x, r) = {ξ ∈ Rn : |ξ − x| =
r}. Note that the s.m.o. satisfies the definition (1) (with RP f(x, α) = Rf(x,

√
α)).

For the s.m.o., our next proposition shows that the problems in §1.1 for measures
and functions are equivalent.

Proposition 1.1. Let Γ ⊂ Rn, then the functions, f ∈ Cc(Rn) that are in kerΓR
are dense in kerΓR (where F = C ′(Rn)). So, Γ ⊂ Rn is a set of injectivity for the
spherical mean operator R on Cc(Rn) if and only if Γ is a set of injectivity for R
on compactly supported measures.

The proof is a simple convolution argument: if µ is a measure in kerΓR, then
the function µ∗ϕ is in kerΓR for any radial ϕ. Letting ϕ be an approximate identity
finishes the proof.

By analogy with planar waves, we will call any continuous function f of the
form f(x) = g(|x − a|2), g ∈ C(R) a spherical wave centered at the point a ∈ Rn.
Denote La the space of all spherical waves at the point a. Note that La ∩ Lb =
{constants} for a 6= b.

The question in [LP2] can be formulated as follows: describe all sets Γ ⊂ Rn
for which

(7a) C(Rn) = cl

(⊕
a∈Γ

La

)
.

According to Proposition 1.1, formula (7a) is true if and only if Γ is a set of
injectivity for the s.m.o. on functions (F = Cc(Rn)).

Let S ⊂ R be a set with an accumulation point in R ∪ {∞}. Since the sets
B = {|α|2k

∣∣ k = 0, 1 . . . } and C = {exp(σ|α|)
∣∣ σ ∈ S} are each dense in C(R)

in the topology of uniform convergence on compact sets, one can rephrase (7a):
describe all sets Γ ⊂ Rn for which

(7b) C(Rn) = cl

(⊕
a∈Γ

span{|x− a|2k
∣∣ k = 0, 1, . . . }

)

or equivalently describe all sets Γ ⊂ Rn for which

(7c) C(Rn) = cl

(⊕
a∈Γ

span{exp(σ|x− a|)
∣∣ σ ∈ S})
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According to Proposition 1.1, formula (7a) is true if and only if Γ is a set of
injectivity for the Spherical Mean Operator (s.m.o.) defined on the space Cc(Rn).
In [LP2], some examples are given when the decomposition (7a) holds (n = 2, Γ is
an ellipse or parabola) and when it does not (Γ is a straight line).

The following example of a set Γ for which the decomposition (7a) fails is
mentioned in [LP2, p.5]: Γ is a set of lines with a common intersection point and
such that the angles between each of the lines are rational multiples of π. Lin and
Pinkus independently conjectured [L] that these sets essentially are the only sets Γ
for those (7a) does not take place. Before having learned of this conjecture and the
example in [LP2], the first author conjectured this, and both authors proved it in
[AQ1], [AQ2] (see §4).

1.3. Uniqueness Theorems for PDE.

Darboux equation. Due to a theorem of Asgiersson, the spherical means

u(x, r) = Rf(x, r) =
∫
|ξ−x|=r

f(ξ)dA(ξ)

satisfy the Darboux equation for u = u(x, r), (x, r) ∈ Rn × R+:

(8)
urr +

(
n− 1
r

)
ur −∆xu = 0,

u(x, 0) = f(x) for x ∈ Rn.

Therefore, the problem of injectivity is equivalent to uniqueness of solutions of
(8). Namely, we are looking for such sets Γ ⊂ Rn such that if u is a solution of (8)
with Cauchy data f ∈ Cc(Rn) and u|Γ×R = 0 then u ≡ 0.

Heat equation. Consider the Cauchy problem for the heat equation in Rn
where u = u(x, t), (x, t) ∈ Rn × [0, T ], T > 0:

ut = c2∆u,

u(x, 0) = f(x) for x ∈ Rn.

Let N [f ] be the nodal set, the set of points where the temperature is zero all
the time:

(9) N [f ] = {x ∈ Rn
∣∣ u(x, t) = 0 ∀t ∈ [0, T ]}.

The Poisson formula

u(x, t) =
1
tn/2

∫
Rn

exp
(
−|x− ξ|2

c2t

)
f(ξ)dξ

yields that

x ∈ N [f ] is equivalent to Rf(x, η) = 0 for all η > 0.

Therefore N [f ] = S[f ], where the set S[f ] is defined by formula (4).
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Wave equation. P. Kuchment [Ku] observed relation between of the injectivity
problem for s.m.o. and wave equation. Let us consider the Cauchy problem for the
wave equation for u = u(x, t), (x, t) ∈ Rn × R+:

(10)

utt = c2∆u

u(x, 0) = 0,

ut(x, 0) = f(x) for x ∈ Rn.

The Poisson-Kirchoff formula for the solution u implies, as in the case of the heat
equation, the identity N [f ] = S[f ], where N [f ] is again the nodal set N [f ] = {x ∈
Rn
∣∣ u(x, t) = 0 ∀t ∈ R+}
In the case n = 2 the Cauchy problem (10) describes the oscillation of the

infinite membrane when it is flat at the initial moment t = 0. The nodal set
N [f ] is the set of stationary points (which do not oscillate). Thus, the injectivity
problem for the s.m.o. , R, is equivalent to describing sets of stationary points of
the oscillating membrane.

The problems above are discussed to show that a number of interesting ques-
tions are closely related to injectivity of the s.m.o. Other results will be mentioned
below.

2. Algebraicity of the set S[f ]. Necessary conditions
of injectivity of the transform RP for degP = 2

2.1. One formulation of the problem, given in the Introduction, concerns the set
S[f ], defined by formula (4). Let P be a polynomial. The following simple but very
useful observation, due to Lin and Pinkus, shows that if f ∈ Cc(Rn), f 6≡ 0 then
the set S[f ] is algebraic. Indeed, for any function g ∈ C(R) and all x ∈ S[f ] we
have, according to Proposition 1.1:∫

Rn

g(P (ξ − x))f(ξ)dξ = 0.

Since f has compact support, the Stone-Weierstrass Theorem implies that it
suffices to takes g(t) = tk, k = 0, 1, . . . , and therefore

(11) S[f ] =
∞⋂
k=0

(
Qk[f ]

)−1(0),

where Qk[f ] = P k ∗ f is a polynomial of degree degQk[f ] ≤ k degP .
It is clear also, that not all of the polynomials Qk[f ] are identically zero (oth-

erwise f ≡ 0).

2.2. Now consider the case deg. p = 2. We assume that P is homogeneous,

P (x) =
n∑

i,j=1

aijxixj
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and det(aij) 6= 0.
Associate with P another polynomial

P ∗(x) =
n∑

i,v=1

a∗ijxixj ,

where (a∗ij)
n
i,j=1 is the inverse matrix (a∗ij) = (aij)−1.

The following identity can be checked by a straight forward computation:

P ∗(D)P k = ckP
k−1, ck = k(k + n− 1), where D = (

∂

∂x1
, . . . ,

∂

∂xn
).

This implies
P ∗(D)Qk[f ] = ckQk−1[f ]

and since not all Qk[f ] are zero, then the nontrivial polynomial h = Qkmin of
minimal degree is annihilated by the differential operator P ∗(D), namely, P ∗(D)h =
cQ(kmin−1)[f ] ≡ 0. Observe that these arguments are true if f is a rapidly decreasing
function or even if f is a compactly supported measure. Thus we have arrived at
the following necessary condition for injectivity:

Proposition 2.1. Let Γ be a set of uniqueness for polynomial solutions of the
differential equation

P ∗(D)h = 0.

Then Γ is a set of injectivity for RP , defined on Cc(Rn) or, more generally, on the
space of rapidly decreasing functions in Rn.

Corollary 2.2. The s.m.o. is injective on any uniqueness set for harmonic poly-
nomials.

This fact was first observed by V. Lin and N. Zobin [LZ]. For instance, any
closed surface in Rn or, more generally, any compact K ⊂ Rn such that the com-
plement to K has nonempty bounded connected component, is a set of injectivity
for the s.m.o., R, on rapidly decreasing functions.

We are able to prove that the last fact is true for the operator R on a large
domain, namely, on the space Lq(Rn) when q is not too large. Correspondingly, the
decomposition (7a) is true for Lp(Rn) if Γ is a closed surface and p is large enough.
We are going to return to this subject elsewhere.

3. The injectivity problem for the spherical mean operator

Now we are going to concentrate on the spherical mean operator (s.m.o.):

R = RP , P (x) = x2
1 + . . .+ x2

n.

The s.m.o. plays an important role in analysis and is investigated from various
points of view. It is enough to mention the mean value property for harmonic
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functions and its generalization, the two radii Delsarte theorem [DL, BG, Z3]. In
[Z1] an analogous two-radii criteria for analytic functions is obtained. Further gen-
eralizations concern tests of harmonicity or analyticity on the hyperbolic disk [BZ,
A1, BBHW], the Pompeiu property on symmetric spaces and the Heisenberg group
[ABCP, BZ1, BZ3, Th], and the description of CR−functions on the Heisenberg
group [ABC, Th] (see also the book [A2] and the bibliography there). The results
mentioned involve restricted sets of radii and large set of centers of spheres of in-
tegration. On the contrary, the problem under consideration in this paper involves
a large set of radii (e.g., r > 0) and a thin set of centers. This setup is natural
in framework of the integral geometry since full spreads of spheres are used. The
following result has been known a long time:

Theorem. (F. John [J], Courant-Hilbert [CH p. 699 ff.]). Let Γ be a hyperplane
in Rn. Suppose that f ∈ C(Rn) and the s.m.o., Rf(x, r) = 0 for all (x, r) ∈ Γ×R+.
Then f is odd with respect to reflection around Γ.

The simplest proof we know parallels the proof of Helgason’s support theorem
for the classical Radon transform on hyperplanes [He1]. We have a function that
has zero integrals over balls of arbitrary radii with centers on Γ. Then successive
differentiations along Γ, and successive application of Stokes’ formula show that
the function has an infinite number of vanishing power moments. These vanishing
moments are equivalent to Γ-oddness of f .

This theorem says that kerΓR, defined by (3), consists of all Γ-odd continuous
functions. We want to describe kerΓR for an arbitrary set Γ. One can slightly
generalize the theorem above by considering a finite union Γ = Γ1 ∪ · · · ∪ ΓN of
hyperplanes. Lin and Pinkus observed that in this case kerΓR consists of all func-
tions in C(Rn) which are odd with respect to reflections around each hyperplane
Γj and that is why kerΓR 6= 0 if and only if the Coxeter group W (Γ1, . . . ,Γn), gen-
erated by these reflections, is finite. In the following section we present a complete
description of kerΓR when the operator R is defined on Cc(R2). It appears that
unions Γ of lines with finite Coxeter group are essentially the only sets for which
kerΓR 6= 0.

4. Injectivity conditions for the s.m.o. in the plane.

4.1. The result.

Theorem 4.1 [AQ1, AQ2]. The following condition is necessary and sufficient for
a set Γ ⊂ R2 to be a set of injectivity for the s.m.o., R, on the space Cc(R2):

(∗) no translation t+ Γ, t ∈ R2, is contained in a set of the form Ψ−1(0) ∪ F ,
where Ψ is a nonzero homogeneous harmonic polynomial and F is a finite
set.

Geometrically, the condition (∗) means that Γ is infinite and cannot be included
in a system ΣN of N lines having a common intersection point and equal angles
π/N between any two closest lines, union with a finite set. The set ΣN (Coxeter
system of lines) has a finite reflection group.
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4.2. Sketch of the proof.

Necessity. We can assume t = 0 in (∗). The space kerΨ−1(0)R consists of all ΣN -
odd functions, ΣN = Ψ−1(0). The ΣN− skew symmetry of f ∈ kerΨ−1(0)R gives
f a sparse polar Fourier series. Being zero on the set F adds a finite number of
additional conditions for the polar Fourier coefficients. This leads to a system of
linear equation for these Fourier coefficients. Linear algebra arguments show that
nontrivial solutions exist and therefore kerΨ−1(0)R 6= 0. It remains to note that
kerΨ−1(0)R ⊂ kerΓR.

Sufficiency is the difficult part of the proof. We have to describe the set S[f ],
given by formula (4), for a fixed arbitrary function f ∈ Cc(R2). Our aim is to
prove that if S[f ] is infinite and S[f ] 6= R2 (i.e.f 6≡ 0), then there exists a point
t ∈ R2, a nonzero harmonic homogeneous polynomial Ψ and a finite set F such
that t+ S[f ] = Ψ−1(0) ∪ F . This proof consists of several steps.

Step 1. Algebraic Characterization of S[f ]. Essentially, this step has been
already described in 2.1. The representation (11) and the Bezout theorem imply
that

S[f ] = Ψ−1(0) ∪ F,

where Ψ is the greatest common divisor of all of the polynomials Qk[f ], k = 0, 1, . . . ,
and F is a finite set. Since the polynomial Qk of the minimal nontrivial degree is
harmonic (Proposition 2.1 and Corollary 2.2), the polynomial Ψ is a divisor of a
harmonic polynomial.

Step 2. Geometric Analysis of S[f ].

Lemma 4.2. Let S = Ψ−1(0) be an algebraic curve in the plane, where Ψ is a
polynomial divisor of a nonzero harmonic polynomial. Then, only the two following
cases are possible:
(a) S = ΣN (Ψ is homogeneous after some shift)
(b) S contains a ‘’hyperbola-like part” S0 which is the union S0 = S1 ∪ S2 of two

disjoint real-analytic curves having different asymptotic rays at infinity.

The proof is based on an asymptotic analysis of the polynomial Ψ at the infinity
and uses the Maximum Modulus Principle for harmonic polynomials.

Step 3. Microlocal Fourier Analysis and Support Theorem. Due to Lemma
4.2, it remains to prove that the condition (b) implies that S is a set of injectivity,
i.e. f ≡ 0. To this end we use the calculus of real-analytic Fourier integral operators
related to proofs in [BQ] [Q1, Q2]; the ideas are based on the microlocal methods of
Guillemin [GS] in the real-analytic category [T, Ka]. We refer the reader to [AQ2]
for details and will now only outline the main ideas.

In order to explain the background of the approach let us consider the linear
Radon transform

Rf(θ, c) =
∫
〈ξ,θ〉=c

f(ξ)dA(ξ) for f ∈ Cc(Rn), (θ, c) ∈ Sn−1 × R.
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In the case of s.m.o. the radius r is the analog of the parameter c and the center x
is the analog of the direction θ. An open set of directions, θ is analogous to x lying
on a non-affine surface S.

The standard proof of the fact that if U ⊂ Sn−1 is open then Rf(θ, c) = 0 for
(θ, c) ∈ U × R implies f ≡ 0, is based on the projection slice theorem:

Fnf(rθ) = F1
c→r(Rf (θ, c)) ,

where Fn and F1 are n−dimensional and 1−dimensional Fourier transforms re-
spectively. Since f has compact support, Fnf is real-analytic. Therefore, since
Fnf(rθ) = 0 in the cone C : r ≥ 0, θ ∈ U , Fnf ≡ 0 and so f ≡ 0.

This proof is obviously not applicable to the curved transform. In this case,
we do not have a nice relation between the Fourier and Radon transforms because
the fibration of Rn for spheres, (1b), does not consist of parallel hyperplanes. Nev-
ertheless one can consider the projection formula for the linear Radon transform
from a different point of view. This formula gives the expression:

Rf(θ, c) = (F1)−1
r→cFnf(cθ)

shows that R is a real-analytic elliptic Fourier integral operator associated to the
Lagrangian manifold N∗Z \ 0 where Z = {(x, θ, c)

∣∣ 〈x, θ〉 = c} and therefore the
solution of the equation Rf(θ, c) = 0, (θ, c) ∈ C must be real-analytic in wave
front directions lying in the open cone C for all points in Rn. Since f has compact
support, this implies f ≡ 0 using a theorem of Hörmander, Kawai, and Kashiwara
(discussed below) about analytic wave fronts at the boundary of supports.

This argument has some chance to be applicable, at least morally, to the
curved transform because it does not impose strong requirements on the geom-
etry of spreads. In fact the idea comes from the observation that the fibrations for
curved Radon transforms are, infinitesimally, like that of hyperplanes–the global
fibration in the linear case.

The first key point is the theorem [Hö, Theorem 8.5.1], which states that f
has analytic wave front at conormal directions to the boundary of supp f . More
precisely, if S is a smooth surface containing supp f and x0 ∈ ∂S∩ supp f , then
(x0, ξ) ∈WFA(f) when ξ is any normal vector to S at the point x0.

The second key point in our proof is the fact that the s.m.o., R, is a real-analytic
elliptic Fourier integral operator and the solution of the equation Rf(x, r) = 0,
(x, r) ∈ S × R+, must be “very smooth” (no analytic wave front at certain direc-
tions).

However, this smoothness does not come automatically. Analytic wave fronts
of f can cancel at certain points. Analysis of the Lagrangian manifold of the s.m.o.
shows that such cancellation can takes place at any pair of points x0 and x∗0 (mirror
points) which are symmetric with respect to the tangent line La0 to the curve Γ
at the point a0. Note that this is the analogous phenomenon on a infinitesimal
level, to the fact that La0- odd functions are in kerLa0

R. Thus, we conclude that
supp f must satisfy quite strong geometric symmetry conditions (in order for f to
be non-analytic, it must have wave front at corresponding mirror points).
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Now we assume that condition (b) from Lemma 4.1 holds. This implies that
the curves S1 and S2 (branches of the “hyperbola”) have two closest points a0 ∈
S1, b0 ∈ S2 :

dist (S1, S2) = dist (a0, b0).

The segment [a0, b0] is perpendicular to the both tangent lines La0 and Lb0 , and
these tangent lines are parallel to each other. Now, let D(a0) and D(b0) be the
smallest disks centered at a0 and b0, respectively, that contain supp f . Finally, we
show that the set supp f cannot satisfy the mirror condition above, with respect
to both lines La0 and Lb0 and both disks D(a0) and D(b0), unless supp f = ∅
(since f is zero at the mirror points to the points on the boundaries of these disks
that are in supp f). So, f is real-analytic in conormal directions to ∂D(a0) and
∂D(b0). So, by the first key point and the definitions of D(a0) and D(b0), ∂D(a0)
and ∂D(b0) can’t meet supp f . This contradiction completes the proof.

4.3. The result for the s.m.o. can be easily generalized to the transform over
ellipses, by applying the corresponding affine transformation. Let P (x1, x2) =
x2
1
a2
1

+ x2
2
a2
2
, a1, a2 > 0, The ellipses are given by P (ξ − x) = (ξ1−x1)2

a2
1

+ (ξ2−x2)2

a2
2

= r2

and the transform is defined as in (1):

RP f(x, η) =
∫ 2π

0

f(x1 + a1r cos θ, x2 + a2r sin θ)dθ, f ∈ Cc(R2),

where the measure dθ is the measure satisfying (1c) for dν = a1a2rdr.

Theorem 4.3. RP is injective on a set Γ ⊂ R2 if and only if no translation
t + Γ, t ∈ R2, is contained in a set of the form Ψ−1(0) ∪ F, where Ψ is a nonzero
homogeneous polynomial solution of the differential equation

P ∗(D)Ψ =
(
a2

1

∂2

∂x2
1

+ a2
2

∂2

∂x2
2

)
Ψ = 0

and F is a finite set.

The case of the Radon transform over hyperbolas P (ξ − x) = r, P (ξ) = ξ21
a2 −

ξ22
b2 , a, b > 0, requires special arguments. For this case, we have only partial results
so far.

5. Complete systems of radial functions in C(R2)

5.1. The results of §4 provide an answer to the question in [LP2], discussed in 1.1.,
for functions of two variables. Because of the equivalence stated in 1.1, Theorem
4.1 yields:

Theorem 5.1 ([AQ1, AQ2]). Any function f ∈ C(R2) can be approximated, uni-
formly on compact sets, by finite linear combinations of the form∑

gi(|x− ai|2),
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where gi ∈ C(R) and ai ∈ Γ ⊂ R2, as long as the set Γ satisfies the condition (∗)
of Theorem 4.1.

Thus, the space L(Γ) = span{g(|x− a|2), g ∈ C(R), a ∈ Γ} is dense in C(R2)
if an essential part of Γ (the complement of a finite subset) is not a subset of some
Coxeter system ΣN . In this case kerΓR = L(Γ)⊥ ∩ CC(R2) = {0}.

Using the equivalence between (7a) and (7b) and (7c), we can rephrase Theo-
rem 5.1.

Corollary 5.2. Let S ⊂ R be a set with an accumulation point in R ∪ {∞}. Any
function f ∈ C(R2) can be approximated, uniformly on compact sets, by finite linear
combinations of the form ∑

ci|x− ai|2ki ,

where ci ∈ R, ai ∈ Γ ⊂ R2, and ki ∈ {0, 1, 2, . . . } or by finite linear combinations
of Gauss functions ∑

ci exp(σi|x− ai|2),

where ci ∈ R, σi ∈ S and ai ∈ Γ, as long as the set Γ satisfies the condition (∗) of
Theorem 4.1.

Corollary 5.2 justifies the following intriguing example. Let Γ1 = {(n, n)
∣∣ n ∈

Z}. Then, the span of {exp(σ|x − a|2)
∣∣ a ∈ Γ1, σ ∈ S} is not dense in C(R2)

for any choice of S. This is true since Γ1 lies on a line or Coxeter set. Let Γ2 =
{([n/2], [(n+1)/2])

∣∣ n ∈ Z}. Since Γ2 is infinite and lies on no Coxeter system, if S
has an accumulation point in R∪{∞}, then the span of {exp(σ|x−a|2)

∣∣ a ∈ Γ2, σ ∈
S} is dense in C(R2). For example, the system of Gauss functions {exp(−m|x −
an|2),m ∈ Z} is complete in C(R2) for an = ([(n + 1)/2], [n/2]) and is not for
an = (n, n), n ∈ Z.

Since kerΣN
R consists of all ΣN–odd functions in Cc(R2) we have

Theorem 5.3 ([AQ1, AQ2]). The closure of the space L(ΣN ) consists of all f ∈
C(R2) having (r, θ) the sparse polar Fourier series in coordinates (r, θ):

f(r, θ) ∼
∞∑
k=0

ak(r) cos kθ +
∑
k/∈N ·N

bk(r) sin kθ.

Definition. We say that a set Γ ⊂ R2 satisfies the resonance condition if there
exist a finite subset F ⊂ Γ and a point t ∈ R2 such that all points of Γ \ F are
visible from the point t under angles which are rational multiples of π.

This is, of course, a description of a shifted Coxeter system. Clearly, the
condition (∗) of Theorem 4.1 means that the resonance condition does not hold for
Γ.

Recall that La is the set of continuous radial functions centered at a. Theorem
5.1 states that the decomposition

C(R2) = cl

(⊕
a∈Γ

La

)
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into spherical waves centered at points of Γ holds if and only if Γ does not satisfy
the resonance condition. Of course, Γ = ΣN satisfies the resonance condition; ΣN
has “eigenfrequences” and the direct sum ⊕a∈ΣN

La does not contain “eigenmodes”
sin kNθ, θ is the angular coordinate in associated polar coordinates.

6. Applications to PDE

The following results are immediate corollaries of Theorem 4.1, due to equiv-
alence discussed in 1.2.

Darboux equation.

Theorem 6.1. Let u be a solution of the Cauchy problem (8) for the Darboux
equation for n = 2, with Cauchy data f ∈ Cc(R2) and Γ ⊂ R2. Then u|Γ×R+ = 0
implies u = 0 as long as Γ satisfies the condition (∗) of Theorem 4.1.

Heat equation.

Theorem 6.2. Let u be a solution of the Cauchy problem (9) for the heat equation
in the plane, with initial temperature distribution f ∈ Cc(R2). Consider the zero
temperature set N [f ] = {x ∈ R2

∣∣ u(x, t) = 0 for all t ∈ [0, T ]}. Then the set N [f ]
can be of the following three types:

(1) N [f ] = R2 (f ≡ 0),
(2) N [f ] is a finite set,
(3) N [f ] = ωΣN ∪ F for some N ∈ N, where ω is a rigid motion of R2, ΣN is

a Coxeter system of straight lines and F is a finite set.

In the case (3) the solution u(x, t) is odd with respect to reflections around
lines in ωΣN , at any moment t ∈ [0, T ]. So, if u has an infinite number of zeros
for all time, then the initial temperature distribution must have this special skew
symmetry. So, solutions to (8) that have compact support at t = 0 are uniquely
determined by their values on any nonlinear smooth curve.

For the case when Γ is a curve, Theorem 6.2 can be formulated as solution of
a free boundary problem.

Theorem 6.3. Let Γ be a simple smooth curve that divides the plane into two
domains Ω+ and Ω−.

Consider the following free boundary problem for the heat equation with un-
known boundary Γ:

(12)

u±t = c2∆u± for (x, t) ∈ Ω± × [0, T ],

u+|t=0 = u−|t=0 ∈ Cc(R2),

u±|Γ = 0 for all t ∈ [0, T ],
∂u+

∂ν
=
∂u−
∂ν

on Γ,

where ν is a unit normal vector field on Γ.
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Then, nontrivial solutions are possible if and only if Γ is a straight line and
u+ and u− are skew symmetric with respect to reflection around Γ.

Indeed, the pair (u+, u−) form a global solution vanishing on Γ. Theorem 6.2
states that, if this solution is nontrivial, then Γ must be a straight line.

Wave equation.

Theorem 6.4. Nodal sets N [f ] of solutions of the Cauchy problem (10) for the
wave equation in R2, with compactly supported initial velocity f , can be only of
three following types:

(1) N [f ] = R2 (the membrane does not oscillate at all),
(2) N [f ] is a finite set,
(3) N [f ] = ωΣN ∪ F for some N ∈ N, where ω is a rigid motion of R2, ΣN is

a Coxeter system of straight lines and F is a finite set.

Theorems 6.2 and 6.4 show that solutions with infinite sets of time-invariant
zeros can occur only as result of strong symmetry of the initial data.

For instance, these sets cannot contain any small smooth nonlinear curve. For
the heat equation it means that, if the initial temperature distribution has compact
support, then it is impossible to have zero temperature along such a curve unless
the temperature is identically zero.

In the case of the wave equation, we have obtained that, if the initial velocity
is zero outside of a bounded region, then the oscillating membrane cannot remain
stationary on a smooth curve that is not a segment of line.

Theorem 6.4 makes clear the character of oscillation of an infinite membrane
with compactly supported initial velocity. There can be an infinite set of stationary
points only if the initial velocity is skew symmetric with respect to some rigid motion
of a Coxeter system ωΣN ; this skew symmetry persists in time.

Thus, only angular oscillations with respect to the polar coordinate system
associated with ΣN are possible.

Compact support for the initial velocity f is a crucial condition to our theorems.
In general, for example, an infinite family of concentric circles can remain stationary.
As we saw this is impossible when supp f is compact.

7. Applications to potential theory

7.1. Let µ be a regular Borel measure in Rn. Define the Pompeiu transform of µ
by

R̃µ(x, r) = µ(B(x, r)),

where B(x, r) = {ξ ∈ Rn
∣∣ |ξ − x| < r}. Of course, R̃(x, r) =

∫
[0,r)

1dRµ(a, ·) and,

therefore, since µ is a regular Borel measure, R̃µ = 0 iff Rµ = 0.
It was shown in 1.1 that for any Γ ⊂ Rn the subspace kerΓR ⊂ ker ΓR̃ is dense

in the weak topology in C(Rn)′ and therefore the transforms R and R̃ have the
same sets of injectivity. Then Theorem 4.1 implies
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Theorem 7.1. Let B = {B(x, r)
∣∣ (x, r) ∈ Γ × R+} be a family of disks in the

plane. Any compactly supported measure µ ∈ C(R2)′ can be identified by its values
µ(B), B ∈ B, as long as the set Γ of centers satisfies the condition (∗) of Theorem
4.1.

It is interesting to compare Theorem 7.1 with the existence of an infinite di-
mensional metric space in which all balls are not enough to identify measures [PT].
On the contrary, in the finite dimensional case, measures are determined by their
values on sets of balls (of arbitrary radius) except for thin families of balls (disks)
with special geometric symmetry.

7.2. Now we reformulate Theorem 7.1 in terms of Riesz potentials. For µ ∈ C(R2)′

consider the Riesz potential

Iλµ(x) =
∫

R2

dµ(ξ)
|x− ξ|λ

, λ < 2.

If λ is fixed then µ is uniquely determined by values Iλµ on any open subset
U ⊂ R2 but µ is not determined if we know Iλµ(x) for x on a curve.

On the other hand if Iλµ(x) = 0 for λ in an open interval, λ ∈ (a, b) then
R̃µ(x, r) = 0 for all r > 0. The converse implication, obviously, is also true.
Therefore Theorem 4.1 gives:

Theorem 7.2. Let µ ∈ C(R2)′. Consider a one-parameter family Iλµ, λ ∈ (a, b)
of Riesz potentials. If Γ ⊂ R2 and Iλµ|Γ = 0 for λ ∈ (a, b) then µ = 0 provided Γ
satisfies the condition (∗) of Theorem 4.1.

8 A uniqueness theorem for the Laplace
operator and nonlinear Fourier transform

8.1. Using the Fourier transform, one can formulate the result of §4 in another
form which also may be interesting. First, we consider arbitrary dimension, n. The
identity

Rf(x, r) =
∫
|y|=r

f(x+ y)dA(y) = 0

is equivalent to the set of conditions:∫
Rn

|y|2kf(x+ y) dy = 0, k = 0, 1, · · ·

Applying the Fourier transform in the y-variable to these conditions yields:

(13)
(
∆kei〈λ,x〉g(λ)

)∣∣
λ=0

= 0, g = f̂ , k = 0, 1, · · ·

If f ∈ D′(Rn), compactness of supp f is equivalent to g belonging to the Bern-
stein class B(Rn) of all real-analytic functions in Rn having a continuous extension
to Cn that is an entire function of exponential growth.
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Thus the problem of describing of set of injectivity of the s.m.o. has the dual
form: find all sets Γ ⊂ Rn such that if (13) holds for all x ∈ Γ then g ≡ 0.

The condition (13) can be rewritten in terms of the nonlinear Fourier transform
(cf. [E]):

(14) Fg(x, α) =
∫

Rn

e−α|λ|
2−i〈λ,x〉g(λ) dλ = 0

for all α > 0.
In these terms, the problem is to characterize all uniqueness sets for the trans-

form F on the Bernstein class B(Rn), (i.e. the sets Γ ⊂ Rn for which Fg(x, α) = 0
for g ∈ B(Rn) and (x, α) ∈ Γ × R+ implies g = 0. This question makes sense for
other classes of functions g.

Theorem 4.1 answers this question for the case n = 2:

Theorem 8.1. If g ∈ B(R2) and equations (13)–(14) hold for x ∈ Γ ⊂ R2, then
g = 0 provided Γ satisfies the condition (∗) of Theorem 4.1.

8.2. The condition (14) can be rewritten in the equivalent form:

(15)
∫
u∈SO(n)

ei〈uλ,x〉g(uλ) du = 0 ∀ x ∈ Γ, λ ∈ Rn.

Here du is the Haar measure on the group SO(n). Thus we deal with a unique-
ness problem for the integral equation (15).

For n = 2 the equation (15) can be written in polar coordinates as

(16)
∫ 2π

0

eirs cos(ϕ−θ)g(s, θ) dθ = 0, ∀s > 0, ∀(r, ϕ) ∈ Γ.

As is mentioned in §2, the generic case is when Γ is a curve. We can assume
that 0 ∈ Γ and Γ is given in polar coordinates (ϕ, r) by equation ϕ = ϕ(r), r > 0.
Theorem 4.1 states that the integral equation (16) has a unique solution g = 0 in
B(R2) unless ϕ(r) = ϕ0 = const. In this case all solutions satisfy g(r, ϕ0 − ϕ) =
−g(r, ϕ0 + ϕ).

It would be interesting to obtain the uniqueness theorem directly by investigat-
ing the integral equation (16). Stationary phase would seem to be an appropriate
technique for this proof, but we did not succeed in proving the result in this way.

9. A Morera-type Theorem

Several modifications and variations of the Morera theorem are known that
involve integration over circles (see e.g. the survey of Zalcman [Z3]). We suggest
one more result of such type which is a simple consequence of Theorem 4.1 and
Green’s formula.
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Theorem 9.1. Let f ∈ C1(R2) be holomorphic in C\K for some compact K ⊂ C.
Suppose that the complex integrals∫

|w|=r
f(z + w) dw = 0

for all r > 0 and all z ∈ Γ ⊂ C. Then f is an entire function as long as Γ satisfies
the condition (∗) of Theorem 4.1.

Thus, if f is holomorphic outside of a compact set, then zero integrals over all
circles centered on a smooth nonlinear curve imply f has no singularities on the
compact K.

The proof of Theorem 9.1 consists of three steps. First, use Green’s Theorem
to reduce to an integral

∫
|z−w|≤r

∂f
∂z dA ≡ 0 for w ∈ Γ, r > 0, and then differentiate

with respect to r to get the integral R
(
∂f
∂z (w, r)

)
= 0. Finally, use Theorem 4.1.

This Green’s Theorem argument can be used along with a theorem of Volchkov
[Q3] to show, for arbitrary f ∈ C1(C) that, if Γ consists of two concentric circles
with well chosen radii and the integrals in Theorem 9.1 are zero, then f ≡ 0. An
example using a Bessel’s function shows that this is not true for arbitrary concentric
circles.

10. Multidimensional case (n > 2)

In this section we present some partial results and a conjecture about the
complete solution for the injectivity problem for the s.m.o. in Rn for n > 2.

Theorem 10.1. (Necessary condition for sets of injectivity, [AQ1, AQ2]). Let
Γ ⊂ Rn be a set of injectivity for s.m.o. on the space Cc(Rn). Then no translation
t + Γ, t ∈ Rn, is contained in a set of the form Ψ−1(0), where Ψ is a nonzero
homogeneous harmonic polynomial.

Proof. The proof is based on properties of the space of spherical harmonics. First,
we can assume t = 0 and Γ ⊂ Ψ−1(0). Define the measure µ ∈ C(Rn)′ by∫

Rn

gdµ =
∫
ξ∈Sn−1

g(ξ)Ψ(ξ)dA(ξ), for g ∈ C(Rn).

Let e ∈ Sn−1, let SO(n − 1, e) ⊂ SO(n) be the isotropy subgroup of the point e,
and let CM (t) be the normalized Gegenbauer polynomial of the same degree, M ,
as Ψ (and order λ = (n− 3)/2). Then,

(17)
∫
k∈SO(n−1,e)

Ψ(kξ)dk = Ψ(e)CM (ξ · e)

because Ψ is a homogeneous spherical harmonic and so the integral in (17) is a
constant multiple of the unique normalized zonal spherical harmonic at e ∈ Sn−1,
CM (ξ · e).
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Let g ∈ C(Rn) be a radial function and let x0 = re, e ∈ Sn−1 be a point in
Γ. Then, we can use (17) and the axial symmetry of g(x0 − y) about the ray

−→
0e to

show g ∗ µ(x0) = 0. Since µ 6= 0 we conclude that kerΓ R̃ 6= 0 where R̃ is defined in
§7.2. Therefore, Γ is not a set of injectivity. �

Theorems 4.1 and 10.1 provide motivation for the following conjecture.

Conjecture 10.2. The following condition is necessary and sufficient for a set
Γ ⊂ Rn to be a set of injectivity for the s.m.o. R : Cc(Rn)→ C(Γ× R):

(∗) no translation t + Γ, t ∈ Rn, is contained in a set of the form Ψ−1(0) ∪
F , where Ψ is a nonzero homogeneous harmonic polynomial and F is an
algebraic variety of codim F ≥ 2.

The most difficult part in proving this conjecture is the sufficiency part, namely,
the generalization of step 2 in the proof of Theorem 4.1 for the case n > 2. The
reason is that not much is known about geometry of zero sets of harmonic polyno-
mials of more that 2 variables. On the other hand, step 1 (structure of S[f ]) and
step 3 (support theorem) can be done for any dimension and therefore we are able
to give some sufficient conditions for injectivity.

Definition. Let Γ be a hypersurface in Rn. We call two points a, b ∈ Γ, a 6= b,
opposite if a and b are points at which Γ is real-analytic, and the segment [a, b] is
perpendicular to the tangent spaces Ta(Γ) and Tb(Γ).

Theorem 10.3. Any hypersurface Γ ⊂ Rn, having at least two opposite points, is
a set of injectivity for the s.m.o. R on Cc(Rn).

Examples. The hyperboloid x2
1 +x2

2−x2
3 = 1 in R3 is a set of injectivity (opposite

points a = (−1, 0, 0), b = (1, 0, 0)). The cone x2
1 + x2

2 − 2x2
3 = 0 is the zero set of

harmonic homogeneous polynomial and hence it is a set of non-injectivity due to
Theorem 10.1.

At first glance, one might guess that if Ψ is polynomial divisor of a nonzero har-
monic polynomial, then the algebraic variety V = Ψ−1(0) which is not a cone must
contain opposite points. However, Michael Larsen observed that the polynomial in
R3 xyz − 1 = 0 gives a counterexmaple to this guess. Nevertheless, sometimes the
statement is true.

Theorem 10.4. If the set Γ ⊂ Rn is axially symmetric and Γ is invariant with
respect to rotations around a fixed straight line l ⊂ Rn, then there are opposite
points.

Theorem 10.4 and results in §2 and §4, and Theorem 10.3, show that our
Conjecture 10.2 is true in this case.

We can assume l = {x1 = · · · = xn−1 = 0}. Arguments given in §2 (see also
§4, step 1 of the proof of Theorem 4.1) show that if Γ is not a set of injectivity then
Γ = Γ0 ∪ F , where Γ0 = Ψ−1(0), Ψ is polynomial divisor of a nonzero harmonic
polynomial h in Rn, and F is an algebraic variety of codim F ≥ 2.
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Now, we can apply averaging with respect to group SO(n − 1, e) of rotations
around the line l, and therefore we can assume that the polynomial h has the form

h(x1, · · ·xn) = h0(x2
1 + · · ·+ x2

n−1, xn).

The polynomial h0(t, xn) satisfies the differential equation

(18)
(

4t
∂2

∂t2
+ 4

∂

∂t
+

∂2

∂x2
n

)
h0 = 0.

Further analysis of the zero set of the polynomial h0 in the plane (t, xn) is
similar to that in the proof of Theorem 4.1 (Lemma 4.2). We also use the fact that
nonzero solutions of (18) cannot vanish on closed contours.

Remark. In the case of axial symmetry, considered in Theorem 10.4, sets of non-
injectivity look as follows. These are subsets of unions ΣN ∪ F , where F is the
“negligible” part–finite union of (n − 1)− spheres, generated by rotations around
the line l of a finite set in the plane (t, xn). The essential part ΣN is union of N
circular cones passing through zeros on the unit sphere Sn−1 of the zonal spherical
harmonic of degree N . More precisely, if l is the xn-axes, then ΣN =

⋃N
k=1 CK ,

where CK is the cone

CK = {x2
1 + · · ·+ x2

n−1 = α2
Kx

2
n}

and βK =
1√

1 + α2
K

are zeros of the Gegenbauer polynomial CN (βK) = 0, K =

1, · · · , N .

11. The spherical mean operator on
non-compactly supported functions

Now we consider the spherical mean operator Rf(x, r) =
∫
S(x,r)

f(z)dA(z)
with no restriction of boundedness for supports of functions in the domain of R.

The following result, pointed out to us by Larry Zalcman, gives a method of
constructing of sets of non-injectivity for the operator R:

Proposition 11.1. Let u be a solution of the Helmholtz equation in Rn:

(19) ∆u+ λ2u = 0, λ > 0.

Then Ru(x, r) = 0 for all r > 0 as soon as u(x) = 0. Therefore, if u 6≡ 0 then
u−1(0) is not a set of injectivity for the transform R.

Proof. Let u be a solution to the homogeneous Helmholtz equation and assume
u(x) = 0. We show Ru(x, r) = 0, ∀r > 0. Since the Helmholtz equation is
elliptic and homogeneous, u is real analytic. Therefore, Weber’s relation [We] or
the generalized Pizzetti-Zalcman formula ([Z2] for arbitrary n) can be used to show
for each r > 0 that Ru(x, r) is an infinite sum of terms including u(x) and ∆ku(x)
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for k ∈ N (see also [He2, Theorem 2.7, equation (25), p. 95] for homogeneous
spaces). Because u satisfies the Helmholtz equation and u(x) = 0, this sum must
be identically zero in r. �

Larry Zalcman pointed out the radial example, u(x) = Jn
2−1(λ|x|)/|x|n2−1

where Jm is the Bessel function of order m. We obtain that any sphere S(0, αK/λ)
(where αK is a zero of Jn

2−1) is a set of non-injectivity for the spherical mean
operator.

This contrasts with the situation for compactly supported functions where any
closed surface is a set of injectivity (Corollary 2.2).

In connection with Proposition 11.1 the following question arises:

Question. What are zero sets of real-analytic entire solutions of the Helmholtz
equation (19)?

We do not know the answer for hypoelliptic algebraic curves in the plane,
defined by equations

γ2p : a1x
2p
1 + a2x

2p
2 = 1, a1, a2 > 0.

The ellipses γ2 are zero sets of nontrivial solutions of (19), but for γ4 the
question seems to be open. The following reduces the problem to uniqueness of an
overdetermined boundary problem for a PDE. of elliptic type:

Proposition 11.2 [AS]. The curve γ2k is the zero set of a nonzero solution u to
(19), which has Fourier transform (in the distribution sense) that is a measure in
Rn, if and only if the following boundary value problem has the unique solution
v = 0:

(a1∂
2k
x1

+ a2∂
2k
x2

)v = −v, x2
1 + x2

2 ≤ λ2

∂αv|x2
1+x2

2=λ2 = 0 for |α| ≤ k.

Note that the differential operator above has a discrete spectrum in the space
of functions with boundary conditions: ∂αv = 0 for |α| ≤ k − 1. The question
is: do the extra boundary conditions for the k−th order derivatives imply that the
spectrum is empty?

12. Open questions

We would like to conclude by list of open questions, some of them have been
already mentioned above.

(1) Generalize Theorem 4.1 for any dimension (Conjecture 10.2).
(2) Describe sets of injectivity for the general transform RP on compactly sup-

ported functions and measures.
(3) Describe sets of injectivity of the spherical mean operator (even for n = 2)

defined on C(Rn), Lp(Rn), other spaces that are larger than Cc(Rn).
(4) Obtain an analog of Theorem 5.1 in the category of entire functions in C2.

(in Cn).
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(5) Describe the range of operator RP and find the inverse operator in cases for
which RP is injective.

(6) The problem of decomposition into spherical waves, discussed in 1.1 and 1.2
can be generalized as follows.

Let X = G/K be a homogeneous space of a Lie group G and T be a represen-
tation of G in a linear topological space F . Let π be an irreducible representation
of K and Tπ be the induced representation, F0 ⊂ F be the space of this represen-
tation, that is F0 = {w ∈ F

∣∣ Tkw = π(k)w, k ∈ K}. For any subset Γ ⊂ G we
consider the space

L(Γ) = span{Tgw
∣∣ w ∈ F0, g ∈ Γ}.

Describe all sets Γ such that L(Γ) is dense in F .
The problem discussed in this paper (§1) deals with the particular case: G =

M(n) - the group of rigid motions of Rn,K = SO(n), F = C(Rn), Tgf(x) =
f(gx)(g ∈ G), π is the trivial representation, Γ is a subset of parallel translations.
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