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INJECTIVITY SETS FOR THE RADON TRANSFORM OVER
CIRCLES AND COMPLETE SYSTEMS OF RADIAL FUNCTIONS

MARK L. AGRANOVSKY AND ERIC TODD QUINTO

Bar Ilan University Tufts University

ABSTRACT. A necessary and sufficient characterization is given that specifies which
sets of sums of translations of radial functions are dense in the set of continuous
functions in the plane. This problem is shown to be equivalent to inversion for the
Radon transform on circles centered on restricted subsets of the plane. The proofs
rest on the geometry of zero sets for harmonic polynomials and the microlocal analysis
of this circular Radon transform. A characterization of nodal sets for the heat and
wave equation in the plane are consequences of our theorems, and questions of Pinkus
and Ehrenpreis are answered.

§1. Formulation of the problem and the main results.

In this article, we characterize all systems of translations of radial functions
that are complete in the space of continuous functions in R?. This is done by
solving a dual problem, proving injectivity (on the domain of compactly supported
functions) for a Radon transform integrating over restricted sets of circles. This
injectivity problem is solved by first understanding the zero sets of harmonic poly-
nomials and then using microlocal analysis.

Our result answers a question in approximation theory [LP]. The same question
in dual form is posed in the book of Ehrenpreis [E], so we also answer this question
in the plane (see §9.2).

The problem of inverting the spherical Radon transform on restricted sets of
spheres goes back to Courant and Hilbert [CH], John [J], and Delsarte [DL]. John,
Delsarte, Zalcman, Berenstein and Zalcman [Z1, Z2, BZ1, BZ2| and others [A,
ABCP, BG, F, Q2] consider the case of spheres with arbitrary center but radius
restricted to a small set (see [Z2] for a lovely introduction).
mematics Subject Classification. Primary: 41A99, 44A12 Secondary: 35B05, 35S530.
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4 M.L. AGRANOVSKY AND E.T. QUINTO

In this article, we consider the Radon transform on circles in the plane with
arbitrary radius but with center restricted to lie on a set S. From the point of view
of integral geometry this case is natural since centers play role of directions in the
classical Radon transform. We completely characterize the sets S in the plane such
that the circular transform with centers restricted to S is noninjective on compactly
supported functions (Theorem B in §1.2). Courant and Hilbert prove that if S is a
line, then the kernel of this transform consists of all the odd functions about that
line. The line is the building block for our sets of noninjectivity: Coxeter systems
of lines (1.1).

1.1 Systems of radial functions. We shall use the following notation, most of
which is standard:

C(R™) - the space of all continuous real-valued functions endowed with the
topology of the uniform convergence on compact sets,

C:(R™) - subspace of all compactly supported functions in C(R"),

C#(R") - subspace of radial functions in C(R"), i.e., all functions which de-
pend only on the distance to the origin,

M(n) - the groups of rigid motions of R™.

Let S be a set in R”. Denote by £(S) the linear subspace in C'(R"):

L(S)=span {f, |a €S, feC*R")},

where f, is the shifted function, f,(z) = f(x — a). So, L(S) consists of sums of
continuous functions, each of which is a function of the distance to a certain fixed
point in S.

Our first goal is solution of:
Problem 1. Describe all sets S for which the subspace £(S) is dense in C(R").

The problem is to characterize the systems of shifted radial functions that are
enough to approximate any continuous function by their sums. To our knowledge,
this problem was formulated by A. Pinkus (see [LP]).

Another way to phrase the problem is: describe all sets S such that the space
of all continuous functions can be decomposed into a closed direct sum of “spherical

waves” (by analogy with plane waves) with centers on S:

CR") = cl @ra(C*R)).

a€S
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FIiGURE 1. w(XN)UF.

Here we have let 7, : f — f, denote the shift operator. The sum of vector spaces
above consists of finite sums of vectors, and we used the notation for direct sum since
the intersection of two shifted spaces of radial functions consists only of constants.
This paper contains the complete solution of this problem for the case n = 2.
It turns out that £(S) is dense in C'(R?) for all S except very special sets related to
a nice geometric object. Before formulating the result, we will describe this object.
For any N € N we denote by ¥n the Coxeter system of N lines Lg,...,Lny_1
in the plane where:
Ly = {te™™/N | — o0 <t< oo} (1.1)

Each of these lines passes through the origin and through a 2N*" root of unity.

Theorem A. The following condition is necessary and sufficient for L(S) to be

dense in C(R?):

(*) the set S is not contained in any set of the form w (Xn) U F, where w € M(2)
and F' is a finite set.

Several people have done important work on this problem. Lin and Pinkus
originally (and independently) conjectured this theorem, and subsequently, they
proved that £(S) is dense if S is non-algebraic. Pinkus proved density for some
algebraic curves such as parabolas. Pinkus and Lin solved the case when S is
a union of hyperplanes in R". Kuchment (see §8.2) showed the relation of this
problem to the membrane equation and proved denseness for closed curves using

this. Zobin and Lin first observed the connection to harmonic polynomials.
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1.2 Spherical Radon transforms. By duality arguments (Theorem 6.2), the
denseness of £(S) in C(S) is equivalent to the injectivity of the Radon transform

over spheres

Rf(z,r) = /S( )fdA, f € C.(R™). (1.2)

Here x € R*, r € Ry = (0,00), S(z,r) denotes the sphere centered at z and of
radius 7, and dA is the normalized area measure on S(z,r). Of course, this trans-
form can be defined on domain C'(R™), but we consider only compactly supported

functions in this article. Let us say precisely what we mean by the injectivity of R.

Definition 1.1. The transform R is said to be injective on a set S (S is a set of
injectivity) if for any f € C.(R™) the condition

Rf(z,r)=0 forall r€R, andany z€S

implies f = 0.
The problem for the spherical transform equivalent to Problem 1 is:

Problem 2. Describe all sets of injectivity for the Radon transform R on domain
C.(R™)

This problem is given in the book of L. Ehrenpreis [E], and our next theorem

is the solution in the plane:

Theorem B. The condition (*) in Theorem A is necessary and sufficient for S

to be a set of injectivity for the Radon transform over circles.

As with other Radon transforms (e.g., [BG, Z2]), proving injectivity of R for
functions not of compact support is a difficult problem (see e.g., [Q3]).

As is shown in §6.1, the denseness of £(S) in C'(R™) is equivalent to the injec-
tivity of R on S. Therefore, Theorem A is equivalent to Theorem B, and both are
true for n = 2. We first prove Theorem B and derive Theorem A as a consequence.

The proof of Theorem B is given in §5. It consists of several steps. First we
characterize sets of noninjectivity in algebraic terms (§2) and analyze geometric
properties of these sets (§3). One key part of the proof is the support theorem, 4.1,
which is obtained by the tools of microlocal analysis. Proposition 3.2 provides the
geometric conditions needed to apply the support theorem.

In §6, Theorem A is proved and, also, the closure of the space £(S) is described
in cases when £(.S) is not dense. In §7 necessary conditions for £(.S) to be dense in

C(R™) are given for arbitrary n. §8 is devoted to interpretations and applications
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of our results. In §9 some open questions are formulated. An announcement of

these results appeared in [AQ).

§2. Algebraic characterization of sets of noninjectivity.

2.1 Sets of noninjectivity in R”. With each f € C.(R™) we associate the set
Slf]={z €eR* | Rf(z,r)=0 V reR;}. (2.1)

In certain cases, for instance, when f has nonzero integral over the whole space,
S[f] = 0. Much of Sections 2, 3, and 5 is devoted to understanding the geometry
of S[f], and Theorem B’ in §5 is a complete characterization of S[f] for n = 2.

We also associate with each f € C.(R™) an infinite family of polynomials
Qr = Q[f] =%« f, rP=al+- -+l

Each function

Qule) = Qulfla) = [ llo— el de (22

is a polynomial of degree deg Qx < 2k.
For any polynomial () with real coefficients, we denote by V[Q)] the real alge-
braic variety

VIQ) = {z € R" | Q(a) = 0}. (23)
Lemma 2.1. S[f] =i, VIQx]-

Proof. The condition Rf(x,r) =0 for all » € R, is equivalent to

| alle =€) (€as =0 (2.4)

for any a € C.([0,00)). Then the lemma follows from Weierstrass’ theorem about

the denseness of polynomials. [J

Proposition 2.2. Let f € C.(R™). Then, f = 0 if and only if Qx[f] = 0 for
all k = 0,1,.... If f is not identically zero, and P = Qy

polynomial of minimal degree in (2.2), then P is harmonic.

[f] is the nontrivial

min

When f # 0, we will denote this minimal degree, harmonic polynomial, P, by
P[f].
Proof. Because of Lemma 2.1 and (2.1), the condition Qx[f] =0forallk =0,1,...

is equivalent to the vanishing of all integrals of f over all spheres in R”, that is, to

f=0.
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The second statement in the Lemma follows from the relation
AQk = 2]{2(2]6 +n— Q)Qk:—l;

where A is the Laplace operator. [J

Lemma 2.1 and Proposition 2.2 imply that, if R is not injective on S, then S
is the zero set of a harmonic polynomial. Therefore, we get a sufficient condition

for injectivity:

Corollary 2.3. Any set of uniqueness for harmonic polynomials, S C R", is a

set of injectivity for the transform R.

Lin and Zobin independently proved this theorem. Our proof above is valid for
the transform R evaluated on rapidly decreasing functions since the polynomials
Qr[f] are well defined for such functions.

It is interesting to note that, because of the Mean Value Property for harmonic
functions, the condition in Corollary 2.3 is necessary for injectivity of the transform
R in the space of polynomials.

On the other hand, Corollary 2.3 becomes false when one replaces compactly
supported functions by bounded functions or even functions vanishing at infinity.
An example is the spherical function ¢ in R” = M(n)/SO(n):

(=) = Ji(ll= )7,

where k = "7_2 and Jj is the Bessel function. In this case

S={zeR" ||l =A#0, () =0}

satisfies the condition of Corollary 2.3, ¢ is not identically zero and R¢(a,r) = 0 for
all a € S and r € R;. The last identity follows from the general integral equation
for spherical functions (¢f. [H2, Prop. 4.2.4]). Thus the set S, which is the union

of spheres, is a set of noninjectivity in any function space which contains ¢.

2.2 Sets of noninjectivity in R2. Now we focus on the case n = 2. We let
C(a,r) be the circle of radius r centered at the point a. When it will not cause
confusion, we will let (z,y) denote the coordinates in R? and z = z + iy € C.

Let f € C.(R?) and Rf(a,-) =0 for alla € S C R2. Let Qg, P[f], and S[f]
be as in §2.1. Tt is clear that S C S[f]. We will investigate the set S[f] in more
detail.
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Proposition 2.4. Let f € C.(R?), f # 0, and assume S[f] is an infinite set.
There exists a non-constant polynomial ¥ = V|[f] and a finite set F', such that

(i) S[f]=V[¥]UF, where F is a finite set.

(ii) V[¥] = S1U---USy,, where each S; is a real-analytic topologically connected

curve in R2.
(iii) W divides P[f].

Proof. According to Lemma 2.1, S[f] is the set of common zeros of all polynomials
Qk, including P = P[f] = Qx,..., so V[P] D S[f].

Let us decompose P into a product of irreducible (over R) polynomials:
P=P---P,.

Choose an arbitrary nonnegative integer k& and consider the polynomial Q).
Because of the Bezout Theorem for real algebraic curves (¢f. [W,Theorem 5.4)),

the number of points of intersection
#V[Qx] N V[P] < degQy - deg P,

unless the polynomials () and P; have a common polynomial divisor. In this case,
P; divides Qy, as P; is irreducible.

Let P;,,..., P;,, be all of the irreducible factors of P such that for any a =
1,...,m VI[P, |NV|[Q] is infinite for all £ = 0,1, .... Then we obtain

where F'is a finite set. The polynomial ¥ = P;, ---P; , which is just the greatest
common divisor of all the Qy, satisfies (i) and (iii) by construction.

Let us now verify the property (ii). Suppose zy € R? is a singular point
of the real algebraic curve V[¥], i.e. grad ¥(zp) = 0. Using a translation, we
can assume that o = 0. Let ¥ = Uy + (summands of higher degree) be the
decomposition into homogeneous polynomials. Since ¥ is a divisor of a nonzero
harmonic polynomial, then Wy = £y ---£y, where £; are linear functions defining &
lines ¢; = 0 with angles between them that are rational multiples of 7 (¢f. [FNS]).
It is not hard to show, by passing to polar coordinates (r,#), dividing by r* and
using the Implicit Function Theorem, that each line £; = 0 is the tangent line to
some smooth curve § = 6(r) in a neighborhood of o = 0. Thus, the variety V[¥] in

a neighborhood of each of its singular points is a union of k¥ nonsingular (smooth)
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curves which intersect transversally at this point. Self intersections are impossible
since they would imply P = 0 by the Maximum Principle. From this we conclude
that globally V[¥] is union of a finite number of smooth curves as is stated in (ii).
Note that since we have used only that ¥ is divisor of P, the algebraic variety V[P]

has similar structure. O

Let us call nonsingular (connected) curves which make up a corresponding

algebraic curve, nonsingular components.

§3. Asymptotic analysis of V[¥].
Throughout this entire section we will assume f € C,.(R?) is a nonzero function.
We will assume S = S[f] is an infinite set and we will let P = P[f], and ¥ = ¥[f].

3.1 Asymptotic analysis of V[P]. According to Proposition 2.4, S is contained
in the zero set of a nonzero harmonic polynomial P. This places certain restrictions
on S (c¢f. [FNS]) and we want to use these restrictions to get information about
geometric properties of the set S|[f].

The polynomial P can be represented as
P(z) =Im (exz™ +en—12V '+t cp), 2=+ 1y

By using a rotation and translation in the plane, we can assume cy > 0 and
CN—-1 = 0.
Let P, = Imcy2* for k=0,..., N, then

P=Py+Pyo+---+F

is the decomposition of P into a sum of homogeneous harmonic polynomials.

Since ¢ > 0, the leading homogeneous term Py vanishes on each line R-e?*7/N |

k=20,1,...,N —1, and so Py can be decomposed into a product of linear factors:
N-1 - -

Py (z,y) = const kl:IO (agz + bry), where ag =sin kﬁ’ by, = — cos kﬁ (3.1)

Denote by Ly the line Ly = {(z,y) ‘ arr + bry = 0} and by L two half-lines
L,:j:: = {teik"r/N, t€ Ry}
The following properties of zero sets of harmonic polynomials can be easily

observed:

(1) each ray L,f is an asymptote for some nonsingular component of the alge-
braic curve V[P];
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(2) each nonsingular component of V[P] has two asymptotes, each of which is
one of the 2N rays L(jf, e L]j\:,_l;

(3) no ray L,f can be the asymptote for two different nonsingular components
of V[P].

Let us comment on these statements. All of the nonsingular components of
V[P] must be unbounded curves. Indeed, if one of them were bounded, then it
would be a closed curve because all algebraic curves are topologically closed sets;
we would get a contradiction with the harmonicity of P, according to the Maximum
Principle.

Writing the equation P = 0 in polar coordinates, dividing by r¥, and letting
r — oo shows that (2) holds. (The normalization ¢,—; = 0 guarantees that the
asymptotes coincide with two of the rays in (2). In general, they might be parallel.)
(1) can be obtained by using the Implicit Function Theorem (we will apply this
argument to V[¥] in more detail in the proof of Lemma 3.1). Finally, (3) follows

from the simplicity of the zeros, k%, of the spherical harmonic Py (cosf,sin#).

3.2 Asymptotic analysis of V[¥]. We will use the fact that the algebraic
curve V[¥] is contained in V[P] so that it inherits some asymptotic properties of
the larger curve. Recall that V[¥] = S;U---US,, where S; is a smooth connected

curve.

Lemma 3.1. Let f # 0 and assume S[f] is an infinite set. There is a collection
of rays

LE, ..., L (3.2)

217 bl M ?

where M = deg ¥, such that

(i) each curve S; in Proposition 2.4 has two asymptotes among the rays in

(3-2);
(ii) each ray in (3.2) is an asymptote for some curve Sj;

(iii) no ray in (3.2) serves as an asymptote for two different curves S;, S;.

Proof. Each S; is unbounded and, since S; C V[¥] C V[P], we obtain (i) from the
property (2) of V[P].
Now we need to select the rays in (3.2) which are really asymptotes for V[¥].

For this purpose, let us represent ¥ as a sum of homogeneous polynomials:

U=Upy+PYy_1+---+ Yy, M = deg V.
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Since the polynomial ¥ divides P, then its leading part ¥y, divides the leading
part Py of P. Therefore, W), is a product of some of the linear factors of Py in

(3.1):

Uar(z,y) = const | [ (ar.z +br.y).

a=1
Let us rewrite the equation ¥ = 0 (the equation that determines the set V[¥]) in

polar coordinates z = rcosf, y = rsin6, and divide by r™;

1
Uas(cos 6,sin 0) + - Upr_1(cos 6,sin 0) +--- + Uy(cos 6,sin 0) = 0. (3.3)

M
r
When we introduce the small parameter ¢ = % and denote the left hand side in
(3.3) by F(e,0), we obtain

F(e,0) = 0. (3.4)
Fix some index k, and let 6° = k4. Then F(0,0°) = 0 and
OF o ) ,
50 (0,6°) = const -sin (6 — O, ) ...cos (0 — O, )...sin (0 — Ok, _,) |6:ka7r/N7é 0.

Using the Implicit Function Theorem, we obtain that Eq. (3.4), uniquely deter-
mines some real-analytic curve in a neighborhood of the point € = 0, § = 6°, or,
equivalently, in a neighborhood of r = oo, # = 0°. Let § = 6(r), r > r( be the so-
lution of (3.4) which defines this curve. The asymptotic behavior of 8(r) for r — oo
follows from (3.3):

1 1
O(r)=60°+C-= +0o(=), C =const -¥p_q1(cos 6°, sin 0°).
T T
In Cartesian coordinates we have
x =rcos O(r) =rcos 6°+o0(1),

y=rsin O(r) =rsin 0° +C - cos 9°+o<%).

Therefore, the curve = (r),r > rp, has an asymptote which is parallel to Ll—; =
{6 = 6°}. But this curve is a subset of V[¥] and no half-line parallel to and in
the same direction as L;:a is an asymptote to V[¥], except the ray L,ja itself. The
case of L, can be treated analogously. Thus, (i) is proved. (iii) trivially follows
from the analogous property (3) of V[P]. Finally, we have a 1 - 1 correspondence
between m pairs of asymptotes of the curves S;’s and certain M pairs of rays Lfa.

Therefore, m = M = deg ¥, and the Lemma is proved completely. [

At this point we will be able to infer the most useful information about V[¥]

for our purposes:
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Proposition 3.2. Let f # 0 and assume S[f] is an infinite set. Only the two

following cases are possible:

(a) there exists t € R? such that the shifted polynomial Vt(x) = U(z +t) is
homogeneous;

(b) at least two nonsingular components S;, S; of V[¥| are disjoint.

Proof. Suppose that condition (a) is not fulfilled, and each two connected com-
ponents of V[¥] intersect. Observe that since the polynomial P is harmonic, not
identically zero, and vanishes on V[¥], then no three curves S;, S;, Sk intersect pair-
wise in three different points because, in this case, P vanishes on a closed contour
(a curved triangle). Since P is harmonic, the Maximum Principle would imply that
P = 0. For the same reason, no two curves S; and S; intersect at two different
points and no curve S; has points of self intersections.

Then the only remaining possibility is that all the curves S; intersect at some
point ¢ € R2. In order to show that, in this case, ¥*(x) = ¥(x+t)) is a homogeneous

polynomial, let us decompose it into a sum of homogeneous summands:

where M is the minimal degree of the nonzero summands. Note that M > 0 as
Tt(0) = 0.

We know that ¥ divides P, therefore, the minor homogeneous term, ¥,
divides that of the shifted polynomial P?, which is also harmonic, and for tlEs
reason

\IltM =tl1--- Ly

where the /; are some of the irreducible factors of the minor homogeneous part Py
of P. These factors are linear since Py is harmonic.

Let S; = —t+S; be the shifted curve. All the curves S; intersect at the origin
and, clearly the lines /; = 0 are exactly the family of tangents to these curves at
the origin. No two curves S?, S; are tangent to each other at the origin because it
contradicts the simplicity of zeros of the spherical harmonic Py (cos 6,sin ) (see
also [FNS] about this and other properties of zeros of harmonic polynomials). By
Lemma 3.1 the number of connected components S; is equal to M, therefore, the
number M of tangent lines ¢; = 0 is the same.

Thus we arrive at the identity M = M and, therefore, ¥* = ¥} is homoge-

neous. This completes the proof. [
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84. Microlocal Fourier analysis. Support Theorem.

Guillemin [GS, pp. 336-337, 364-365] first used the microlocal techniques
of Fourier analysis (Fourier integral operators and wavefront sets) to understand
Radon transforms, and others (e.g. [BQ, Q2, Q3]) have used them to prove sup-
port theorems for Radon transforms on hyperplanes, line complexes, groups, and
manifolds. Recall that the set of distributions (continuous linear functionals on
C°(R™)) is denoted D'(R™) and the set of distributions of compact support is
denoted &' (R™).

Theorem 4.1 (Support Theorem). Let S be a regular real-analytic curve (pos-
sibly disconnected). Assume that S contains two points, a and b, a # b, such that
the segment ab is perpendicular to the tangent lines L, and Ly, at the point a and

b respectively. Then the Radon transform, R, is injective on S.

This theorem is true if f € £'(R?) and if an arbitrary nowhere zero real-analytic
weight is added in (1.2) because the proof, using microlocal analysis, is valid in this

setting [Q3]. Other support theorems for f not of compact support are given in

[ibid.].

4.1 The microlocal analysis. We begin by introducing the microlocal termi-
nology and then we prove the microlocal regularity theorem, Lemma 4.3.

For = € R?, the cotangent space TR? is the set of all linear functionals on
the tangent space T,R%. So, if x = (z1,232), a basis of TFR? is formed by the
differentials dx; and dx,. We write (z;€) € T*R? when £ € T/R%. If C is a
smooth regular curve in R?, then the conormal bundle of C, N*C, is the set of all
covectors (z;€) € T*R? that are conormal to the tangent space of C (i.e. x € C
and the linear functional ¢ is zero on the tangent space T,C C T,R2).

The analytic wavefront set of a distribution f € D'(R?) is a conic subset,
WEFA(f), of the cotangent bundle T*R? consisting of “directions” in which f is not
real-analytic. This is defined either in terms of the very rapid decrease of localized
Fourier transforms of f [T, Definition 1.1, p. 243] or in terms of exponential decrease
of the FBI (Fourier-Bros-Iagolnitzer) transform [H6, Theorem 9.6.3]. For example,
if f is the characteristic function of a disk, D, then WF A (f) is the conormal space
of the boundary of D, N*0D.

We will parameterize S in order to do the microlocal calculations. To this
end, let A be an open subset of R and let v : A — R? parameterize the regular
real-analytic curve S. For f € £'(R?) and (t,7) € A x (0,00), we change notation
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a little to reflect this parameterization:

Rf(t,r):= Rf(v(t),r) and c(t,r) := C(y(t),r). (4.1)

Rf is just the spherical mean of f over the circle ¢(t,r), the circle centered at ()

and of radius 7.

Definition 4.2. Points z and z’ in ¢(¢,7) are said to be c¢(t, r)-mirror if and only

if they are reflections about the diameter of ¢(¢,r) that is tangent to v at v(t).

The fundamental microlocal result is the following regularity theorem for the
Radon transform, R. The hypotheses include an assumption on the vanishing of f

at certain points.

Lemma 4.3. Let f € C(R?). Assume Rf is zero in an open neighborhood of
(t,7) € A X (0,00). Let (x;€) € N*c(t,7) \ 0, and assume that f is zero in a
neighborhood of the c(t,r)-mirror point to x. Then (z;&) ¢ WFA(f).

In general, Radon transforms detect singularities (WFa(f)) conormal to the
curve being integrated over. This lemma implies that singularities at (x;§) €
N*c(t,r) will be detected by “data” Rf(t,r) when f is zero (or real-analytic) near
the mirror point to x.

If x € ¢(t,r) is on the diameter of ¢(¢,r) tangent to v, then z is its own mirror
(that is: self-mirror) and Lemma 4.3 gives no conclusion about z. In other cases,
if f is zero in a neighborhood of the c(t,r)-mirror point to x, then the theorem

provides information about WF 4 (f) above z.

Proof. The proof is essentially the same as the proof of Proposition 4.3 in [Q3]. The
incidence relation for R is defined to be Z = {(z,¢,7) € RZx Ax (0,00) | z € c(t, )}
[H2]. The appropriate microlocal diagram [GS, pp. 364-365] (see also [Q1]) is:

I'=N*(2)\0=2% T*(Ax (0,00))\0

lm (4.2)
T*(R2) \ 0

where the maps m; and ms are projections from I' C T*(R? x A x Ry) onto the
indicated factors.

We must show the map 73 is close enough to being an injective immersion
(the Bolker Assumption, [GS, pp. 364-365, Q1] that the calculus of Fourier integral
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operators can be used to prove the lemma. Specifically, the goal is to prove that
m in (4.2) satisfies:
(4.3) covectors (x,t,r;€,m) € ' and (2',t,7;&',n) € T have the same image under

7o only if © and x' are c(t,r)-mirror. w9 is a local diffeomorphism except

above points (z,t,r) where z € c(t,r) is its own mirror.
To this end, we first calculate N*Z in good coordinates. Points (z,t,7) € Z are
determined by the equation |z —~(t)|2—r% = 0, and the differential of this equation
gives a basis of the fibers of N*Z. Coordinates for N*Z \ 0 are:

[0,27] x A x (0,00) x (R\0) >N*Z\0
(0,t,7,a) = (z,t,7;a([r6ldx — [(r0) - 7' (t)]dt — rdr))
(4.4)
where = rf + (t).

Here, (wi,ws)dx = widx; + wadxy is the covector in T*R? corresponding to
(w1, wq) € R2.

Eq. (4.4) shows that m, and w5 do not map to the zero section so, R is a
Fourier integral operator associated to the Lagrangian manifold, T' [T, Theorem
2.1, p. 316]. This explains why R can be evaluated on distributions. R is real-
analytic elliptic since the measure of integration for R, dA, is real-analytic and
nowhere zero.

The map 5 is equivalent to the corresponding map in coordinates (4.4):
6, t,7,a) 22 (t, 7; —a([(rB - 7' (t))]dt — rdr)). (4.5)

Therefore, my determines only 0 - 4/(t) so z = «(t) + r0 is known only up to its
¢(t, r)-mirror. This shows the first claim of (4.3). The calculation that 75 is a local
diffeomorphism except at self-mirror points is left to the reader.

Now, assume f is as in the hypotheses of Lemma 4.3. R has been shown
to be an analytic elliptic Fourier integral operator associated with I'. The calcu-
lus of such operators implies the conclusion of Lemma 4.3. Here is the idea: let
(z;€) € N*(ce(t,r)) \ 0 and assume f is zero near the c(¢,r)-mirror point to x.
By (4.3), only singularities at the c(t, r)-mirror point, =/, to x can mask singular-
ities of f above z. But, WFA(f) is empty above 2’ as f = 0 near z’. Therefore,
singularities at z’ cannot mask singularities at z. Since Rf is zero near (t,r),
(2;6) ¢ WFA(f). (The precise argument is:, we make a C™ partition of unity,
1 = tp + 1y + to, with the following conditions: v, = 1 near =’ and ), is suffi-

ciently localized around x’ so that 1, f = 0; 1), = 1 near x and supp v, is sufficiently
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localized around z so that Ry satisfies the Bolker Assumption (the restricted s is
an injective immersion) locally above (z,t,r) for functions supported in a neigh-
borhood of supp .. Therefore, 1y = 0 near x and ', so by (4.3) and the calculus
of real-analytic Fourier integral operators [SKK, Kal, Riof is real-analytic in di-
rections (t,r;n) when (x,t,r;&,—n) € I'. Therefore, as Rf = Ry, f = 0 near (t,r)
and (t,r;m) ¢ WEA(RYof), (t,7;m) ¢ WEA (R, f). Since the operator R satisfies

the Bolker assumption above (x,t,r) for functions supported in a neighborhood of
supp ¢z, (7;€) € WEA(f).) O

4.2 Proof of Support Theorem. Let a and b be points satisfying the condition
in the theorem, and let L, and Lj be their respective tangent lines to S. The trick is
to eat away at supp f using Lemma 4.3 and Lemma 4.4 (below) by successively using
circles centered at a and then circles centered at b. Recall that the circle centered
at a and of radius r € R, is C(a,r) and similarly for C(b,r). The following lemma

is a special case of [H3] Theorem 8.5.6.

Lemma 4.4. Let f € D'(R?) and let C be a circle. Let x € supp f N C and
assume supp f is enclosed by C. If (x;&) € N*C'\ 0, then (x;£) € WFA(f).-

The lemma, states that, if f is zero on one side of C' and z is in supp fNC, then
f is not analytic in this conormal direction, (z;¢), to C. This is a refinement of
the well known fact that if f is zero outside of C' and z € CN supp f, then f is not
real-analytic near . Lemma 4.4 says that for such z, not only is f not real-analytic

at z, but also f is not real-analytic in the conormal direction (z;¢).

Ficure 2. C(a,r0), C(b,r1) and tangent lines to S.
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Our final reasoning is illustrated by Figure 2. Assume the tangent lines, L,
and L; are horizontal and a is below b. Let ro > 0 be the smallest radius, r, such
that C(a,r) encloses supp f. Let r1 be half of the length of the segment on L; that
is between the points Ly N C(a, 7). Note that r; < ro. (If Ly N C(a,ro) = 0, then
the argument continues in the next paragraph.) If » > r; and C(b, r) meets supp f
and C(b,r) encloses supp f, then C(b,r) meets supp f only at points below L.
Therefore, there are no mirror points (or self-mirror points) on C(b,r) that meet
supp f. So, if z € C(b,r) N supp f, and (z;&) € N*C(b,r), then by Lemma 4.3,
(;€) ¢ WFA(f). However, Lemma 4.4 implies (z;£) must be in WF4(f). This
contradiction shows that z ¢ supp f, so we have eaten away at supp f in order
to conclude that supp f is inside C(b,r1). Using the same argument, we now find
an ro < r1 such that supp f is inside C(a,r2). We can continue, alternately eating
away at supp f using circles centered at a and then circles centered at b. Note that
the r; decrease faster as j increases because the circles C(a,r;) and C(b,ry) are
getting smaller.

This process stops when we have an r,,, < dist(a, b) such that supp f is enclosed
by C(a,ry,) or C(b,ry). Assume supp f is enclosed by C(a,7,,). Then as in the
last paragraph, we can use circles centered at b and Proposition 4.3 and Lemma

4.4 to eat completely away at supp f and show that f =0. O

§5. Proof of Theorem B.

5.1 Sufficiency. One needs to prove that for any f € C.(R?) the set S[f],
introduced in §2.1, either coincides with the whole plane R? (which is equivalent to
f =0) or is contained in some set w (Xx) U F, where ¥y is the Coxeter system of
N lines, w € M(2) and F is a finite set.

Suppose f # 0. Then, by Corollary 2.3, S[f] # R2. If S[f] is a finite set, we are
done. Assume S|[f] is infinite and let P = P[f] and ¥ = ¥[f] be as in Proposition
2.4. Then, by Proposition 3.2 two cases (a) and (b) are possible:

(a) For some t € R™ the shifted polynomial U¢(z) = ¥(z + t), is homogeneous.

In this case, according to Proposition 2.4 (iii), ¥* divides the leading homoge-
neous part P% of the shifted polynomial P! and so the zero set V[¥?] is contained
in V[P%], which is ¥y. It remains to mention that V[¥] = V[¥?] + ¢ and to
remember that in 3.1 we have used a rotation and translation to normalize the
polynomial P. Therefore, V[¥]| C w(Xy) for some w € M(2), and Proposition 2.4
yields S[f] Cw(Xn) U F.

(b) There exist two disjoint nonsingular components of V[¥], say, S; and S.
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In this case we claim we can use Theorem 4.1. Indeed, the distance between S;
and S cannot be attained at infinity, since the curves S; and S have two different
and not parallel asymptotes according to Lemma 3.1. Therefore, there exist points
a € S1, and b € Sy for which

d = dist(S1, S2) = dist(a, b) > 0.

We claim that a and b satisfy the condition of Theorem 4.1. This is true for
the following reasons. As d is the minimal distance from a to points of Ss, the
circle centered at the point a and of radius d is tangent to Ss at the point b (the
circle cannot meet the curve Sy transversally because d is minimum, Sy is regular
and a is not an end point of Sy). Therefore, the segment ab is perpendicular to the
tangent to So at b. Similarly, ab is perpendicular to the tangent to S; at the point
a. Thus, the curve S = S U S5 satisfies the conditions of Theorem 4.1 and f = 0.

This shows that (b) is impossible since we have assumed from the beginning
that f # 0. The sufficiency part of Theorem B is proved. [J

5.2 Necessity. To show that the condition (*) in Theorem B is necessary, we have
to construct, for any set ¥ U F where F is finite, a nonzero function f € C,(R?)
such that Rf(a,-) =0 for all a € X5y UF. (The motion w is obviously unessential.)

Lemma 5.1. For any function f € C.(R?) of the form
e .
f(z) = ij(r) sin jNO, z=re¥, (5.1)
71=1

the Radon transform Rf(a,-) =0 for all a € Xy.

Proof. 1t is easy to see that f in (5.1) is odd with respect to the reflection wy, about
the line Ly = {teik% | te R} C¥n,k=0,1,..., N —1. Therefore, if a € L, then

/ fdA:/ (fowk)dA:—/ fdA
C(a,r) C(a,r) C(a,r)

and we obtain Rf(a,r) = 0. The Lemma is proved. O

Now we have to satisfy the additional finite number of conditions Rf(a,r) =
0, Va € F. Let F = {ai,...,a,} and write a; = ree for s = 1,...,q. We may

assume Vs, as ¢ Yn. The condition we need to solve is:

27
/ flas+2e®)dd=0 for s=1,...,q and z=uz+1y. (5.2)
0
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Now apply the Fourier transform in (z,y):

27 . . )
/ 0 2") F(rei#)dp = 0, (5.3)
0
forall AeC, and s=1,...,q

where (a,, Ae'¥) is the real inner product of these points in R2.
We are looking for a solution of the system of integral equations (5.3) in the
class of functions of the form (5.1). For these functions the Fourier transform in

polar coordinates (p, ¢) is:

L

Flp,0) = frlp) sinkNe, (5.4)

k=1

where fi(p) = | fe(r) Jen(rp) rdr is the Fourier-Bessel transform.
0
If one substitutes the decomposition (5.4) in (5.3), uses [GR, 3.915.2], and

simplifies, one gets ¢ linear equations for £ functions. If we let £ = g + 1, we get:

q+1

ZMS,k(p) fu(p)=0foreachs=1,...,¢q
k=1

where M, x(p) = i* sin(kN6,)Jun (pors)

(5.5)

The matrix of this system will be denoted M (p) = [Msk(p)}zzz

Let ¢ = max{ rank M(p) | p € R;} and let py € Ry be a point at which the
maximum is attained. We have assumed no point a; lies on any line in X, so M (p)
is not identically the zero matrix. Hence, this maximal rank is greater than zero.
This implies the existence of a neighborhood W of py such that rank M(p) =7
is constant on W and some ¢ x ¢ minor of the matrix M(p) does not vanish in W.
Without loss of generality we can assume that it is the principal ¢ X ¢ minor, which
we will denote by A(p).

Now we consider the truncated system (5.5) taking only the first § equations.
We can set fa_|_1 == fq = 0 and then solve for fq_|_1 in the truncated system,
getting:

M(p)F(p) = —Fgr1(p), (5.6)

A

where we have denoted M(p) = [Ms,k(p)}a’a F = (f1,., f)T and Fpq =

s,k=1’
(M1,g41 - fat1sees Mg qt1 - far1)T
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We solve the system (5.6) as follows. Let f,41(p) = A(p)a(p), where u(r) is
an arbitrary fixed smooth nonzero radial function of compact support that satisfies
A(p) -a(p) 0 in W. ) )

Then, we can find the other functions fi,..., f7 from (5.6) using Cramer’s
rule: fr(p) = —Ag(p), where Ag(p) is the determinant which is obtained by
replacing the k** column in A(p) by the column

(M,q11(p)iu(p), ..., Mg g41(p)(p))" .

The functions fl, ey fq+1 give a solution of truncated homogeneous system
(5.5) (the first § equations). For p € W this is also a solution of the whole system
(5.5), since the last ¢ — ¢ equations are linear combinations of the first g. Because
all functions under consideration are real-analytic, the solution of (5.5) is valid for
all p.

Now define f according to (5.4). It is easy to see from the construction that the
function f is in L2(R?) and has analytic extension to C? as a function of exponential
growth. Because of the Paley-Wiener Theorem, the inverse Fourier transform, f,
belongs to C.(R?) and Rf(as,-) =0 for s =1,...,q, by construction. Also, f # 0
since fq+1 # 0 in W. The condition Rf(a,-) = 0 for a € Xy is satisfied because of
Lemma 5.1.

The necessity part of Theorem B is completely proved. [

Remark. The proof of sufficiency for Theorem B above shows that S[f] = V[V]UF
(up to a rigid motion of the plane) where ¥ is a homogeneous polynomial of degree
M that divides a homogeneous harmonic polynomial Py. Therefore, V[¥] consists
of lines which are a subset of the lines from the Coxeter system V[Py]| = X . Since
the Radon transform R f vanishes on V[¥], f must be odd with respect to reflections
around any line in V[¥] (Lemma 6.3 below). This implies that the system of lines
V[¥] must be invariant under the Coxeter group of reflections generated by V[¥],
i.e. VU] itself is a Coxeter system, V[¥] = X for some M < N. This provides a

complete characterization of S[f]:

Theorem B’. If f € C.(R?) is not identically zero, then S[f] = w(Xap)UF, where
w € M(2), F is finite, and Xps is a Cozeter system of lines for some M =0,1,...

§6. Complete systems of radial functions. Proof of Theorem A.
In §6.1, we prove the equivalence of Theorem A and Theorem B (Theorem 6.2).

Therefore Theorem A is true in R?. In §6.2, we examine the case when S C Xy.
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6.1 Proof of Theorem A. Recall the notation from §1:
L(S)={fa|a€S, fECHR")}, falx)=f(z-a)
Let C'(R™) be the dual space to C(R™), the set of all regular Borel measures

of compact support, equipped with the weak topology. Denote by £1(S) c C'(R™)
the annihilator of £(S) :

LYNS)={neC'R")|(g,u)=0 forall geL(S)},

where (g, 1) = [ gdp.
R™
By the Hahn-Banach Theorem, the space £(5) is dense in C(R™) if and only
if £L1(S) = 0. Note also that according to the definition of the space L(S), its

annihilator £1(S) can be described as:
LES)={peC'R") | axp =0 forany ae€ C*(R™)}. (6.1)
Identify C.(R™) with a subspace of C'(R™) by associating the measure fdzx to
the function f € C.(R").
Lemma 6.1. £+(S)NC.(R*) is dense in L(S).
Proof. For any o € C#(R") and p € L£*(S), the convolution o * u belongs to
LL(S)N C.(R*) (by (6.1)). These convolutions approximate pu. [

It will be convenient at this point to introduce the kernel of the transform R
on S :
kers R={f € C.(R") | Rf(a,-)=0 forall aec S}
Since the vanishing of the integrals of f € C.(R"™) over all circles C(a,r),a € S,
is equivalent to the orthogonality of the measure fdx to any function «.(z) =
a(z —a), a € C#(R"), we easily conclude that

kerg R = £1(S) N C.(R™) (6.2)
and, therefore, from Lemma 6.1 follows:
Theorem 6.2. L£1(S) =0 if and only if kers R =0 (i.e., R is injective on S).

This important relationship was independently observed by E.A. Gorin.

Proof of Theorem A. Now the proof of Theorem A becomes just a rewording of
Theorem B into a different language. Indeed, the denseness of £(S) in C(R™) is
equivalent to £+(S) = 0, which, in turn, is equivalent (by Theorem 6.2) to the
injectivity of the transform R on S.

Now, because Theorem B is true for n = 2, the condition (*) of Theorem A is

a necessary and sufficient condition for £(S) to be dense in C(R*). O
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6.2 The closure of £(¥,) and kers,, R. We know that £(S) is dense in C(RR?)
if S is not a rigid motion of some ¥y U F'. The natural question arises: what is the
closure of £(X )7 In other words, which continuous functions can be approximated
by linear combinations of radial functions with centers on ¥ ? This is answered in
Theorem 6.5. We characterize kery,, in Proposition 6.4.

Lemma 6.3. Let L be a line in R*> and f € C(R?). Then Rf(a,r)= [ fdA=

C(a,r)
0 for all a € L,r € Ry if and only if f is odd with respect to reflection w about L.

Proof. The “if” part has already been verified in the proof of Lemma 5.1. Denote
+_1 -1
[*=5+fow), f7=5(f - fouw).
Then, fT, f~ are respectively w-even and w-odd and
f=fr+f.

Then, Rf~(a,-) =0 for all a € L and for this reason Rf*(a,-) =0, a € L.

Courant and Hilbert [CH, p. 699 ff.] proved many years ago that if a function
f is even with respect to the reflection about a line L, and integrals over all circles
centered at L vanish, then f = 0. Therefore, fT =0and f= f~. O

Lemma 6.3 shows that if all circular means Rf(a,+) =0,a € S, for f € C.(R?),
then f is odd with respect to reflection about any line Ly € Y.
We let Wiy be the set of reflections about lines in ¥. Lemma 6.1 and (6.2)

give:

Proposition 6.4. kers, R consists of all Wx-odd functions in C.(R?), i.e., of
all f € C.(R?) with the property f owy, = —f for any reflection wy, € Wi, and this
space is dense in LT (Xn).

By duality, L(3XN) consists of all functions g € C(R™) for which (g, f) = 0,
where f € C.(R?) is Wy -odd.

It remains for us to concretely describe kers;,, R and £(Xx). The appropriate
tool is the Fourier series.

Theorem 6.5.
(1) kers, R consist of all f € C.(R?) with “sparse” trigonometric Fourier se-

ries:

F(r,0) =" by (r)sinmNo

m=1
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(2) Correspondingly, the space closure L(Xx) consists of all g € C(R?) with

trigonometric Fourier series:

g(r,0) = Z A, (1) cos mb + Z b () sin mé.
m=0 meN\NN

Proof. First we prove (1). Let f € kery,, R and expand f in a trigonometric Fourier
series. Now use Proposition 6.4 (f(r, 5 — 0) = —f(r, 25X +0) V k € N) and the
independence of the trigonometric Fourier system to show the Fourier series of f is
of the given form. The other direction is essentially covered by Lemma 5.1.

Since the trigonometric Fourier system is orthogonal and complete and kery,,, R
is dense in £+ () (by Lemma 6.1 and formula (6.2)), the second statement follows

from the first one by orthogonality arguments. [J

Remark. (1) Each system S of lines through the origin with angles between lines
that are rational multiples of 7w, can be embedded in some Coxeter system Y.
Therefore, the space L£(S), generated by radial functions with centers on S, is not
dense in C(R?). The closure of this space can be described by the conditions on
Fourier coefficients in Theorem 6.5. On the other hand, if the angle between two
lines in S is an irrational multiple of &, the £(S) is dense in C(S). It can be seen
from Theorem 6.5 that it is related to the impossibility of arranging corresponding
lacunas in the Fourier series. In terms of the reflection group, the denseness of
L(S) in this case can be explained by the infiniteness of the reflection group and

the denseness of its orbits.

(2) The Coxeter system Y.y can be defined as the system of lines through the origin;

each line intersects the unit circle at a zero of the N** spherical harmonic sin N6.
Thus, the condition (*) in Theorems A and B can be reworded as follows:

(6.3) S is not contained in any set of the form w(V)U F, where w € M(2), V is the

zero set of some nonzero homogeneous harmonic polynomial, F' is a finite set.

We will see in the next section that the formulation (6.3) seems to be more

suitable for the generalization of our results to higher dimensions, so perhaps, the

whole problem can be viewed as a problem in harmonic analysis.

§7. The case R (n > 2). Necessary conditions for injectivity of the Radon
transform on spheres.

To motivate our theorems in R", we first examine the analogous problem on
the compact space S"~!. E. Quinto and L. Zalcman [Z4] noted the following (see
also [Sc, U]):
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Theorem 7.1. Let S~ ! be the unit sphere in R* and let R be the spherical Radon

transform on S™ ! :
Rf@er)= [ faa, fec(sm ),
S(z,r)

where S(x,7) denotes the geodesic sphere in S~ of radius r, centered at z € S™™ !,
dA is the area measure on S(z,r).
Then Rf(z,7) =0 forxz € S C 8™~ and all r > 0 implies f = 0 if and only

if S is not a subset of the zero set of some spherical harmonic h € HEF.

The proof uses harmonic analysis (the Funke-Hecke theorem) on S™~! and is
quite transparent. The reasons that the analogous problem becomes much more
difficult on R® than on S™~! could have to do with the more difficult Fourier
analysis on R™. It is interesting that the conditions of injectivity in Theorem 7.1
and in Theorem B are almost the same (see (6.3)). The only difference is that in
the noncompact case, according to Theorem B, there is the additional freedom of
applying rigid motions and adding finite sets. Moreover, this observation essentially

leads to necessary condition for injectivity of the Radon transform Rf(z,r) in R™ :

Theorem 7.2. If the transform Rf(x,r) is injective on a set S C R™ for f €
C.(R™), then S is not contained in any algebraic variety V[h,],where a € R"* and

h is a nonzero homogeneous harmonic polynomial.

Proof. Tt suffices to consider the case a = 0. Suppose S C V]h], where h is
a nonzero homogeneous harmonic polynomial and V[h] = {z € R" | h(z) = 0}.
Denote ¢ = h ‘ gn—1, the corresponding spherical harmonic ¢ € HY, N = degh.
The set V[h] is the conical set determined by the zero set of ¢ on S™~1.

Let us define the measure g in C'(R™) by formula

/ gdu=/ gpdA, g € C(R"),
n Sn—l

where dA is the normalized area measure on S™~ 1.

Pick z € R™ \ 0 and denote by SO(z,n) the subgroup of the special orthogonal
group, SO(n), which preserves the point e, = ”i—” € S"~1. Then SO(z,n) leaves
fixed the line {tz |t € R}, and for any radial function o € C#(R") and any
k € SO(z,n), we have

@)@ = [ a-9du©) = [ ale- 0@ (7.1
= [ ole=kp(r)iA@© = [ ale—eplkodA)

Sn—1
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We have used the SO(z,n)-invariance of o and the fact that k=12 = z. Inte-

grating over k € SO(z,n) yields
(@) (@)= [ ala=6) 4(6) dA(©)

Sn—1
where (&) = [ @(k&)dk.
O(z,n)

The SO(z,n)-invariant function ¢ € HY, coincides, up to a constant factor,
with the zonal spherical function Y, € HY: &(&) = cY,(¢).

Now let z € V[h], = = ||z||lex, ez € S*!. Then, ¢(e;) = p(ez) = W h(z) =
0. Since Y;(e;) = dimH¥ /area S?~1 # 0 ([SW, Ch. 6, §2]), it follows that ¢ = 0
and @(§) = 0. Then (7.1) yields:

(a*xp) (z)=0 for x € V[h].

This means p € L£1(S). Since p # 0 and kers R is dense in £1(S) (see 6.1) we
conclude that kerg R # 0 and, therefore, R is not injective on S. [

Remark. Theorem 7.2 shows that when n > 2, the correct analog of Coxeter
systems X must be cones V[h| rather than systems of hyperplanes, as could be

expected.

¢8. Applications and interpretations of Theorems A and B.

8.1 Uniqueness theorem for the Darboux equation. Let us consider the

ultrahyperbolic Darboux equation

where u € C%(R? x R?), A is the Laplace operator in R? and u depends only on
r = ||z||. Only the radial part of A, operates in the z-variable so the equation can

be written in the form:
%u 1 Ou

o7 7 ar

If u is the spherical means of some function f € C(R?):

u(r,y) = /C L aa
y,T

which is, in our previous notation, u(r,y) = Rf(y,r), then u satisfies (8.1) (¢f. [H1,
Lemma 2.14]) and u(0,y) = f(y)-

By a theorem due to L. Asgeirsson (¢f. [H1, Ch. II, §6]), any solution u of
(8.1) is the spherical mean of the function f(y) = u(0,y). Theorem B immediately

= Ayu. (8.1)

implies the following uniqueness theorem for the Darboux equation:
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Proposition 8.1. The equation (8.1) with data

(i) u(0,y) has compact support;

(ii) u(r,y) =0 for (r,y) e Ry x S
has the unique solution u = 0 as long as S is not contained in a set w(Xn)UF in
Theorem B.

Thus, the solution of (8.1) with data given on a cylindrical set Ry x S C R3
has a unique solution, unless this set is the union of a special system R, X w(Xy)

of planes in R and of a finite number of “vertical” lines Ry x {a}, a € F.

8.2 Zero temperature sets in the 2-dimensional heat equation and nodal
sets of oscillating membranes. Let T" > 0. Let us consider the heat equation

initial value problem in R?:

% =c’Au, u=u(z,t) : z€R? t€[0,T] (8.2)
u(z,0) = f(z)
The solution of (8.2) is given by the convolution with the heat kernel:
(2.0 = ey [, o 00 (83
= c4t . .
Ui 47T62t R2 €

Let Z(f) be the set in the plane where the temperature is zero for all time ¢:
Z(f)={z €R | u(z,t)=0 Vtel0,T]}.

The Taylor expansion of the kernel of the integral in (8.3) yields

S Gl [ le-aPs@ac=o, veea), vieomn
k=0

and, therefore, Z(f) = ﬂ VIQk] = S[f] where Qr and S[f] are defined in §2.
Thus, by Theorem B’ we obtain the following fact which seems to be quite

interesting:

Proposition 8.2. If the initial distribution f(x),z € R2?, is compactly supported,
then only two types of zero temperature sets Z(f) are possible, either a very large
set or a very special one:

(1) Z(f) = R?, which means f =0,

(2) Z(f) is a Coxeter system of lines w(Xpr),w € M(2) union with a number

of isolated points.
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This leads to the following amusing fact (for compactly supported initial dis-
tributions). It is impossible to have temperature zero all the time on any nonlinear
smooth curve unless the temperature is zero everywhere and all the time.

Similar corollaries are true for other differential equations with radial source

functions, say, for the wave equation. Theorem B’ implies:

Proposition 8.3. Consider the Cauchy problem for the membrane equation

2
%u = a’Au,
u(z,0) =0

ui(z,0) = f(2),

where the initial velocity f is in C.(R%). Let N[f] be the nodal set, that is the set
of all z € R% for which u(z,t) =0 for all time t.
Then N|f] is a set of the form w(Xp) U F, for some M = 0,1... and where

F' is a finite set, unless f =0, i.e. the membrane does not move at all.

The proof follows from the Poisson-Kirchoff formula:

1 f(&)d¢ _ 1 /“t (Rf)(x, r)rdr

u(x’t):E 242 _ [ — £II2\2  at 212 _ .2\1
le—¢ll<at (a?t? — ||z —£]|7)> (a?t? —1r?)2

The last identity in this formula is obtained by a polar change of variables at
the point z. We see that u(x,t) is related to Rf(x,r) by an (invertible) Abel
integral equation and therefore zeros of u (for all time) coincide with zeros of Rf |
N[f] = S[f]-

For instance, an oscillating membrane with compactly supported initial veloc-
ity cannot remain stationary on a small smooth curve which is not a segment of
line. Earlier P. Kuchment found a proof of this statement in the special case when
the curve is closed. His proof is independent of ours and is valid also for the wave
equation in Euclidean spaces of arbitrary dimension with a closed surface instead
of a closed curve. His proof shows the equivalence of the PDE problem to our
problem. His result follows from Corollary 3.2, since closed surfaces are uniqueness

sets for harmonic polynomials.

Remark. The arguments above show that the assertions of Proposition 8.3, as well
as Proposition 8.2, are equivalent to Theorems A and B. These propositions can
be understood also as results about smooth extendibility across sets (curves) of

solutions of parabolic and hyperbolic equations. For instance, Proposition 8.2 gives
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the following symmetry principle: Let S be a simple smooth curve dividing the
plane into two parts Dt and D~ and let u™ and u~ be solutions of the heat
equation in the corresponding parts with zero boundary data on S (and compactly
supported initial data). Then u* and u™ are restrictions of a solution u of the heat

equation in the whole plane if and only if:

(1) S is a line and

(2) u™ and u~ are skew-symmetric to each other under reflection in the line S.

The analogous statement is true for the wave (membrane) equation.

8.3 Riesz Potentials. In a similar way, the heat kernel in (8.3) can be replaced

by any function which generates “radial monomials” r2*. For instance, we can take

_ f(€)d¢
In(z) = /R oo+ A <2 (8.4)

and obtain the following statement in a similar way.

the Riesz potentials

Proposition 8.4. Any function f € C.(R?) is uniquely determined by the values
Ix(x) of its Riesz potentials on a set S, where X is in an open interval A € (a,b),
unless S is the subset of some w(Xn)UF, w € M(2), F is finite.

For instance, any nonlinear arc S provides uniqueness in the above sense. The
proof of this theorem rests on the fact that {r*=! | A € (a,b)} is dense in L([0, R])
for any R > 0.

8.4 Charges on balls. By duality arguments, the statements of Theorems A
and B can be reformulated in terms of recovering measures from charges on balls
(disks).

Take 1 € C'(R™). Suppose we have a family of balls Bs = {B(a,r) | a € S,7 >
0}. Which families Bg are large enough to determine p by knowledge of the charges,
w(B), VB € Bs? Theorem B gives the full answer to this question for n = 2.

There are many interesting results on the problem of recovering measures from
their values on balls in metric or Banach spaces and related questions (Hoffman-
Jorgensen [H-J], Davies [Da], Gorin and Koldobskii [GK], Preis and Tiser [PT],
Zalcman [Z3] (see also the references in [Z3]). These results show that on some
infinite dimensional spaces, p can be recovered from knowledge of charges on all
balls but on others, it cannot be recovered from this information. Obviously, in

the finite dimensional case it does, and Theorem B shows that only special (thin
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enough) families of balls (disks) of arbitrary radii fails to determine compactly

supported measures in the plane.

89. Open problems.

9.1 Generalization to higher dimensions. Theorem B states that in R? the
circular Radon transform, R, is injective on S if and only if S is not contained in
the zero set of a nonzero homogeneous harmonic polynomial union a finite set (see
(6.3)). We already know by Corollary 2.3 that if S C R™ is not contained in the
zero set of a nontrivial harmonic polynomial, then R is injective on S. This plus the
necessary conditions, given by Theorem 7.2, enable us to conjecture the solution

Problem 1 in the general case.

Conjecture. Let S C R". The space L(S) of radial functions (defined in §1)
is dense in C(R™) (and S is a set of injectivity for the transform R) if and only
if the set S is not included in any algebraic variety V[h,| U F where a € R™, h
18 a nonzero homogeneous harmonic polynomial, and F is an algebraic variety of

codimension > 2.

We think that our method of proving Theorem B also works in the multi-dim-

ensional case and we are going to return to this problem in the future.

Remark. For S = V[h], the space L£(S) can be described (for n = 2, it is done
in 6.2). Any f € C(R") can be decomposed in the series corresponding to O(n)-

irreducible subspaces:

oo

F@)=> " fi(r,0), z=10, re€Ry, 5", (9.1)
k=0

where fi(r,-) € H*(S™1) - the space of spherical harmonics of degree k.
Then the space L£(S) consists of all f € C(R") such that fx(r,0) = 0 if
h(0) =0, e St O

9.2 Other nonlinear Radon transforms. L. Ehrenpreis has formulated in the
manuscript of his book [E, Theorem 5.5, Remark 4] the problem of injectivity for
the following nonlinear Radon transform.

Let p be a nonzero homogeneous polynomial in R” and

Ry f(z,t) :/ fdv, f € C.(R"), (9.2)

p({—z)=t
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with appropriate measure v. This is a Radon transform on algebraic varieties
Ver = {xz € R” |p(§ — z) = t}; the case degp = 1 corresponds to the classical
Radon transform.

The simplest nonlinear case p(z) = z2 + - - - + 2 corresponds to the spherical
Radon transform considered in this paper.

There are two natural types of families V, ; which involve

(1) many centers z and few radii r = ¢2,

(2) few centers z and many radii r = ¢2.

The problem of uniqueness for R, in case (1) goes back to Delsarte [DL| and
has been well investigated [Z2, BG, BZ1, BZ2, A, ABCP]| and even on Riemannian
manifolds [Q2]. However, case (2) has been much less well studied. Theorem B, of
this paper, gives the solution to the problem in [E] for case (2) when n = 2 and
p(z1,72) = 22 + x2. Some other support theorems for case (2) that are valid for
functions not of compact support are given in [Q3].

It is an open problem to find families of uniqueness for the transform R, for

other polynomials p of two variables.
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