Local Tomographic Methods in SONAR
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Abstract. Tomographic methods are described that will reconstruct
object boundaries in shallow water using SONAR data. The basic ideas
involve microlocal analysis, and they are valid under weak assumptions
even if the data do not correspond exactly to our model.

1 Introduction

Integrals over spheres are important in pure mathematics [12], [20], [22] and
in applications in partial differential equations [15] and for physical problems
including SONAR [10] [21], seismic testing [21], and RADAR [4]. In this article,
we will describe the application to SONAR and geophysical testing and prove a
general uniqueness theorem for local data. We will give a singularity detection
method for the linear problem that requires only local data. We will explain why
this method is valid for data that do not fit our model as long as certain fairly
weak assumptions hold. Our results are all valid in any dimension, in particular,
n=2and n=23.

In each of these applied problems, after a linearization, the original inverse
problem is reduced to an inverse problem for spherical integrals over spheres
with restricted centers. Let A be a hypersurface in R” and let a € A. Let r > 0.
Then, the sphere centered at a and of radius r is defined

Sa,r) = {z € B" |[z —a] = 1} (1)
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Now, let f be a continuous function, f € C(R™). We define the spherical average
of f over S(a,r) to be

Rf(a,r) = / o, J@4) @)

where dA is the area measure on this sphere.
In seismology or SONAR the acoustic wave equation is

n?(z)uy = Au+ §(t)8(x — ag) where ag € A

and A is a small section of the surface of the earth. After linearization, the
determination of n?(z) from back-scattered data is equivalent to inversion of
R(n?)(a,r), with centers on A [16], [21]. Knowing n? or at least the discontinu-
ities of n? tells boundaries of objects in the water.

This linearized model is reasonable from a practical standpoint when the
speed of sound in the ambient water is fairly constant. This would occur in water
of depth less than one hundred feet with fairly constant temperature (private
communication, R. Barakat). Since the speed of sound is constant in shallow
water with constant temperature, a pulse travels from a point source, a, making
a spherical wavefront. The sound that is reflected back to the source at time ¢
gives the amount reflected back from the sphere centered at a and radius ¢/2
times the speed of sound (assuming no multiple reflections). See also [14] for
practical information about SONAR.

Another inverse scattering problem is to find the scatterer, ¢(x)

ug = Au + q(z)u + 0(t)0(z — ag) where ap € A

and A is a small section of the surface of the earth. After linearization, the
determination of g(z) from the response at ag is equivalent to inversion of the
spherical transform R.

A two-dimensional linearized travel-time problem which reduces to integrals
over circles with centers on a curve is discussed in [10], [16].

In each of these problems, one wants to find a function or distribution f from
integrals over spheres (or circles) with centers on a given surface A (or curve in
the plane). In the case of SONAR or geophysical testing, A is some part of the
surface of the earth. In these practical problems, the distribution f is assumed
to be zero on one side of the surface (its support, supp f, is on the other side of
this surface).

Much is known in the case when the surface A = P is a hyperplane in R" and
Rf(a,r) is known for all @ € P and all r > 0. If f is odd about the hyperplane
‘P, then all spherical integrals over spheres centered on P are zero by symmetry.
Courant and Hilbert [8] proved that any continuous even function is uniquely
determined by its spherical integrals for spheres with centers on a hyperplane.
Thus, the null space of this transform is the set of all odd functions. Therefore,
any function supported on one side of P is uniquely determined by spherical
integrals.
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Inversion formulas are given for the spherical transform over spheres centered
on A when A is a circle in the plane [17], when A is a plane in R® [10], and
when A is a hyperplane in R” [4]. The formulas in [10] and [4] involve back
projection, a dual operator to R, composed with a non-local Fourier integral
operator. Palamodov [18] and Denisjuk [9] developed mappings which reduce this
problem to inversion of the classical Radon transform. Their inversion method
is local for odd dimensions (as would be expected from a dimension count). We
will discuss this approach a little more in §4. These inversion methods require
data Rf(a,r) for spheres of arbitrary large radius to recover the value of f(x)
because the back projection requires this.

Very little is known if the set of centers, A, is not a hyperplane or circle.
For the problem of integration over circles in the plane, the main theorem of
[2] shows that, if f is compactly supported, then f is determined by integrals
over circles with centers on all curves A except Coxeter systems of lines (lines
intersecting at one point with equally spaced angles). This says that if A is any
curve in the plane that is not a line segment, then inversion of Rf(a,r) with
centers a € A is possible. Partial results exist in R™ (e.g., [3]). It is shown in [1]
that if A is the boundary of a compact smooth set in R”, then f is determined
by spherical integrals over spheres with centers on A if f decreases sufficiently
rapidly at infinity.

Much work has been done on other inverse scattering problems including
models using double integrals over spheres [5] and inversion methods with error
estimates for scattering with one direction of incidence and all directions of
scatter [7].

This article is organized as follows. In §2, we will develop the basic ideas
for understanding singularity detection. In §3, we will describe how R detects
singularities, and we will also prove new uniqueness and support theorems for
this transform with local data. Finally in §4, we will discuss practical aspects of
the problem including numerical implementations and limitations of the model
as well as cases in which the model is not satisfied, but the method will still find
singularities.

2 The Mathematical Preliminaries

In this section, we talk about singularities using the ideas of Fourier transforms,
Sobolev spaces, and wavefront sets. For f € L!'(R") the Fourier transform and
its inverse evaluated on f are

Fw)= [ fwe s

1

—1 Ty (3)
F U@ = Gy [ S0

Sobolev spaces are generalizations of L2 spaces that categorize which derivatives
of a function are in L2. The Sobolev space H*(R") is defined for s € R as the



4 A.K. Louis and E.T. Quinto

set of all distributions f for which the Fourier transform F f is a function that
satisfies

1115 = / NFF@P A+ yP)dy < oo (4)

yeR

We can use these ideas and localize in the Fourier domain to get more precise
information about singularities, the wavefront set.

Definition 1. Let f € D'(R*) and let xzg € R® and & € R® \ 0. Then, f
is smooth microlocally near (xo,&) if and only if there is a cut-off function
¢ € C(R™) with (x0) # 0 and there is an open cone V containing & such
that F(pf)(y) is rapidly decreasing in V. If f is not smooth microlocally near
(z0,&0), then we say (z0,&) € WF(f).

One can define Sobolev wavefront set, which captures more precise informa-
tion about singularities: singularities that are not in H*® microlocally [19].

Definition 2. Let f be a distribution and let zo € R™ and & € R™ \ 0. Let
s € R. Then, f is microlocally in H® near (z9,&) if and only if there is a cut-off
function ¢ € C°(R"™) with p(zo) # 0,and there is an open cone V' containing &y
such that fgev |[F(pf)E)2(1 + [£]?)%d€ < oo. If f is not microlocally H® near

(z0,&0), then we say (xo, &) € WF?(f).

If (2o, &) ¢ WF(f), then for any s, f is microlocally H?® near (g, &). It can
be shown using this definition (and a compactness argument on S™~1) that if f
is in H*® in every direction at every point in R”, then f is in H*(R").

These definitions generalize to manifolds by having (x; ) live on the cotan-
gent space of the manifold. We will consider only the manifolds R” and A x
(0,00), so we will use the standard basis of T*R™: {dx; |j =1,...,n} where
dx; is the dual covector to 0/0x;. For x € R, this gives global coordinates on
TR". Let w = (wn,...,wpn) € R?, then we define

w-dx:iwjdxj.

j=1

So, if & € R™ is the vector in Definitions 1 and 2, then (g, & - dx) is the
corresponding covector in the wavefront set.

Let A be a hypersurface. We get covectors on T* A as follows. Let a € A and
let T, be the hyperplane in R" tangent to A at a. Then, for w € T, — a, the
translate of T, to the origin,

w-dxeT A.

So, a covector in T*(A x (0, 00)) is of the form (a, r; w-dx+sdr) wherew € T,—a
and s € R
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3 Mathematical Results

First, we give a precise description of how the spherical transform detects sin-
gularities, then we prove local uniqueness theorems.

Theorem 3 (Microlocal regularity of R). Let f € D'(R®) and let A be a
smooth hypersurface. Let ay € A and let T,, be the hyperplane tangent to A
at ap. Assume supp f lies on one side of T,,. Let oo # 0 and ro > 0 and let
zo € S(ao,r0) and let & be normal to S(ag,ro) at zg. Let & = (zo — ag) - dx
and let ng = —(P,(xo — ap) - dx + rodr) where P, is the orthogonal projection
onto the hyperplane T, — a. Then,

(zo; abo) € WF(Y) if and only if (ao,r0;ane) € WF(RS) (5)
Furthermore,
(z0; ko) € WEF®(f) if and only if (ao,r0;0m0) € WF*H*=V/2(Rf)  (6)

The covector & = (z¢ — ap) - dx is conormal to the sphere S(ag,ro) at o
(it corresponds to a vector normal to this sphere at xg) so the theorem gives
information about singularities of f conormal to S(ag,70)- If Rf is smooth (or
in H5+(™=1/2) in the direction 7 in the theorem, then f is smooth (or in H*)
in direction &. So, smoothness of the spherical transform of f corresponds to
smoothness of f in directions conormal to S(ag, o). More precisely, let A C
A x (0,00) be the open subset over which data are taken, then

WE?(f) ﬂ (( L)J AN*(S(a, r))) -
a,r)€

is the set of H®—stably reconstructed wavefront directions.

This is true because R satisfies (6) for data satisfying the condition of Theorem
3. Directions (xg,a&p) satisfying (6) are the ones in the union in (7). These are
directions conormal to the spheres S(a,r) in the data set (for (a,r) € A).

This theorem says nothing about “invisible” singularities (ones not in (7))
but one can easily come up with functions f with singularities in directions not
in (7) such that Rf is smooth; these singularities of f disappear in Rf.

This can be used to understand which boundaries of f (boundaries of objects
in the ocean) are detectable from local sonar data. Let A be a smooth open set
on the surface of the ocean. Let the reflector f lie below T, for all a € A.
Let SONAR data be given on an open connected set 4 C A x (0,00). Then,
singularities of f conormal to S(a,r) will be detectable from the given data
for all (a,r) € A. But, singularities not conormal the sphere will not be stably
detected by data near (a,r). For example, if A = P is a horizontal plane, then
vertical boundaries will not be stably detected by any data with centers on P
because no sphere centered on P has vertical conormals below the surface, P.

Furthermore, according to (7), if A = A x (0, R) for some R > 0, then more
wavefront directions are stably visible near A than far away because the union
in (7) includes more directions for points near A than far from A.
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Note that Theorem 3 says nothing about points zo € S(ag,r¢) that are on
the equator S(ag,79)NT,,- In fact, Theorem 3.3 of [3] makes no conclusion about
such points.

This proof is related to Theorem 3.3 of [3], and it will be given in a future
article. In particular, (5) and (6) follow from the fact that, for distributions
f supported on one side of Ty, R is an elliptic Fourier integral operator that
satisfies the Bolker Assumption [11].

Palamodov [18] has done a careful analysis of singularities of this operator
in the plane when A = P is a line. He has L? estimates even for the invisible
directions (ones not conormal to spheres in the data set). This special structure
lends itself to more precise information.

Our next theorem is a very general local uniqueness theorem.

Theorem 4 (Local Uniqueness for the Spherical Transform). Let A be a
real analytic hypersurface in R™ and let A C A x (0,00) be open and connected.
Let f € D'(R™). Assume for all (a,r) € A, that f is supported on one side of Ty,
the hyperplane tangent to A at a. Assume for some (ag,70) € A that S(ao,70)
is disjoint from supp f. Then,

f=0 on U S(a,r).

(a,r)EA

In this theorem, we must assume A is real-analytic because there are coun-
terexamples to uniqueness for C*° Radon transforms. Local uniqueness theorems
are known if A = P is a hyperplane. In [8] it is shown that if U is an open sub-
set of a plane P, and f is zero on one side of P and Rf(a,r) = 0, for all
(a,7) € A=U % (0,00) then f =0. In [4] uniqueness is shown if A is the set of
all spheres centered on P and lying inside a given sphere S(ag, o). In this case,
f = 0 inside S(ag,79). Theorem 4 is stronger than the ones in [8] and [4] since
A is not restricted to be a plane and the sets of spheres is more general.

Here is how one could use this theorem as a guide in choosing which SONAR
data to use in exploration. Let A be a small open connected set on the surface
of the ocean. Assume A and the reflector in the ocean, f, satisfy the conditions
of Theorem 4. Assume data are given on A for all spheres of radius less than
some rq. So, A = A x (0,79). Then, f is determined on U{S(a,r)|(a,r) € A}
by SONAR data on spheres in A. Furthermore, the set of wavefront directions
in (7) are stably reconstructed.

The proof of Theorem 4 is similar in spirit to the proof in [6] and it will be
given in a future article.

4 Discussion and Future Directions

There is some debate whether the Born approximation and spherical integrals
are the right model for the SONAR problem when sources and detectors are at
the same location. However, even if the model is inaccurate, as long as a rea-
sonable assumption about singularities is valid, the analysis would still be valid.
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In particular, as long as singularities of the objects conormal to the spherical
wavefronts result in singularities of the data (as described by (5) and (6)) then
backprojection singularity detection algorithms would work. If real SONAR data
of a scatterer f has the same singularities as Rf would have, then R* of the data
would reproduce the visible singularities of f. This is because the backprojection
operator takes singularities of Rf (and so singularities of anything with the same
singularities as Rf) to the visible singularities of f.

This analysis suggests that one consider local singularity detection methods.
When A = P is a plane (or line in R?), Palamodov [18] and Denisjuk [9] have de-
veloped an inversion method for sonar data that reduces the problem to inversion
of the classical Radon transform for functions supported in the unit disk, D. In
order to get data over all lines in D, one needs sonar data over all spheres. They
have proposed using limited angle inversion methods on this Radon data. One
of the authors and, independently Peter Kuchment, have suggested using local
Lambda tomography on this data. A student of the second author, Alexander
Beltukov, is working on implementing this idea. One of the authors has proposed
using a sort of local CT directly on the SONAR data. Let R* be a backprojection
operator (R*g(x) is the average of g(a,r) over all (a,r) € A with x € S(a,r)
in a smooth weight that is zero near the boundary of 4). Then, the singulari-
ties of AR*Rf will give the visible singularities of f, at least theoretically. Mr.
Beltukov will investigate these methods, too.

One advantage of using local methods on the sonar data directly (as opposed
to mapping to the classical Radon transform), is that one does not have to
assume the surface of the ocean is planar; it can have waves. These methods will
be presented in a future article.

References

1. M. Agranovsky, C. Berenstein, and P. Kuchment, Approximation by spherical waves
in L? spaces, J. Geom. Analysis 6(1996), 365-383.

2. M.L. Agranovsky and E.T. Quinto, Injectivity sets for the Radon transform over
circles and complete systems of radial functions, J. Functional Anal., 139(1996),
383-414.

3. M.L. Agranovsky and E.T. Quinto, Geometry of Stationary Sets for the Wave Equa-
tion in R™. The Case of Finitely Supported Initial Data, preprint, 1999.

4. L-E. Andersson, On the determination of a function from spherical averages, SIAM
J. Math. Anal. 19(1988), 214-232.

5. R. Burridge and G. Beylkin, On double integrals over spheres, Inverse Problems
4(1988), 1-10.

6. J. Boman and E.T. Quinto, Support theorems for real analytic Radon transforms,
Duke Math. J. 55(1987), 943-948.

7. M. Cheney and J. Rose, Three-dimensional inverse scattering for the wave equation:
weak scattering approximations with error estimates, Inverse Problems 4(1988) 435-
447.

8. R. Courant and D. Hilbert, Methods of Mathematical Physics, II, Wiley-Interscience,
New York 1962.



8 A K. Louis and E.T. Quinto

9. A. Denisjuk, Integral Geometry on the family of semi-spheres, Fractional Calculus
and Applied Analysis, 2(1999), 31-46.

10. J.A. Fawcett, inversion of N—dimensional Spherical Averages, STAM J. Appl. Math
42(1985), 336-341.

11. V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc., Provi-
dence, RI 1977.

12. S. Helgason, A duality in integral geometry, some generalizations of the Radon
transform, Bull. Amer. Math. Soc. 70(1964), 435-446.

13. L. Hérmander, The analysis of linear partial differential operators I, Springer-
Verlag, 1983.

14. F.B. Jensen, W.A. Kuperman, M.B. Porter, H. Schmidt, Computational Ocean
Acoustics, AIP Press, New York.

15. F. John, Plane waves and spherical means, Interscience, 1955.

16. M. Lavrent’ev, V. Romanov, and V. Vasiliev, Multidimensional Inverse Problems
for Differential Equations, Lecture Notes in Mathematics 167, Springer Verlag, 1970.

17. S.J. Norton, Reconstruction of a two-dimensional reflecting medium over a circular
domain: Exact Solution, J. Acoust. Soc. Am. 64(1980), 1266-1273.

18. V. Palamodov, Reconstruction from limited data of arc means, preprint, 1998.

19. B. Petersen, Introduction to the Fourier Transform and Pseudo-Differential Oper-
ators, Pittman Boston, 1983.

20. E.T. Quinto, Pompeiu transforms on geodesic spheres in real analytic manifolds,
Israel J. Math. 84(1993), 353-363.

21. V.G. Romanov, Integral Geometry and inverse Problems for Hyperbolic Equations,
Springer Tracts in Natural Philosophy, 26, 1974.

22. R. Schneider, Functions on a sphere with vanishing integrals over certain sub-
spheres, J. Math. Anal. Appl. 26(1969), 381-384.



