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Abstract. This article examines a sonar model where the source and detector are at the same point. The goal
is to reconstruct objects in the ocean by integrating over the curves generated by the sonar source.
Moving the sonar source along different curves or lines develops reconstructions with a varying
amount of visible singularities and unique artifacts. This article explores the artifacts produced
from object reconstructions and the effectivity of these reconstructions in depicting the object.
Previous principles proved by Dr. Quinto and others explain some of the artifacts, but this article
also discusses a new type of artifact that we found.

1. Introduction. In this article, we verify principles that Dr. Quinto and others found
for X-ray CT, e.g., [2, 7], and for sonar in [4, 8]. We generated reconstructions for a different
limited data tomography problem, to do with sonar technology, to verify these principles and
also found elements of these reconstructions that have yet to be justified mathematically. In
our limited data tomography problem, we examine how a sonar source is capable of recon-
structing objects in the ocean when the sonar source is traveling among different paths. For
references on tomography and wave equation imaging in general, see e.g., [6, 3, 11].

In our research, we mostly examined elements that appeared in the reconstruction that did
not appear in the initial reconstruction region, called artifacts. We verified that end-of-data
set artifacts occur, which was proven previously in a closely related limited data tomography
problem for the spherical transform [4]. We also verified that mirror point artifacts do occur
in filtered backprojection, which was suggested but not shown in another article [1]. We
discovered a new type of artifact, later named ‘stationary point artifacts,’ discussed in this
article.

The justification of our observations for this limited data tomography problem involves mi-
crolocal analysis and the Fourier transform (e.g., [5]). However, for the purposes of developing
the reconstructions, various calculus and data approximation techniques can be used.

In this article, we first illustrate how to generate a reconstruction mathematically when
the sonar source is simply traveling along a straight line. We then move into more complicated
reconstructions when the sonar source is traveling along a curve. We conduct artifact analysis
on these reconstructions throughout the paper to verify the artifacts mentioned above, as well
as discuss the new artifact found.

2. Problem 1. The first limited data tomography provides the groundwork for more
complicated reconstructions. In this problem, the source of the sonar waves is along the
ocean’s surface. The sonar waves’ curves must be integrated over to reconstruct an object
in the ocean. The limited data in both the centers and radii of the sonar waves affect the
effectiveness of the object reconstruction. An explanation of the math behind developing these
object reconstructions follows.
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2.1. Math Behind Problem 1. The reconstruction region must first be defined to begin
an object reconstruction. One of the simplest objects to reconstruct is a circle, but the
reconstruction method can be generalized to any shape. For this problem, the centers of the
sonar waves, or circles, will have centers of (s, 0) where s is limited from (−10, 10). Each circle
will have an associated radius of r, where r is limited from (0, 10).

When integrating over these circles, the characteristic function of an object will be used.
The characteristic function represents the density of the object. From here on, the character-
istic function will be referred to as:

(1) f(x, y) =

{
1 (x− c1)

2 + (y − c2)
2 ≤ R2

0 otherwise

In this case, the object is a disk centered at (c1, c2) with radius R > 0.
To integrate over the circles, each circle is first parameterized, and the parameterization

is plugged into the characteristic function described above. For a circle centered at (x0, y0)
with radius r, the integral is:

(2) Rf((x0, y0), r) :=

∫ 2π

0
f(x0 + r ∗ cos(θ), y0 + r ∗ sin(θ)) ∗ r dθ.

In this problem, x0 = s ∈ R, and y0 is always 0 since the source of sonar waves is on the
ocean’s surface (i.e., the line y = 0). Then one only needs to integrate over the half-circle in
the ocean. The trapezoidal rule is then used on the integral in (2) to generate data

(3) D(si, rj) = Rf((si, 0), rj)

at points (si, rj), where si are evenly spaced points in [−10, 10] and rj are evenly spaced points
in [0, 10] when the circle being integrated over passes through the object being reconstructed.
In this case, D forms a matrix produced from the trapezoidal rule data, (3), where the first
index contains the centers of the circles and the second index contains the radii of the circles.
I will call this matrix trapezoidal rule matrix.

Then, the second derivative of the data is approximated using the central second differ-
ence. The second derivative in s is needed in some of our reconstructions because it clearly
highlights the object’s boundaries. The boundaries are evident in the second derivative be-
cause the second derivative yields either largely positive or largely negative values on the
data corresponding to the boundaries of the object [9]. The formula for the central second
difference is as follows:

(4)
∂2

∂r2
D(si, rj) ≈

D(si, rj+1)− 2 ∗D(si, rj) +D(si, rj−1)

(∆(r))2

In this case, the results of (4) form a matrix that I will call the central second difference
matrix.

After obtaining both the data from the trapezoidal rule, (3), and the central second
difference, (4), the backprojection produces an image (reconstruction) of the object. The
backprojection at a point x̄ integrates data over all the circles in the data set that contain
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x̄. The continuous backprojection is given in equation (6) below. In problem 1, the curve
of sources is γ(s) = (s, 0). Backprojection can use either the data from the trapezoidal rule,
D(si, rj), or the central second difference as in (4). However, a backprojection that uses
the data from the central second difference produces a reconstruction that emphasizes the
object’s boundaries more. As x̄ gets closer to the object, the backprojection data will yield
either larger positive or negative values, which helps produce an effective reconstruction.

(a) Backprojection reconstruc-
tion using trapezoidal rule matrix

(b) Backprojection reconstruc-
tion using central second differ-
ence matrix

Figure 1: Reconstructions with sonar source and receiver on the surface.

To integrate over all circles that go through a point x̄, all circles with centers (s, 0) with
associated radii are found, where s is limited to [−5, 5]. The associated radii are found through
using the distance formula between the point x̄ and (s, 0). The integration of these circles is
again carried out through the trapezoidal rule using data from the matrices produced by the
trapezoidal rule and the central second difference. The values inputted into these matrices are
the center s value and the associated radius, r. However, since r is being calculated through
the distance formula, it could potentially not align with an r value in one of the matrices. To
resolve this issue, linear interpolation must be used. For example, to approximate the data
for r that is between [rj−1, rj ], where j refers to the index for the matrix, the formula below
is used:

(5) B(si, r) = D(si, rj−1) + (r − rj−1) ∗
D(si, rj)−D(si, rj−1)

rj − rj−1

In this case, matrix B will refer to the matrix containing the backprojection values. Once a
value for an arbitrary r is approximated, the trapezoidal rule integration can take place to
complete the backprojection data.

Above is an example of a backprojection reconstruction where the object is a circle centered
at (0, 5) with a radius of 1. From the images above, it is clear that the central second difference
matrix produces a better reconstruction, so this is the matrix that will be used in most
reconstructions.
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2.2. Definitions and Principles. We will now introduce some definitions and principles
that are essential to analyzing the reconstructions. First, the definitions:

Singularity
A point at which the density function of the object is not differentiable or infinitely
differentiable

Visible Singularity
A singularity in the object that appears in the reconstruction.

Invisible Singularity
A singularity in the object that does not appear in the reconstruction

Artifact
A singularity in the reconstruction that is not in the object.

Second, the principles found in [9, 4, 10]:

Principle 2.1. (a) If a boundary of a feature of the body is tangent to a circle in a
limited data set, then that boundary should be easy to reconstruct from that limited
data. Such boundaries are called visible boundaries (from this limited data).
(b) If a boundary is not tangent to any circle in a limited data set, then that boundary
should be difficult to reconstruct from the limited data. Such boundaries are called
invisible boundaries (from this limited data).

Principle 2.2. Artifacts can occur on circles at the ends of the data set (e.g., at (smin, 0)
and (smax, 0) for Problem 1) that are tangent to some feature of the object.

The principle applies to this limited data problem by [4]. We can expect to see artifact
circles occur when the centers, (s, 0), are at the end of the data set. These definitions and
principles can be used to examine the first reconstruction displayed.

2.3. Examination of a Reconstruction from Problem 1. We will now explain the above-
mentioned definitions and principles regarding the reconstruction labeled 1b. The visible
singularities of the object are where the circle is reconstructed well, i.e., the top and bottom
of the circle. According to principle 2.1, this is because there are circles in the data set that
are tangent to the top and the bottom of the object since the source of sonar is on the line
y0 = 0. On the other hand, the left and right of the object are not reconstructed well because
the backprojection generates vertices (the points at the left- and right-ends of the object in
the reconstruction) as opposed to circular arcs. The left and right circular arcs of the object
are called invisible singularities, and they occur because there are no circles in the data set
that are tangent to these boundaries of the object.

The larger circular arcs generated in the reconstruction are called artifacts because they
are not a part of the object. However, these artifacts can be explained by principle 2.2. In
figure 2, it is clear that these artifacts are generated by circles centered on the endpoints of s.

By symmetry, the other artifacts in this reconstruction are explained by circles centered
at the ends of the data set.
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Figure 2: A circle cen-
tered at (5, 0) plotted
on top of the recon-
struction artifact

The reconstruction method in problem one is imperfect, as it will often fail to reconstruct
the left and right sides of the object, given where the source of the sonar waves is. Problem 2
implements a more advanced backprojection technique to help produce better reconstructions.

3. Problem 2. The second limited data tomography problem is similar to the first. It still
uses limited data in both the centers and radii of the sonar waves. The difference is where the
source of the sonar waves is. The source can now travel along any curve or line, not just along
the ocean’s surface. This means you can integrate over full circles instead of the semicircles
used for the integration in problem 1 (see (2)). Now that the source of sonar waves can be
along any curve, better reconstructions and new artifacts can be produced.

3.1. The Math Behind Problem 2. The math behind problem 2 is very similar to problem
1, with several subtle differences. The same characteristic function can be used as described
in (1). In this problem, y0 depends on the curve the sonar source travels on instead of being
constantly 0. With these changes to the integral, the trapezoidal rule is used again to generate
data on whether the circles being integrated over pass through the object. The same formula
described in function (4) can be used to generate data on the central second difference. The
same backprojection formula can also be used since the formula generalizes to curves other
than the line along the ocean’s surface:

The backprojection at a point x̄ integrates data over all the circles in the data set that
contain x̄. If the sonar transceiver travels along the curve γ(s), γ : [a, b] → R2, and x is a
point in the ocean, then the circle centered at γ(s) through x has radius ∥x − γ(s)∥. The
continuous backprojection of the function g(γ(s), r) is

(6) R∗g(x) =

∫ b

s=a
g(γ(s), ∥x− γ(s)∥) ds,

the integral of g over all circles in the data set (with centers γ(s)) that pass through x. For
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problem 1, γ(s) = (s, 0).

Figure 3:
Reconstruction of
a circle centered at
(0, 8) with radius 1
where the source of
sonar waves is along
the line y = 5. A
reflection of the object
is centered at (0, 3).

Figure 4:
Reconstruction of
a circle centered at
(2, 5) with radius 1
where the source of
sonar waves is along
the lines y = 3 and
x = 0.

3.2. Reconstructions from Problem 2. The reconstruction in figure 3 produces more
visible singularities than a reconstruction from problem 1 (i.e., figure 1). However, since the
backprojection integration is symmetrical about the line of sources as the density is integrated
over all of the circle, a reflection of the object is produced. The other artifacts in this recon-
struction are from circles centered at the end of the data set, per principle 2.2. To resolve
the issue of the reflection, one possibility is to have the sonar source travel along two paths.
As illustrated in figure 4, it becomes clearer what object is being reconstructed; however, the
object’s reflections still exist. A better solution is to have the source of sonar waves travel
along a curve, as the backprojection reconstruction does not produce any exact reflections of
the object. Reconstructions where the sonar source travels along a curve produce artifacts
that the above principles cannot explain.
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Figure 5:
Reconstruction of
a circle centered at
(0,8) with a radius of 1
where the source of the
sonar waves is along
the curve y = 5+cos(x)

3.3. Reconstructions Using Curves. As shown in figure 5, a circle reconstruction when
the source of sonar waves is along the curve can yield a reconstruction with more visible
singularities than when the source of sonar waves is traveling along a straight line. This is
because more sonar wave circles are tangent to the object’s boundary. The reconstruction in
figure 5 produces some interesting artifacts. While the end of data set artifacts introduced in
principle 2.2 still exist, they are faint compared to the other circular and non-circular artifacts
in this reconstruction. The non-circular artifacts are significant to analyze because sonar wave
circles would not produce them.

3.3.1. Artifact Analysis. The artifacts analyzed in this section will be the artifacts not
produced by the end of the data set, namely the smaller teardrop shape in the center, the
larger circle, and the symmetrical curves that are tangent to the object in figure 6. Most of
these artifacts are explained by mirror points.

A mirror point is a point that is reflected over a particular line. Reflected points of points
on the boundary of the object explain these artifacts. I will now describe how to find which
lines the points are reflected over.

Figure 6 illustrates sonar wave circles centered on the curve and tangent to the object’s
boundary. The line that each point on the object is reflected over is the tangent line to
the curve that passes through the center of the tangent circle. To find the mirror points
mathematically, a point on the curve is first chosen. This point on the curve will act as the
center of the tangent circle. To find the point on the object that the circle is tangent to, first,
let c̄ represent the center of the object and γ(t) represent the point on the curve. The unit
vector between c̄ and γ(t) is denoted:

(7) ĉγ(t) =
γ(t)− c̄

∥γ(t)− c̄∥

The unit vector described in function (7) is then scaled by the radius of the characteristic
function in (1), R, so the vector is a normal vector of the circular object. The tangent points
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Figure 6: Circles cen-
tered on the curve y =
5+cos(x) that are tan-
gent to the boundary of
the object.

on these circles are then described by:

(8)
c̄+R ∗ ĉγ(t)

c̄−R ∗ ĉγ(t)

These points are then reflected over the tangent line, ℓ, to the curve, γ, at γ(t). Let a be

Figure 7: The mirror
points of an object cen-
tered at (0,8) with ra-
dius 1 where the source
of sonar waves is trav-
eling along the line y =
5 + cos(x)

one of these points on the object’s boundary in (8) and let γ(t) remain the same as described
above. Let v̄ = ā − γ(t). The goal is to reflect this vector over the tangent line to find the
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mirror point, which is done through the orthogonal vector projection. Let

τ̄ = γ′(t)

be a direction vector of the tangent line. The scalar projection of v̄ onto r̄ is defined by:

(9) ∥v̄∥ ∗ cos(θ) = v̄ · τ̄
∥τ̄∥

where θ is the angle between v and τ Let the vector w be the orthogonal projection of v onto
the tangent line ℓ. The length of w̄ is the scalar projection just calculated, so

(10) w̄ =
v̄ · τ̄
τ̄ · τ

∗ τ̄

and the perpendicular vector from ℓ to a is v − w. From here, the point ā can be reflected
over the tangent line to the point

(11) q̄ = a− 2 ∗ (v − w) = −ā+ 2 ∗ (γ(t) + w̄)

In this case, q̄ represents the mirror point to a, the reflection of a in the tangent line ℓ.
When all the mirror points are plotted, an image, as illustrated in figure 7, is produced.
The mirror points align with the artifacts not explained by principle 2.2. The mirror

points cut off at around r = 7 because of the limited data from s or the possible centers of the
circles. More artifacts generated by mirror points will be seen in the following reconstructions.

3.3.2. A New Artifact. Finally, in figure 5 there is one more set of artifacts that are
not mirror point artifacts nor artifacts explained by principle 2.2. These artifacts appear at
the boundaries of the circle being reconstructed and are highlighted in yellow in figure 7.
These artifacts have yet to be justified mathematically, but they seem to derive from where
all the tangent circles bunch together in figure 6. For this reason, these new artifacts are
named stationary point artifacts. Our future research will involve analyzing these stationary
point artifacts further to see if the theory about the derivation of these artifacts can be
mathematically proven.

3.3.3. Developing an Optimal Reconstruction.
An ”optimal” reconstruction would be where the object is reconstructed well (i.e., not many
invisible singularities), and the number of artifacts is minimized. The artifacts that do appear
should be easy to explain. One of the curves that generate an optimal reconstruction is a
parabolic curve where the object is centered around the parabola’s focus.

In figure 8, the square is reconstructed almost entirely with visible singularities, and the
artifacts above the parabolic curve are end of data set artifacts. The square’s boundaries are
primarily visible singularities because centering the square allows many sonar wave circles to
be tangent to it. The artifacts below the parabolic curve are mirror point artifacts. With this
condition, objects centered around the focus of a parabola have generated the best possible
reconstructions so far.
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Figure 8: A reconstruc-
tion of a square cen-
tered at (0,2) where the
sonar source is travel-
ing along the line y =
5− 1/8 ∗ x2

4. Conclusions. In our research, we have verified end-of-data set artifacts for a different
limited data tomography problem. We also demonstrated that mirror point artifacts exist in
image reconstructions. Finally, we found a new type of artifact, stationary point artifacts, in
our reconstructions. We were able to begin to explore what type of curves the sonar source
should travel on to develop optimal reconstructions.

4.1. Further Research. In the future, we would like to mathematically prove the theory
about where the stationary point artifacts are coming from. Further, we would like to explore
reconstructing different shapes more, and we would also like to see if reconstructing a different
shape affects what curve the sonar source should be traveling along to develop an optimal
reconstruction.
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