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Flexibility is a hidden axis of biomechanical diversity in fishes
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ABSTRACT

Nearly all fish have flexible bodies that bend as a result of internal
muscular forces and external fluid forces that are dynamically coupled
with the mechanical properties of the body. Swimming is therefore
strongly influenced by the body’s flexibility, yet we do not know how
fish species vary in their flexibility and in their ability to modulate
flexibility with muscle activity. A more fundamental problem is our lack
of knowledge about how any of these differences in flexibility translate
into swimming performance. Thus, flexibility represents a hidden axis
of diversity among fishes that may have substantial impacts on
swimming performance. Although engineers have made substantial
progress in understanding these fluid—structure interactions using
physical and computational models, the last biological review of these
interactions and how they give rise to fish swimming was carried out
more than 20 years ago. In this Review, we summarize work on
passive and active body mechanics in fish, physical models of fish
and bioinspired robots. We also revisit some of the first studies to
explore flexural stiffness and discuss their relevance in the context of
more recent work. Finally, we pose questions and suggest future
directions that may help reveal important links between flexibility and
swimming performance.

KEY WORDS: Body mechanics, Fins, Muscle activity, Physical
models, Stiffness, Swimming

Introduction

Fishes differ dramatically in the size and shape of their bodies.
Different external morphologies often correlate with different
behaviors and environments, suggesting each of these
morphologies provides specific functional and ecological benefits.
But within this readily observable variation there is a hidden axis of
biomechanical diversity: flexibility. Fish bodies bend as a result of
muscular, structural, inertial and fluid forces. The amount and speed
of that bending is determined by many mechanical properties,
including stiffness (the resistance to bending) and damping (the
resistance to the speed of bending), which we will refer to collectively
as ‘flexibility’ or ‘stiffness’ (Fig. 1). The importance of flexibility to
swimming has been recognized for nearly a century (Aleyev, 1977;
Gray, 1933; Long and Nipper, 1996; reviewed by Long, 1998) and
flexibility itself has been observed to vary among and within the
bodies of different fish species (e.g. Summers and Long, 2006). Yet,
flexibility is determined by the morphological and material properties
of internal and external structures that can be difficult to measure.
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Thus, compared with the purely morphological properties of size and
shape, flexibility has not been well studied.

Our limited understanding of flexibility — including its diversity
and functional implications — leaves us with many questions that are
simple yet fundamental to understanding the biomechanical and
locomotor diversity of fishes. Which fish species are more flexible
than others? For a single species, how do stiffness and damping vary
across the fish’s body, and how does the resulting non-uniform
flexibility influence swimming? Internally, what different anatomical
and morphological features influence body flexibility? How does this
diversity correlate with behavior and performance? How do these
passive mechanical properties change over developmental and
evolutionary time frames?

Adding to this complexity, as fish contract their muscles to bend
the body and generate propulsion, the flexibility is altered relative to
the passive state in which muscles were inactive. Muscles actively
vary body flexibility when they forcefully shorten or forcefully
resist shortening, with the body becoming more or less flexible,
respectively. But we do not know whether the modulation of active
body stiffness across swimming modes can be explained by general
principles, or whether anatomical, ecological and phylogenetic
differences give rise to a wide range of strategies. Such gaps in our
knowledge highlight how little we understand the interplay between
internal body mechanics and the external fluid environment, and
how that interplay varies across diverse swimming modes and
performance levels in fishes.

Here, we review what is known about the body mechanics
of fishes, particularly stiffness, and how these properties
contribute to swimming performance. First, we define stiffness
and damping, and summarize some of the challenges in measuring
them for fish bodies and tissues. Second, we summarize what is
known about the passive stiffness in fishes. Third, we explore how
fish can co-contract axial muscles to modulate body stiffness.
Fourth, we discuss how models demonstrate the importance of
stiffness for swimming performance and performance trade-offs,
and detail some of the mechanisms by which stiffness may enhance
performance. Finally, we emphasize the need for collaborative
research and propose future areas of inquiry.

Defining and measuring stiffness and damping
The flexural stiffness £/ (N m?) of a homogeneous beam
is described by the relationship between an applied torque or
bending moment M (N m) and the resulting curvature ¥ (m™")
(Fig. 1):

M = EI k.

(1)
Curvature k is approximately the difference in angle 6 between
segments of the body, divided by the distance L between
those segments, or more precisely % (Fig. 1A). When the
curvature varies over time (Fig. 1B), as it does for a fish that
bends laterally:

M(t) ~ EIL k() + n 1 &(0), 2)
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Fig. 1. Flexural stiffness measured through the bending and damping moduli. (A) A structure is bent by a moment M through curvature x. The second
moment of area / is defined by the width w and height h of the structure (assuming an oval cross-section). (B) The bending moment M, curvature x, and
curvature rate k, as a function of time. The bending moment has components that depend on x and k. (C) A Lissajous plot, showing the moment versus
curvature, where time progresses counterclockwise around the curve. The overall slope of the curve is the flexural stiffness E/. The diagram here shows a
small segment of a bent structure, but in a fish, a bending moment can be applied at different locations and that the stiffness can vary based on location.

indicating that the structure resists bending (with stiffness ET)
and the rate of bending (with the damping modulus 1/, with units N
m? s). There is also an additional term related to the inertia of the
body and the water’s added mass, which usually is omitted but may
become important for high-speed movements.

The flexural stiffness EI consists of two terms: the elastic
modulus E (in N m~2 or Pa; also referred to as Young’s modulus)
that characterizes the contribution of the material to the stiffness;
and the second moment of area / (in m*) that characterizes the
contribution of the cross-sectional shape to stiffness. For objects
with an oval cross section, a close approximation to that of a fish, the
second moment of area is:

T3
I = i h, (3)
where w is the width of the body (perpendicular to the bending axis)
and £ is its height (parallel to the axis) (Fig. 1A). Just as flexural
stiffness is the product of £ and 7, flexural damping n/ is the product
of a material property () and the same shape parameter (/).

Myomeres
Myoseptum

Beam theory, from which these equations derive, assumes a
structure is made of the same material throughout; however, fish are
clearly not homogeneous. The second moment of area / only
approximates body shape effects, and £ and m, where they are
known, represent composite average material properties of the
diverse structures in a fish (Fig. 2). Yet, several studies have shown
that these approximations are surprisingly accurate for fish during
simple lateral bending (Coughlin et al., 1996; Katz et al., 1999;
Long et al., 2002a), simple dorsal bending (Jimenez et al., 2021)
and even during complex biplanar bending (Jimenez and Camp, In
Review).

For homogeneous materials like plastics or metals, £ and m are
often fairly constant as the curvature « increases. In contrast, many
biological materials, such as those that compose fish bodies and
fins, become stiffer at higher curvature (Nowroozi and Brainerd,
2012). Thus, there may be a different effective stiffness or damping
when the bending body is straight compared with when it is highly
curved at the end of a tail beat. These complexities are beyond the
scope of this review; we refer readers to the large amplitude

Pre-anal

Fig. 2. Fish bodies are complex heterogeneous structures. (A) Axial anatomy of longnose gar (Lepisosteus osseus; modified from Gemballa and Rdder,
2004), oblique view. Vertebrae are separated by intervertebral joints and are linked by connective tissue, ligaments, and bony processes. Muscle segments
(myomeres) are separated by collagenous sheets (myosepta). Each myomere attaches to other structures via myosepta, with lateral attachments to the integument
and medial attachments to structures including the vertebrae, the vertical and horizontal septa and the peritoneum (Vogel and Gemballa, 2000; Westneat et al.,
1993). A vertical septum composed of cross-woven collagen fibers encloses both the neural spines of the vertebral column and the pterygiophores of the fins. (B)
Cross-sectional views of a fish at different axial positions, illustrating differences in the relative composition of muscle. Colors: red, slow-twitch muscle; white, fast-
twitch muscle; blue, connective tissue — primarily myosepta; gray, bone; brown, viscera. VS, vertical septum; NS, neural spine; V, vertebra.

>
(@)}
i
je
(2]
©
o+
c
(]
£
=
()
o
x
NN
Y—
(©)
©
c
e
>
(®)
_




REVIEW

Journal of Experimental Biology (2023) 226, jeb245308. doi:10.1242/jeb.245308

oscillatory bending framework (Ewoldt et al., 2008; Porter et al.,
2016).

Challenges with measuring mechanical properties

Stiffness is a difficult property to measure for theoretical and
methodological reasons. First is the challenge of deciding which
structures are relevant. Fish bodies are composite structures made up
of many different biological tissues with varying material and
structural properties, whose individual properties may differ from
the properties of their composite (Fig. 2; Table 1). Second is the
challenge of selecting an appropriate technique. Many techniques
have been used to measure the mechanical properties of various
structures and structural groups, ranging from static tests on isolated
skin and muscle to dynamic oscillatory tests of whole fishes being
bent with synchronous muscle stimulation.

In practice, measuring the stiffness of a whole fish or parts of it is
challenging. The hydrated, heterogeneous, and hierarchical structure
of fish bodies means that any measurement of £/ depends first and
foremost on the condition of the fish. Is the fish anesthetized, freshly
dead, purchased fresh or thawed? In addition, the internal
temperature and temperature gradient of the fish and the
laboratory’s ambient temperature and relative humidity alter the
measurements: warmer specimens or tissues within a specimen may
have a lower £/ than cooler ones; a rapidly desiccating fin or excised
vertebral column will become stiffer as it dehydrates. Testing at a
temperature other than that at which the fish lives may shift the
measured E7 out of an ecologically valid range.

In order to bend a whole fish, a fin or a portion of fish’s body, the
specimen must be gripped firmly to avoid slippage during the
application of motion and moment. Different modes of gripping —
pressure pads, adhesive pads or indirect attachment to skeletal
elements — alter in different ways the internal stress field of the body,
which, in turn, alters the EI. Finally, the easiest tests to perform,
static or quasi-static tests, are the least physiologically valid because
they allow the moment M at a given curvature x to equilibrate; a
mechanical situation never seen during continuous swimming.
Moreover, static tests, lacking movement, cannot estimate damping
71, which is proportional to the rate of change of curvature k. For
these reasons, dynamic oscillatory tests are preferred but they have
their own drawbacks, including inertial noise generated by the
flexing of the specimen or vibrations of the testing platform. These
must either be accounted for or mitigated in the design of the testing
device or measured directly.

Passive mechanics of fish bodies

The elastic modulus, E, ranges over several orders of magnitude for
biological structures across different species (Table 1). E is a size-
and shape-independent material property that facilitates the
detection of changes to the properties of tissues within and among
species. Depending on the species and body region, the stiffness of
the fish body ranges from 0.005 MPa to 19 MPa, indicating that fish
bodies are similar to polymer rubbers in their stiffness (e.g. silicone
and nitrile). Yet, fish with the same elastic modulus do not
necessarily have the same internal anatomy. Differences could arise

Table 1. Summary of measurements of the mechanical properties of fish bodies and tissues

Location Change in E when
Position E Ly,
Species and reference Description (Lp) (MPa) EI(NLp?) k1 ft —post. n(kPas) [(L% (mm) N Method
Whole body
Anguilla rostrata’ Mid-caudal 0.7 0.59 2.3x1073 12 4.91x10* 280 3 Dynamic bending
Carassius auratus?® Midbody 0.48 0.047  0.058 = = 1 3.43x107 190 Dynamic bending
Ichthyomyzon unicuspis®  Midbody 0.55 0.088  3.1x1073 0.22 7.13x10° 260 6 LAOB
Lepisosteus osseus* 0.75 0.15 4.48x10° 663 3 Bending
Micropterus salmoides® Midbody 0.43 3.8 12 3.50x107 300 1 Dynamic bending
Morone saxatilis® Midbody 0.41 0.057 1.4 1 1.56x108 400
Myxine glutinosa’ Midbody 0.37 0.29 2.2x1073 = T 5.10x10* 379 4 Dynamic bending
Skin
Anguilla rostrata® Midbody 0.17 9.1 525 2  Tensile
Anguilla rostrata® 6.9 395 10 Tensile
Apodichthys flavidus'® Posterior 0.75 28 4  Tensile
Carassius auratus? 1.8 186 4  Tensile
Eptatretus stoutii'® Posterior 0.75 53 5 Tensile
Katsuwonus pelamis™’ Midbody 34 470 4 Tensile
Leiostomus xanthurus''  Midbody 9.4 185 5 Tensile
Lutjanus Midlateral 0.61 4.7 1 1 268 5 Tensile
campechanus'?
Morone saxatilis'® Midbody dorsal  0.50 440 3 Tensile
Oncorhynchus kisutch'?  Midlateral 0.56 1.6 1 1 650 5 Tensile
Petromyzon marinus® Posterior 0.75 21 5 Tensile
Trachinotus carolinus? Midlateral 0.54 8.4 1 1 292 5 Tensile
Muscle
Carassius auratus?® 1.1 186 4  Tensile
Vertebral column
Makaira nigricans ' Joint 11 1.1 0.04 1 l 1 13 2.98x10* 1092 6  Dynamic bending
Morone saxatilis° Abdominal 23 1.4x1073 1 = 1 522 346 5  Dynamic bending
Squalus acanthias® Precaudal 0.59 1.2x10~* 1 T 42 351 772 3 LAOB

Long, 1998; 2Zhou et al., 2011; Tytell et al., 2018; “Long et al., 1996; °Long and Nipper, 1996; Szewciw et al., 2017; "Long et al., 2002b; 8Danos, 2005; *Hebrank, 1980;
10Clark etal., 2016; ""Hebrank and Hebrank, 1986; '?Kenaley et al., 2018; '*Szewciw and Barthelat, 2017; "Puri et al., 2017; '5Aiello et al., 2018; '®Taft etal., 2018; ' Long,

1992; ">Nowroozi and Brainerd, 2012; 'SPorter et al., 2016.

«1, increasing curvature; f1, increasing frequency. — post., more posterior locations; L, body length; LAOB, large-amplitude oscillatory bending. 1, increases; =, stays the same; |,
decreases; 1/, increases and then decreases; Ly, body length; LAOB, large-amplitude oscillatory bending; El and / are normalized by the fish’s body length Ly,
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from the elastic modulus of internal structures (e.g. stiffer tendons)
or the relative proportions of stiff and flexible structures (e.g. bigger
bones), or both. This complexity highlights the challenges of
correlating the elastic modulus with function across simple tissues,
composite structures and whole bodies.

The spatial distribution of mass within the transverse bending
plane, or second moment of area /, also contributes to flexural
stiffness. Thus, whole-body stiffness can vary simply because of
shape or size differences in the internal or external anatomy.
Assuming the same size and material composition, a wide fish will
be stiffer than a narrow fish because more of its mass is distributed
away from the neutral axis of bending. And, assuming the same
body shape and internal geometric configuration, a fish with more
tendon will have a greater body stiffness because tendon is generally
stiffer (higher E) than other soft tissues such as muscle.

Not only do fish bodies differ in average stiffness, but the stiffness
and second moment of area also vary along the body, and the pattern
of'this variation is different among species. These patterns were most
systematically (though somewhat idiosyncratically) described by
Aleyev in the 1960s and 1970s (Aleyev, 1977). His results cannot be
converted into standard engineering units, but they do demonstrate
that fish differ substantially in their effective bending modulus E.
Aleyev reported two shape parameters (his G and Q parameters) that
together allowed us to estimate the second moment of area /. He
marked five points along the body of a freshly euthanized fish when
it was straight, then bent the bodies through a 45 deg angle and
reported the straight-line distance between the points (his ‘£’
parameter, not to be confused with the elastic modulus E). Regions
of the body that flex more thus had a smaller value of ‘E” than other
regions. A simple numerical analysis allowed us to estimate
curvature based on Aleyev’s ‘E’, and since the bending moment
was constant, we could then estimate the relative flexural stiftness EI
of'the different segments (Fig. 3). Details of the analysis are provided
on Zenodo (doi:10.5281/zenodo.7630071).

We have chosen three example species (Fig. 3), the garfish
Belone belone (a pelagic needlefish unrelated to freshwater gars),
the Atlantic mackerel Scomber scombrus, and the great barracuda
Sphyraena barracuda. Belone belone has a much lower EI than the
other two, even though its second moment of area / is much lower,
because its body tissues are much stiffer (higher £). In contrast, the
mackerel and the barracuda have similar £/ values, but the mackerel
has a much higher 7 and lower E than the barracuda (see also Fig. S1
for other species).

Thus, body stiffness requires direct mechanical measurements
like these and cannot be deduced from the morphology of the body
alone. It is for this reason that we consider flexibility a hidden axis of
variation — it is not visible. We must give a caveat to the data
reported here in Fig. 3 and Table 1. They represent our best attempt
to make measurements comparable across a wide range of
measurement types, experimental protocols, species sampling,
and tissue sampling (Table 1). As such, we do not suggest they be
used in formal comparative analysis for making quantitative
functional interpretations. Nevertheless, we include them for
several reasons: (1) to provide an accessible reference for future
studies; (2) to outline the challenges with measuring stiffness; (3) to
illustrate the myriad factors that determine stiffness of the whole fish
body; and (4) to highlight areas of interspecific variation that require
further study. Table 1 also highlights the need to standardize the
quality and consistency of measurements with the aim of
conducting more rigorous phylogenetic and comparative analyses
(see ‘Future directions’). Importantly, they provide a valuable range
of morphological and mechanical parameters to be used in

developing physical and computational models for exploring the
link between stiffness and swimming performance.

Fish can modulate whole-body flexibility

Fish muscle activity, and sensorimotor feedback more broadly, both
produces the bending pattern for swimming, but also modulates the
flexibility of the body (Long, 1998; Long and Nipper, 1996; Tytell
et al., 2018). Fish produce complex and varied spatiotemporal
patterns of muscle activity. Owing to the neuronal circuitry of their
axial muscles (Bello-Rojas et al., 2019; Fetcho and Faber, 1988;
McLean et al., 2007), fish can independently activate myomeres,
allowing differential control in the cranio-caudal direction
(Altringham and Ellerby, 1999; Wardle and Videler, 1993;
Wardle et al., 1995) and different regions within each myomere,
allowing differential control in the dorso-ventral direction (Ellerby
and Altringham, 2001; Jayne and Lauder, 1995; Jimenez and
Brainerd, 2020, 2021). Sensorimotor feedback could also lead to
changes in effective body stiffness. Fish sense the deformation of
their bodies (Grillner et al., 1984; Massarelli et al., 2017; Picton
et al., 2021) and this proprioceptive sensory information is used to
modulate the activity of spinal interneurons that drive muscle
activity (Grillner and El Manira, 2020; Viana Di Prisco et al., 1990).
If the effective gain of that modulation increases, that would also
increase the effective body stiffness.

Fish directly modulate their body stiffness by varying the timing
and intensity of muscle activity on opposite sides of the body. Co-
activation, in which muscles on opposite sides of the body are active
at similar times, involves active shortening (concentric) on the
flexing side with simultaneous active lengthening (eccentric) on the
side that resists flexion, increasing flexural stiffness (Altringham
and Ellerby, 1999; Long, 1998; Wardle et al., 1995; Tytell et al.,
2018). As eccentric muscles experience enhanced force production
(Altringham et al., 1993) they are especially effective at resisting
body bending and, therefore, increasing body stiffness.
Co-activation has been observed for left-right pairs of red and
white muscle fibers during various swimming behaviors and are
likely to be used to modulate body stiffness (Jimenez and Brainerd,
2021; Schwalbe et al., 2019; Tytell and Lauder, 2002; Westneat
et al., 1998).

During steady swimming, eccentric red and white muscle activity
can be found in the caudal regions of fish species with different
body shapes and swimming styles, suggesting the underlying
importance of stiffening the posterior body (Wardle et al., 1995).
During the escape response, or fast-start, eccentric white muscle
activity is found in anterior (Jimenez and Brainerd, 2021) and
midbody regions (Westneat et al., 1998), serving to enhance power
production but also likely increasing body stiffness (James and
Johnston, 1998). How exactly bilateral co-activation may impact
local body stiffness is determined by, among many other factors,
timing (Long, 1998; Tytell et al., 2018), asymmetry of left—right
muscle activation intensity (Jimenez and Brainerd, 2021), intrinsic
muscle physiology (Johnston et al., 1990) and strain-activation
characteristics of the behavior (Rome et al., 1992; Askew and
Marsh, 1997).

Although in vitro muscle fiber mechanics and in vivo muscle
activation patterns during swimming have been studied extensively,
little is known about how fish use their muscles to modulate
body stiffness and how their body stiffness changes during
swimming. Similarly, although sensorimotor feedback has been
widely examined, we do not know how fish use sensory information
to modulate muscle activity and whole-body mechanics. Even
less is known about how regional changes in body stiffness
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Fig. 3. Passive stiffness varies along the

_ >10A Belone belone Scomber scombrus Sphyraena barracuda body of fishes (based on data from Aleyev,
L:IJJ ———-< ’( «( 1977). (A) Bending modulus E/ relative to the
2 3 caudal segment modulus. (B) Stiffness E relative
% 1 to the caudal segment’s stiffness. (C) Second
14 moment of area of the body. Open points
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 indicate a bending modulus more than 10x the
B caudal segment or a stiffness more than 100x
>100 O o o the caudal segment. Aleyev measured / for
n ", B several fish species at five equidistant positions
along the body (body region 1-5), from
w 10 approximately the tip of the lower jaw to the last
0 caudal vertebrae. He also measured an index of
£ 1 . n - : - flexibility, related to curvature, which we have
ko) ... -’ : . o converted to a flexural stiffness El relative to the
@ B . W n stiffness of the caudal segment, thus allowing a
0.1 .‘- - comparison of flexibility and cross-sectional
’ .. shape along the body. The full data set and
0.01 analysis scripts used to produce Fig. 3 are
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 available in Zenodo (doi:10.5281/zenodo.
C 7630071).
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might impact performance during distinct swimming modes
such as steady swimming, swimming steadily at different speeds
and accelerating from a standstill. To understand the effects of
variable body stiffness on swimming performance, it is important to
quantify the stiffness of a fish as it contracts the axial muscles to
swim.

Muscle activity is the primary determinant of body mechanics
Whole-body work loops demonstrate that muscular activity is the
primary determinant of body mechanics. Even though passive
stiffness varies across the body of individual fish and among
different species (Table 1), muscle activity can change both stiffness
and damping much more. The experimental protocol typically
involves euthanizing and pithing a fish, then mounting it onto an
apparatus where the whole body is oscillated at precise angles with
synchronized torque measurements (Long and Nipper, 1996). As
the body is oscillated at any combination of sinusoidal frequencies
and amplitudes, the muscle can be stimulated with any desired
activation parameters. Measurements of active body stiffness vary
greatly depending on stimulation parameters (Fig. 4); therefore,
knowledge of the in vivo kinematics and muscle strain-activation
patterns are needed for interpreting muscle function (Rome et al.,
1992). Simulating the in vivo kinematics and muscle activation of
fish at different swimming speeds allows the researcher to estimate
changes to body mechanics at different speeds of steady swimming,
and perhaps even during unsteady swimming behaviors (Schwalbe
et al., 2019).

When inactive, all of the axial musculature contributes only
~25% of passive body stiffness (Summers and Long, 2006). In

contrast, stimulating axial muscle in the silver lamprey
(Ichthyomyzon unicuspis) increases body stiffness between 10 and
100% from the passive state (Tytell et al., 2018). Stimulating the
white musculature of American eels (4nguilla rostrata), which
makes up the majority of their cross-section, increases body stiffness
up to 300% (Long, 1998). These increases in stiffness are caused by
co-contractions of the left-right muscle pairs, where eccentric
muscle contractions on one side of the body resist and absorb the
work produced by the muscle on the opposite side. However,
muscle activity can also reduce body stiffness, particularly when
muscle is stimulated strictly during the concentric phase (Long,
1998; Tytell et al., 2018). Thus, muscle activity is often the primary
determinant of body stiffness.

Increasing body stiffness comes at a cost: the stiffer the body
becomes, the more muscular work it takes to bend the body, thereby
increasing the energetic cost of bending (Fig. 4). As eccentric muscles
absorb work to stiffen the body, bending can become mechanically
inefficient as the amount of concentric muscular power that gets
transferred to the surrounding fluid is reduced (Hess and Videler,
1984). Thus, there is a trade-off between two important variables:
body stiffness and muscle power output. Computational and physical
models of stiffness show that although flexural stiffness and power are
important, they are not in and of themselves optima for undulatory
swimming. Instead, various combinations of stiffness and power
can theoretically optimize different performance metrics such as
acceleration, efficiency and peak velocity (Tytell etal., 2018). In order
to optimize specific performance outcomes, fish may need to adjust
how they balance body stiffness and muscle power, although the
details of this balancing act are yet to be determined.
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Phase: —16%; Duty cycle: 40% Phase: —11%; Duty Cy

cle: 20% Fig. 4. Stimulation conditions affect net muscle work and

active body stiffness. Left and right columns show different

A B > activation patterns during a whole-body work loop. Line colors
throughout indicate when red muscle is stimulated on different
. . u sides of the body. (A,B) Fish can alter body stiffness by shifting
L shonenmg R shortening the phase and/or duty cycle of muscle activity. (C,D) Sample data
— showing passive and active torques during a whole-body work
/\/\/ /\/\/ loop. (E,F) Work loops showing torque over local body curvature
L L R Vi L L during the bending cycle, with arrows indicating the time course of
R T T by e T the work loop. Average mechanical data for sample trials are
L —H+|-|-H—H+H-H— L = IHI = noted, including values for passive and active stiffness, which are
' Later phase »' >« shown as yellow lines. Data are from a 2 cm body segment at 65%
P Shorter duty cycle total length in a scup (Stenotomus chrysops) with bending cycles
C D at4 Hzand 4 m~".
E 0.01 1 E 0.01 1 / /
= £
£ 0.00 - N £ 0.00 - N \/\
g g
s s
-0.01 4 -0.01 A
T T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Cycle number Cycle number
E Net Workmuscie = 1.4 mJ F
Elaetive = 3.1 mN x m?
Elpassive = 1.2 MN x m? Net Workpuscie = 0.5 mJ
= E — i Elactive = 2.8 mN x m?
g 001 g 001 /_Elpassi\,e =1.2mNxm?
=3 \ = \4
¢ 0.00 + ¢ 0.00 ~ —
o o —
F _0.01 - F _0.01 o Muscte stimulation
—Off —R
Bent Ieft<— - Bent right —L
—4 —2 0 2 4 -4 2 0 2 4

Curvature (m-1)

Models reveal the functional significance of flexibility
Modeling systems approximate biological structures and enable us
to focus on specific questions that are difficult to answer with live
animals. Particularly, physical models (experimental systems)
paired with appropriate sensors provide a wealth of information
that is usually inaccessible with live fishes. For example, load cells
incorporated into a model may directly measure swimming forces
and torques, and high-speed videography and flow imaging (e.g.
particle image velocimetry) provide kinematic and fluid mechanical
data with repeatability and precision that is nearly impossible with
live fishes. So, physical models have been invaluable in linking
bending and stiffness with specific swimming performance
outcomes. Alongside, computational models are used to explore
conditions that are difficult to physically construct, but they have
only rarely explicitly explored the impacts of flexibility for fish
swimming (e.g. Tytell et al., 2010). Recent comprehensive reviews
of flexible physical and computational models, their performance
and fluid mechanics in an engineering context have been provided
by Smits (2019), Wu et al. (2020) and Wang et al. (2022). We focus
on physical modeling studies and reference a select few
computational studies to support their conclusions on key ideas
pertaining to fishes.

Most fish-like models fall into two broad categories: those with
chordwise bending along an axis parallel to the flow (Fig. 5A),
similar to the axial bending of a fish’s posterior body and caudal fin
(Fig. 5C,D) or those with spanwise bending along an axis

Curvature (m-

")

perpendicular to the flow (Fig. 5B). Spanwise bending models are
most typically used to investigate movement of pectoral fins but can
also represent the active spanwise bending (i.e. conformation
changes) of the caudal fin exhibited in many swimming fishes (e.g.
Fig. 5D) (Esposito et al., 2012; Flammang and Lauder, 2009). To
demonstrate that stiffness likely has functional significance for
body/caudal fin locomotion by fishes, we focus in this section on
models with chordwise, passive flexibility: those where bending is
purely a function of stiffness.

Rectangular panels or hydrofoils are the most common passively
flexible models. In addition to being simple to construct, these
models are advantageous for their ability to isolate specific material
or structural characteristics. Dominating the literature are studies of
rectangular panels made of plastic or rubber sheets with uniform
flexural stiffness across their structure or of hydrofoils made of rigid
or flexible material.

Over the past decade, researchers have begun using ‘near-
rectangular’ physical models that more closely resemble the fish
body. These models are all variations on the rectangular panel or
hydrofoil and include rectangular models with non-uniform
stiffness (e.g. Cleaver et al., 2014; Han et al.,, 2022; Leroy-
Calatayud et al., 2022; Lucas et al., 2015; Riggs et al., 2010;
Vincent et al., 2020), panels cut into tail shapes (e.g. Feilich and
Lauder, 2015; Rosic et al., 2017) or at the most complex, panels
with both non-uniform stiffness and a tail-like shape (Kancharala
and Philen, 2016; Luo et al., 2020).
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Fig. 5. Configurations of chordwise and
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Panel stiffness modulates swimming performance

Modeling studies have demonstrated that certain stiffnesses can
dramatically boost swimming performance. Improvements of up to
150-200% have been reported for performance metrics such as
thrust, hydromechanical efficiency [Froude efficiency, or the
proportion of the total input energy that goes into thrust, which is
not well defined for self-propelled bodies like fish (see Schultz and
Webb, 2002; Tytell, 2007)], self-propelled speed (the speed where
thrust and drag balance during a given actuation regime) and cost of
transport (energetic cost of motion at the self-propelled speed,
where efficiency is undefined) (Dewey et al., 2013; Han et al., 2022,
Kancharala and Philen, 2014, 2016; Leroy-Calatayud et al., 2022,
Lucas et al., 2015; Luo et al., 2020; Quinn et al., 2014; Riggs et al.,
2010; Rosic et al., 2017; Shelton et al., 2014).

But it has also become clear that the effects of stiffness on
performance are complex, following nonlinear patterns. Some studies
have identified conditions in which peak efficiency decreased or
increased only modestly (2-30%) (Cleaver et al., 2014; Iverson et al.,
2019; Katz and Weihs, 1978; Vincent et al., 2020). Even those
reporting large performance enhancements indicate that these
improvements are highly dependent on model configuration,
actuation parameters and performance metrics. Notably, thrust and
efficiency are rarely maximized simultaneously, irrespective of model
type (Katz and Weihs, 1978; Lucas et al., 2015; Rosic et al., 2017;
Shelton et al., 2014). This suggests that fishes would benefit from
being able to tune stiffness depending on swimming needs —
maximizing thrust delivery during an acceleration or turn versus
maximizing efficiency for traversal of long distances.

The relationship between non-uniform stiffness and performance
has become a growing topic of interest. Many animal propulsors
have a flexible tip that experiences substantial bending starting
between 50 and 75% of the propulsor’s span (for wings) or chord
(for fish-like bodies) (Lucas et al., 2014). In fact, this pattern is
also shown in Aleyev’s data, where most fish species are the
most flexible in the caudal two segments, or 60—-80% of body

Motion

spanwise bending panel models.
(A) Chordwise and (B) spanwise bending.
(C) Comparable region of the caudal fin.
(D) Caudal fin demonstrating simultaneous
chordwise and spanwise bending. Note that
TE the fin actively cups into the flow along the
spanwise axis, where the passive foil in B is
bending in the opposite direction, with the tip
lagging behind the rest of the model. ¢, chord;
DE, dorsal edge; LE, leading edge; s, span;
TE, trailing edge; VE, ventral edge.

Spanwise
bending

Motion
>

length (Fig. 3). Using simple physical models with non-uniform
chordwise stiffness (stiffer anterior, less stiff posterior), several
investigators have demonstrated that this pattern of stiffness
enhances propulsive thrust or efficiency over that produced during
uniform bending (Han et al., 2022; Kancharala and Philen, 2016;
Leroy-Calatayud et al., 2022; Lucas et al., 2015; Luo et al., 2020;
Vincent et al., 2020). These findings support the hypothesis that this
stiffness pattern is mechanically advantageous and has arisen
through natural selection, but a more controlled comparative study
would be required to fully evaluate this claim for fishes.

Mechanisms by which flexible models enhance performance
Modeling studies identify three major mechanisms through which
flexibility modifies swimming performance: flow control, wake
formation, and mechanical resonance. The first mechanism is
through control of flow along the flexible structure. The bending of
a flexible structure may align the body more favorably in the flow
such that forces produced along its surface have a larger thrust and
smaller lateral component, increasing efficiency (e.g. Iverson et al.,
2019; Kancharala and Philen, 2014, 2016; Katz and Weihs, 1978;
Lucas etal., 2020, 2015; Ramananarivo et al., 2011; Tangorra et al.,
2010). This effect only works in a narrow range: too much bending
will lead to separation at the peaks of the bending waveform (Quinn
et al., 2015; Ramananarivo et al., 2011).

The second mechanism is through formation of the wake.
Chiefly, an appropriate degree of flexibility aids in directing flow off
the trailing edge into the wake in a way that maximizes the
momentum of the time-averaged, downstream-oriented jet, resulting
in greater thrust and efficiency (Cleaver et al., 2014; Huera-Huarte
and Gharib, 2017; Leroy-Calatayud et al., 2022). Such flexibility
also reduces parasitic drag by minimizing or delaying the formation
of vortices around the tips or trailing edge (Iverson et al., 2019;
Vincent et al., 2020).

The final mechanism is through resonance, a physical
phenomenon where an amplitude is magnified by moving a
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structure at specific frequency. Flexible structures can experience
structural resonance, where the oscillation frequency matches the
structure’s natural frequency and causes the structure to experience
heightened deformation (Dewey et al., 2013; Han et al., 2022;
Moored et al., 2012, 2014; Paraz et al., 2014; Quinn et al., 2014,
2015; Tytell et al., 2016). This increases the amplitude of trailing-
edge oscillation and classical analytical models link increased
trailing-edge amplitude to increased thrust production (Blake, 1983;
Katz and Weihs, 1978; Lighthill, 1975; Yates, 1983). The resonant
frequency inherent to the structure may not be the same as the
resonant frequency underwater, as damping effects of the water resist
the curvature of the body and fins (McMillen and Holmes, 2006;
Ramananarivo et al., 2011) and added mass effects mean that a body
in a fluid must accelerate not only its own mass but also the mass of
some of the fluid around it (reviewed in Smits, 2019). Both rigid and
flexible structures oscillating in a fluid environment can also
experience wake resonance, where the oscillation frequency
promotes the efficient transfer of downstream momentum into the
structure’s wake, enhancing thrust and efficiency (Moored et al.,
2012, 2014; Smits, 2019; Triantafyllou et al., 1993). Optimal thrust
and efficiency are achieved when structural and wake resonance
frequencies align (Moored et al., 2014).

Related to the last two mechanisms, it is not currently clear
whether efficiently producing a wake causes efficient propulsion, or
whether an efficient wake is simply a by-product of efficient
propulsion (Arbie et al., 2016; Eloy, 2012; Mackowski and
Williamson, 2015). Accordingly, neither kinematics nor wake
structures alone are good predictors of performance (Floryan et al.,
2020; Luo et al., 2020; Rosic et al., 2017).

Models have been very successful in advancing our understanding
of how dramatically flexibility can impact performance and of the
underlying mechanics, but we caution that, while it is likely that
fishes use some or all of these mechanisms, no model is a 1:1
representation of a fish, and some findings from modeling studies
may be misleading or irrelevant to fish locomotion. We note three
major limitations to consider during modeling investigations.

First, chordwise bending models are generally considered to
mimic the posterior, thrust-producing portion of a carangiform
swimmer’s body (e.g. Lighthill, 1975; Lucas et al., 2015; Shelton
et al., 2014) (Fig. 5C). So, findings about a panel’s leading edge
may not be informative for fish locomotion, since the model’s
leading edge represents somewhere in the middle of a fish’s body.
For instance, moving these panels in actuation regimes that
eliminate the leading-edge vortex has been shown to maximize
efficiency (Kancharala and Philen, 2016; Lucas et al., 2015; Quinn
et al., 2015). But the middle of the body is not a leading edge and
cannot experience a leading-edge vortex, so the applicability of
these findings for fishes is not clear.

Second, these models, by design, exclude the anterior body. But a
carangiform swimmer’s anterior body produces approximately one-
third of the body’s thrust during steady swimming, so these forces
are not captured by such models (Lucas et al., 2020).

Finally, and along the same line, anterior body structures may
impact the flow encountered by posterior body structures. For
instance, flows from the median fins or shed at the peduncle interact
with those generated at the caudal fin and impact propulsive forces
and efficiency, making true caudal performance difficult to predict
based on a rectangular panel or hydrofoil model (Borazjani and
Daghooghi, 2013; Brooks and Green, 2019; Mignano et al., 2019;
Tytell et al., 2008).

Further advancing our understanding of fish flexibility and its
impacts on locomotion will clearly require more complex model

designs, and building up to the complexity of a fish body in a
stepwise approach may be wise. The construction of simple
composites has become increasingly accessible through devices
like multi-material 3D printers or, more simply, embedding stiffer
materials in silicone casts. In the past few years, several fish-like
robotic platforms have been developed, which have been helpful for
our understanding of body—fin flow interactions (Brooks and Green,
2019; Mignano et al., 2019) and solving design challenges such as
producing a smooth, fish-like kinematic waveform (White et al.,
2021). Thus far, these platforms have not focused on flexibility.
Finally, physical models incorporating active stiffness changes or
passive stiffness that changes with movement (e.g. Long et al.,
2006) will be critical for fully understanding fish locomotion.
Designing these more complicated models represents an ongoing
challenge requiring collaboration between biologists and engineers.

Future directions

Above, we have shown that body mechanics vary substantially
across the bodies of fish and among fish species. Because these
mechanical properties are not readily visible, we refer to them as a
hidden axis of diversity. Moreover, fish can modulate their stiffness
— to the extent that muscle activation, not passive body properties,
could be the primary determinant of effective body stiffness.
Referring to the literature on passive physical models of swimming
fish, we suggest that this diversity has functional consequences for
swimming performance. However, we know very little about how
body mechanics contribute to swimming performance.

To start to answer these questions, we need more data collected in
comparable ways. In Table 1, we have attempted to convert data
from numerous different studies with different methods into
comparable units. In future studies, it is crucial that investigators
include detail on: (1) the cross-section of the body or tissue,
including width and height, or the second moment of area, or both;
(2) the distance between clamps, used to estimate curvature; (3) the
size of the whole specimen; and (4) the location on the body or
tissue being tested. For bending studies, we suggest that
investigators report the average flexural stiffness E/ based on the
slope of the torque—curvature relationship (e.g. Fig. 4E,F), along
with £ and L.

To achieve a deeper understanding of these effects, it is
imperative to investigate the role of stiffness by integrating studies
on live fishes, physical models and numerical models. Further
integrating these fields would create rich opportunities to test
hypotheses about the effects of stiffness on swimming. As is clear
from this review, almost every question about active and passive
stiffness needs more research. So, we pose six critical directions
focusing on issues that have proved to be among the most
technically challenging yet hold great explanatory promise.

First, what are the functional consequences of differences in
passive body mechanics among individual fishes and across
species? Are there any? This question may be addressed by
comparing mechanical and kinematic variation across individuals of
a species. For example, in Long’s (1998) study, individual eels
differed in their passive mechanical properties by about 40% and in
Tytell’s (2004) study, eels swam with body wavelengths that
differed by about 30%. Since wavelength is related to curvature, it is
also related to stiffness. We suggest that these individual differences
in swimming kinematics may correlate with individual differences
in body mechanics, and this relationship may indicate differences in
functional optimizations across individuals.

Second, how are patterns of passive and active mechanical
properties distributed across the phylogeny of fishes? How does this
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hidden axis of variation correlate with functional or ecological
diversity of fishes? A phylogenetic and systematic analysis of
kinematics, body mechanics, and muscle activity is needed, one that
expands beyond species typically used in fish biomechanics.

Third, do fishes take advantage of mechanical resonance? If
so, in which structures? Near-rectangular, non-uniform stiffness
models have performance peaks at structural and wake resonance
frequencies, suggesting that resonance can be functionally
meaningful in structures made up of multiple materials of different
properties. But animal propulsors may operate at frequencies well
below those of structural resonance, and bending waveforms in
passive models have substantial contributions from higher-order
harmonics along the anterior body (Ramananarivo et al., 2011; Root
et al., 1999; Rosic et al., 2017), although these complex waveforms
may be suppressed by live fishes through active stiffening.
Alternatively, analytical models indicate that internal damping by
the body’s materials and external damping by the fluid are critical in
forming fish-like kinematics (McMillen and Holmes, 2006;
Ramananarivo et al., 2011; Tytell et al., 2010).

Fourth, to what extent and under what conditions do fishes tune
their flexibility? Tuning would enable fish to appropriately alter and
regionalize body mechanics to achieve high performance in a variety
of circumstances. Experimental studies hint that fishes are capable of
sensing environmental conditions and responding with altered
muscle activation and kinematic patterns rapidly enough to
meaningfully affect performance (Lutek and Standen, 2021; Tytell
and Lauder, 2002; Westneat et al., 1998). Physical and computational
models that incorporate empirical measurements of body stiffness
(e.g. Long et al., 2006), in conjunction with live animal studies using
tools such as electromyography or the recent force calculation
techniques developed by Lucas, Dabiri and colleagues (Dabiri et al.,
2014; Lucas et al., 2017, 2020), may be able to resolve this question.

Fifth, how do the 3D conformation changes of the flexible body
and caudal fin affect swimming capabilities? For instance, the
caudal fin takes complex shapes as it actively cups into the direction
of motion — a form of spanwise bending resisting deflection
(Flammang and Lauder, 2009; Tytell, 2006). Models of spanwise
bending of wing-like structures indicate that this bending controls
propulsor performance through stabilizing or destabilizing the
leading-edge vortex, depending on whether the tip of the model lags
or leads the base, respectively (see Fig. 5A, in which the trailing
edge lags, and Fig. 5D, where caudal cupping causes the dorsal and
ventral edges to lead). Transitioning between a lagging and a
leading conformation appears to modulate thrust delivery between a
lower-magnitude, continuous production mode and a transient very
high magnitude mode, respectively (Esposito et al., 2012;
Heathcote et al., 2008; Jia et al., 2021; Wong and Rival, 2017).
Intriguingly, Esposito et al.’s (2012) robotic fin model achieved its
maximum thrust with a combination of a cupping (a leading
spanwise bend) conformation and non-uniform (tapered) fin ray
stiffness along the chordwise axis. Determining how the whole
spectrum of 3D conformations taken by the body (e.g. during
torsion) (Donatelli et al., 2017) and caudal fin will require models
that can simultaneously bend along both axes while actively
modulating stiffness.

Finally, how do the 3D conformation changes of the median and
paired fins affect swimming capabilities? Fins are made up of stiffer
rays connected by highly deformable membranes, and the bending
of the fin may change its stiffness through coupling the rays with the
stretching of the membrane between them (Nguyen et al., 2017).
Similarly, although Puri et al. (2017) found no changes to overall fin
flexural stiffness upon surgically disrupting caudal membranes in

zebrafish, they caution that the membrane has tensile properties
during swimming that they did not quantify. So, whether the
coupling of membrane and fins is significant remains an open
question. In addition, fins may experience dramatic conformation
changes incorporating both spanwise and chordwise bending, and
the impact of these shape changes are not simply the sum of fin
models including chordwise and spanwise bending (Dong et al.,
2010; Lauder and Madden, 2007; Mittal et al., 2006; Tangorra et al.,
2010). Our understanding here is nascent; explorations of fin
function with complex models incorporating multiple bending axes,
elastic fin membranes and active control of individual flexible fin
rays will be a fruitful direction for research.
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