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Introduction

Code for this talk:

Remember you can open the page source and copy things to
math.dartmouth.edu/~ddeford/sage_cell to make modifications and
run variations. (links are clickable)

1 math.dartmouth.edu/~ddeford/war

2 math.dartmouth.edu/~ddeford/cube_dist

3 math.dartmouth.edu/~ddeford/pisimple

4 math.dartmouth.edu/~ddeford/mcmc1

5 math.dartmouth.edu/~ddeford/mcmc2

6 math.dartmouth.edu/~ddeford/mcmc3

7 math.dartmouth.edu/~ddeford/mcmc4

8 math.dartmouth.edu/~ddeford/mcmc5
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Intro to MCMC

Motivating Problems: Why Randomness?

Warmup Card Problems

1 In a shuffled deck, what is the probability that the top card is red and
a queen?

2 In a shuffled deck, what is the probability that the top card is red or a
queen?

3 In a shuffled deck, what is the probability that at least one of the top
two cards is an ace?

4 In a shuffled deck, what is the probability that exactly one of the top
two cards is an ace?

5 In a shuffled deck, what is the probability that at most one of the
top two cards is an ace?

6 In a shuffled deck, what is the probability that a 5 card hand contains
at least one card of each suit?

7 In a shuffled deck, what is the probability that a 5 card hand contains
no cards of exactly one suit?
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Motivating Problems: Why Randomness?

Game: Cooperative War

Rules:
1 Nominate a dealer in your group of 3 players

2 Deal 2 cards to each player

3 Each round begins with the dealer playing the highest value card from
their hand.

4 The round continues counterclockwise with each player playing the
highest card in their hand only if it is higher than the previously
played card. If not, skip that player and move on to the next.

5 The round ends once each player has had an opportunity to play a
card.

6 You (collectively) win if all players have played all of their cards at the
end of the second round.
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Motivating Problems: Why Randomness?

Cooperative War Results?

Question

What is the probability that you win, given a randomly shuffled deck?

Answer

Try it out!
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Motivating Problems: Why Randomness?

Geometric Probability

Question

What is the expected distance between two random points on [0, 1]?

Answer ∫ 1

0

∫ 1

0

|x− y|dxdy =
1

3

Question

What is the expected distance between two random points on [0, 1]n?

Answer ∫ 1

0

· · ·
∫ 1

0

√√√√ n∑
j=1

(xj − yj)2dx1 · · · dxndy1 · · · dyn = : (
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Motivating Problems: Why Randomness?

Numerical Integration

Question

What is the area “under” the curve?∫ 1

0

∫ √1−x2

0

1dxdy
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Monte Carlo Methods

Properties of Monte Carlo Methods

• Draw (independent) samples from a random distribution

• Compute some measure for each draw

• Repeat lots and lots of times

• Average/aggregate the derived data
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Historical Overview

Moderately Ancient

• Buffon’s Needle Experiment

• Lord Kelvin (out of a hat)

• Everyone...
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Historical Overview

Ulam
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Markov Chain Methods

What is a Markov chain?

Definition (Markov Chain)

A sequence of random variables X1, X2, . . . , is called a Markov Chain if

P(Xn = xn : X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = xn : Xn−1 = xn−1).

Examples

• Snakes & Ladders

• Text generation

• Walks on graphs (PageRank)

• Walks on (families of) graphs (markovchain)
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Markov Chain Methods

Markov Formalism

Given a finite state space X = x1, x2, . . . , xn we can specify a Markov
chain over X with transition probabilities pi,j = P(Xm = i : Xm−1 = j)
and associated transition matrix P = [pi,j ].
Desirable adjectives:

• Irreducible: A chain is irreducible if each state is (eventually)
reachable from every other state.

• Aperiodic: A chain is aperiodic if for each state, the GCD of the
lengths of the loops, starting and ending at that state is equal to 1.

• Steady State Distribution: A distribution π is said to be a steady
state of the chain if π = πP .
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Markov Chain Methods

Key Theorem

If the chain is irreducible and periodic then limm→∞ Pm = 1π for a
unique π. Even better, if y1, y2, . . . , ym are samples from π then,

lim
m→∞

1

m

m∑
i=1

f(yi) = E[f ]

The key step of MCMC is to create an irreducible, aperiodic Markov chain
whose steady state distribution π is the distribution we are trying to
sample from.
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Markov Chain Methods

What is MCMC?

In our Monte Carlo methods we just required that we sample from our
space uniformly but this isn’t always easy to do. MCMC gives us a way to
sample from a desired pre–defined distribution by forming a related Markov
chain (or walk) over our state space, with transition probabilities
determined by a multiple of the distribution that we are trying to sample
from.
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Markov Chain Methods

Proportional to a distribution!?!

A common way this arises is when we have a score function or a ranking
on our state space and want to draw proportionally to these scores. Given
a score s : X → R we want to sample from X with probabilities

P(Xi) =
s(Xi)∑

j Sj

When |X| is enormous, we don’t want to/can’t compute the denominator
directly. Also, uniform sampling over–prioritizes low score spaces. This is
also an advantage to local methods.
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Markov Chain Methods

Simplifications

• Discrete probability distribution/state space

• Score function distributions

• Symmetric proposal distributions

• ...
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MCMC on Graphs

Terminology

Score: A function s : X → R≥0 that determines our target distribution.

Proposal Distribution: A Markov chain Q over X with the property
that Q(xj : xi) = Q(xi : xj).

Metric: Another function f : X → R that is our quantity of interest for
the distribution.
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MCMC on Graphs

Metropolis Procedure

Given that we have a given score function, proposal distribution, metric,
and initial graph g0 we generate new graphs gn by:

1 Generating ĝ according to the proposal distribution Q(ĝ : gi).

2 Compute the acceptance probability: α = min

(
1,
s(ĝ)

s(gi)

)
3 Pick a number β uniformly on [0, 1]

4 Set

gi+1 =

{
ĝ if β < α

gi otherwise/
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MCMC on Graphs

Example:

Score: s(G) is the number of edges within each color

Proposal Distribution: Uniform on partitions with two colors, where
each color forms a connected subgraph and the maximum imbalance
between the colors is 2 nodes.

Metric: f(G) is the number of edges between two nodes of different
colors
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MCMC on Graphs

Example: Initial graph
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MCMC on Graphs

Example: Proposed ĝ

Old: 7 edges between yellow nodes and 3 edges between green nodes.
New: 4 edges between yellow nodes and 5 edges between green nodes.
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MCMC on Graphs

Example: α and β

α = min

(
1,
s(ĝ)

s(g0)

)
= min

(
1,

9

10

)
=

9

10

β = very random = .31415

Success!!
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MCMC on Graphs

Example: Metric of interest

Old: There are 8 edges between the colors. New: There are 6 edges
between the colors.
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MCMC on Graphs

Scores

• Compactness

• Legal Constraints

• Network measures

• ....
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MCMC on Graphs

Proposal Distributions

• Boundary edge flips

• Uniform

• Node flips

• ...
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MCMC on Graphs

Metrics

• Compactness

• Legal Constraints

• Network measures

• ....
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