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From Rebecca Solnit’s Hope in the dark

(apropos of nothing in particular)

To hope is to give yourself to the future - and that commitment
to the future is what makes the present inhabitable.



Traditional Districting Principles

1. Equal Population

2. Compactness

3. Contiguity

4. Respect for county/city boundaries

5. Respect for communities of interest

6. Voting Rights Act compliance



Traditional Districting Principles

1. Equal Population

7. ???

. . .we shall retain just #1, and see how that interacts with
other desirable criteria.



Optimal Transport

“Optimal transport” is a field of mathematics & an array of
tools increasingly used throughout engineering and science.

It’s concerned with maps that preserve volume and/or ways of
“matching” two distributions together

and this “transport”/“matching” is optimal in some sense.



Optimal Transport

Goes back to the 19th century. Two names that will come up
today:

1. Gaspard Monge (19th century, French physicist and
mathematician)

2. Leonidas Kantorovich (20th century, only Soviet Nobel
prize in economics!)

Optimal transport is partly a subfield of linear programming
and optimization, partly a subfielf of Partial Differential
Equations.



Optimal Transport

The field has blossomed since the early 90’s and has become a
fairly developed field whose methods are used in:

image processing, pattern recognition, fluid mechanics, weather
modeling, geometric optics, probability, statistical inference,
differential geometry, economics. . .



The Monge Problem
Setup

Two sets of points on the plane, X (squares) and Y (circles).

We are given the transportation cost from xi to yj , denoted

c(xi, yj)



The Monge Problem
Setup

Problem

Find a bijective map T : X → Y minimizing

N∑
i=1

c(x, T (x))

(Total transportation cost of T )
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The Monge Problem

As X and Y are finite, there are finitely many choices, so at
least one of them achieves the smallest value

However, this is a hard optimization problem when X and Y
are sufficiently large.
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The Kantorovich Problem
Setup

A variation
We are now given “mass densities” f and g, representing

fi = population at xi

gj = capacity at yj

Their total masses are equal

N∑
i=1

fi =
M∑
j=1

gj



The Kantorovich Problem
Setup

Instead of looking for T : X → Y we broaden our options by
allowing ourselves to split the mass leaving each xi
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The Kantorovich Problem
Setup

This splitting we encode by a matrix π, interpreted as

πij = population at xi assigned to yj

fi =

M∑
j=1

πij , gj =

N∑
i=1

πij

Such a π is called a transportation plan between f and g.



The Kantorovich Problem
Setup

Then: among all plans π, find one minimizing the otal cost

N∑
i=1

M∑
j=1

c(xi, yj)πij

This is known as the Kantorovich problem.

This is a linear optimization problem in π: the set of
admissible plans forms a convex set in RNM , and the objective
functional is a linear function of π.



The Kantorovich Problem

In summary:
Find π which achieves the minimum value of

N∑
i=1

M∑
j=1

cijπij

while satisfying the constraints

fi =

M∑
j=1

πij for i = 1, . . . , N,

gj =
N∑
i=1

πij for j = 1, . . . ,M,

πij ≥ 0, for all i, j.



The Monge-Kantorovich Problem
Monge versus Kantorovich

Monge:

• Highly nonlinear variational/optimization problem. How
do we find a minimizer?

• Solutions are “nice”: you do not split a house in two.

Kantorovich:

• Amounts to a linear program! (easy to implement)

• But solutions may be “multi-valued” (mass-splitting!).

• Under extra assumptions, Kantorovich = Monge.



The Wasserstein distance

For probability distributions µ and ν, their Wasserstein dist. is

W2(µ, ν) :=

(
min
π

∫
X×Y

|x− y|2π(x, y)dxdy

) 1
2

This is a widely studied metric space (it behaves a lot like an
infinite dimensional manifold)

A special subset
The set EM of empirical distributions made out of M points

EM = {ν | ν =
1

M

M∑
j=1

δyj | y1, . . . , yM ∈ Y }



OT: continuous source and discrete target

We look for a map in some region R

T : R ⊂ R2 → {y1, . . . , yM} = Y.

Minimizing ∫
R2

c(x, T (x))µ(x) dx

So the population distribution µ is a mass density function



OT: continuous source and discrete target

Theorem (cf. Brennier circa 1990)

There are numbers α1, . . . , αM such that the function

u(x) = min
1≤j≤M

{c(x, yj) + αj}

gives the optimal transport map, via

T (x) = yk ⇔ u(x) = c(x, yk) + αk

The sets {Dj} given by Dj = T−1(yj) provide a partition of the
population distribution.

Geomtrically, what does this theorem say about the nature of
the minimizers?



Discrete OT

So, we have seen that the pre-images T−1(yk) are given by the
intersection of sets of the form

{x | −c(x, yj) + c(x, yk) ≤ αj − αk}

This is just as with convex polygons being the intersection of a
number of half-spaces!

What happens when both source and target are discrete?



Discrete OT
Example: Cartesian Grid and Square Cost

“Everything is true and trivial in the Cartesian grid!”
– @iamcardib

(or @justinmsolomon, I don’t remember rn)

Let us take c(xi, yj) = |xi − yj |2, where the population and the
y′s are supported in Z2.
(Admittedly, here Z2 hardly plays any role)
We have the sets

{x ∈ Z2 | −c(x, yj) + c(x, yk) ≤ αj − αk}

But expanding the squares, we get that

{x | x · (yj − yk) ≤ λ}

for some λ depending on αj , αk and |yj |, |yk|.
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Discrete OT
Geometry of districts

More generally, observe that

u(x) ≤ c(x, yk) + αk ∀ k.
= c(x, yk) + αk if x ∈ T−1(yk).

Therefore

T−1(yk) := {u(x) ≥ c(x, yk) + αk}.

Such a set is called a c-section (no, really!). They are the
analogue of convex sets in the geometry induced by the cost c.



Optimal transport and partitioning

Problem:
Fix µ and K among all ν ∈ EK , minimize the Wasserstein dist.

W2(µ, ν)

This is a special instance of what is now known as “the
Wasserstein barycenter problem”.

In the math literature, this was first studied by Agueh and
Carlier (2013). See Solomon’s 2018 survey on numerical OT for
an overall discussion of its uses in statistics, computer vision,
ML, and more.



Optimal transport and partitioning

One can use OT (and linear programming in general) to provide
an optimality criterium for partitions, and thus also for
computer-assisted redistricting.

There is, for instance, this paper from 1965!



Optimal transport and partitioning

Data:
• Cost function c(xi, yj) between pairs of vertices.
• Population distribution f is given.

(Total population is P )
• Number of districts K .



Optimal transport and partitioning
Partition Plans

A partition plan π for f is one satisfying the following
constraints:

First, the usual mass balance with the population

M∑
j=1

πij = fi for i = 1, . . . , N,

πij ≥ 0, for all i, j.



Optimal transport and partitioning
Partition Plans

Second, there are indices j1, . . . , jK such that

N∑
i=1

πij = P/K if j is not among {j1, . . . , jK},

N∑
i=1

πij = 0 if j is not among {j1, . . . , jK}.

Now the problem is to find {yj1 , . . . , yjK} leading to the
smallest optimal transport cost from µ



Optimal transport and partitioning
Partition Plans

Note:
One may think of the points yj1 , . . . , yjK as virtual voting
centers, or one may make them correspond to real ones, as may
be convenient.

The point is that as they are not given a priori, the locations
yj1 , . . . , yjK are part of the unknowns.

(this is just like the Wasserstein barycente problem, except the
cost is not quadratic)



Optimal transport and partitioning
Contrast this with: Voronoi diagrams

Consider a region Ω and points {x1, . . . , xN}.

Image credit: Wikipedia

These points yield a “partition” of Ω into N regions, known as
its Voronoi diagram, its cells being defined by

Dk = {x ∈ Ω | |x− xk| ≤ |x− xj | j = 1, . . . , N}



Optimal transport and partitioning

A related approach: Balanced Power Diagrams, as in
Cohen-Addad, Klein, and Young (2018).

They turn census data into weighted point clouds in the plane,
and compute a balanced centroidal power diagram.

The setting of the problem in R2 leads to partitions given by
convex polygons.



Optimal transport and partitioning

From Cohen-Addad, Klein, and Young (2018)
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From Cohen-Addad, Klein, and Young (2018)



Optimal transport and partitioning
Strong geometry dependence on the cost function

Important: The resulting polygonal shapes are a consequence
of our selection of a cost function cij ,

c(x, y) = |x− y|2

Different cost functions, specially ones that incorporate specific
policy principles, could yield law-complaint maps, while
providing mathematical and rhetorical justification for them.



Optimal transport and partitioning
Strong geometry dependence on the cost function

The variation in map shape is best illustrated by Voronoi
diagrams made using the Euclidean distance versus the
“Manhattan” (cartesian grid) distance



Some numerical experiments

Let us do the following: fix a state (PA), which has 18 seats.

• Take say, the graph of Census Tracts. The pairwise
matrix of distances between the centroids, and µ the state’s
population distribution.

• Sample graph locations (uniformly*): {y1, . . . , y18}
• Compute the optimal transport map from µ to the

uniform distribution given by the yj .



Some numerical experiments

Ok, so what did we just see?

Although it did not happen with all plans, plenty of them had a
couple of disconnected districts and districts with holes.
Specially in the plans with 18 districts.

In the semi-discrete setting, there is large class of costs for
which one can prove the above does NOT happen. The
condition involves a tensor invariant proposed by Ma,
Trudinger, and Wang in 2005.



The Ma-Trudinger-Wang condition

• A condition on the cost function for OT problems in the
continuum setting.
• Boils down to a series of inequalities involving 4th order
derivatives of c(x, y).
• It is a a new type of curvature condition, with some relation
to the Ricci curvature when c(x, y) = d(x, y)2 (the squared
geodesic distance).
• It is a necessary condition for differentiability of a related
PDE –the Monge-Ampère equation, and in turn, for the
continuity/differentiability of optimal transport maps.



The Ma-Trudinger-Wang condition

Then, the MTW condition is: if V⊥η then

So this expression is difficult to parse but it is related to a
geometric property of “c-hyperplanes” (a family of surfaces
arising from the cost)



The Ma-Trudinger-Wang condition

Question:

Is there a discrete analogue of the MTW condition for a cost
function cij in a graph (V,E)? Can one show under such a
condition that the resulting districting plans are

. . . path connected?

. . . “convex”?

In other words: when are c-sections for a given cost
path-connected? how compact are these sets?



The Ma-Trudinger-Wang condition?

A good first step towards answering this question is the
following.

Theorem (. . .maybe?, hopefully?)

For a graph (V,E), if c(xi, yj) is just the graph distance, then
optimizers should be path connected.



In progress

1. Update the “voting centers” to further reduce the cost (e.g.
Lloyd’s algorithm).

2. Understand the lack of connectivity and lack of simple
connectivity in some districts. Is it a side effect of the
algorithm? Or does the underlying geometry cause this?.

3. Use this method to construct optimal plans according to
the Transit Time Compactness metric.

4. Systematically produce “optimal maps” which are
gerrymandered (consider a population mixture, impose
relative size constrains district by district).

5. One potential use: computer-aided design of
majority-minority districts.



More questions / things to do

1. How good are the compactness scores for the resulting
districts? (i.e. compute lots plans for lots of states and
tally various compactness scores).

2. Are there inequalities relating optimizers for the transport
cost versus optimizers for the perimeter? (i.e. prove some
theorems).

3. It would be worth combining this with a Markov chain for
the “voting centers” which then determines the optimal
transport plans. This generates a chain in the space of
partitions. Does this chain have any interesting properties?.



Thank You!

Questions?
nguillen@math.umass.edu


