DETECTING GERRYMANDERS:

COMPACTNESS VS SAMPLING

BRIEF TOUR OF COMPACTNESS SCORES

ISOPERIMETRY

Isoperimetric Theorem: let R be a bounded open subset of the plane whose boundary is a rectifiable curve. Then

$$
4 \pi A \leq P^{2},
$$

with equality only for circles. Here area is Lebesgue measure $m(R)$ and perimeter is boundary length $\ell(\partial R)$.

Polsby-Popper score: $\operatorname{PP}(R)=4 \pi A / P^{2}$.
"Isosquarimetric" version: $\mathrm{PP}^{\prime}(R)=16 A / P^{2}$.

SKEW

> Measure short axis/long axis, W/L. For instance,
> $L=$ diameter, $W=$ longest \perp cross-section
> In every direction, bound with rectangle, and choose the one with the most extreme ratio.

INDENTEDNESS

- Area of the region divided by the area of a comparison figure
- Convex hull
> Bounding rectangle
- Circumscribing circle

A COMBINATION SCORE

> We might notice: skew and convex hull scores have complementary blind spots.
> Convex hull gives a perfect score to arbitrarily long, skinny rectangles.

- Skew gives a perfect score to a square that is carved out like a swiss cheese.
- So maybe we can propose a combination Box Score that sums the two.

> xy-Hull=. 5
> $x y$-Skew $=1$
- Box=1.5
> xy -Hull $=1$
> xy-Skew=. 038
> Box=1.038

- $\mathrm{xy}-\mathrm{Hull}=1$
> xy-Skew=1
> Box=2

DISPERSION

> How spread-out or sprawling is your district?

- Average distance between points in a domain or moment of inertia.

$$
\mathbb{E}\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right]=2 \mathbb{E}\left[\left(d\left(x, x_{0}\right)^{2}\right]\right.
$$

> Discrete/finite version: Average distance between voters, or from voters to district center
> Could use travel time instead of distance: How long does it take you to go yell at your Rep in a town-hall?
> For all of these, important to normalize for size.

$$
\begin{aligned}
& \text { Avg } d(x, y) \text { over round disk } \approx .453 d \approx .511 \sqrt{ } A \\
& \text { Avg } d(x, y) \text { over square } \approx .369 d \approx .522 \sqrt{ } A
\end{aligned}
$$

Classical fact: disk has best coefficient of $\sqrt{ } A$.

COMPACTNESS: BUT WHY?

WHAT IS COMPACTNESS GOOD FOR?

> How do compactness considerations help promote fair districting?
> Two main arguments:

1. Any shape constraints generally limit the power of the map-drawer
2. Extreme gerrymandering requires eccentrically shaped districts

TEST ON A SIMPLE EXAMPLE

How should we cut this up?

10×10 grid, 40% orange voters

if we make 10 districts, orange "should" win 4 seats, right?

B

2 safe orange seats +1 toss-up

A

0 safe orange seats +3 toss-up

B

4 safe orange seats

6 safe orange seats

This very successful gerrymander is brought to you by "packing" and "cracking"

2 safe orange seats +1 toss-up

total P	$16 \mathrm{~A} / \mathrm{P}^{2}$	Box score	CHull	AMOI
140	0.816	1.4	1	24.16

0 safe orange seats +3 toss-up

B

total P	$16 \mathrm{~A} / \mathrm{P}^{2}$	Box score	CHull	AMOI
140	0.816	1.4	1	24.16

4 safe orange seats

total P	$16 \mathrm{~A} / \mathrm{P}^{2}$	Box score	CHull	AMOI
144	0.778	1.423	0.921	22.66

6 safe orange seats

total P	$16 \mathrm{~A} / \mathrm{P}^{2}$	Box score	CHull	AMOI
186	0.579	1.189	0.921	34.84

SO, DOES COMPACTNESS DETECT GERRYMANDERING?

ON THIS SIMPLE EXAMPLE IT KIND OF WORKS

| | total P | $\mathbf{1 6 A} / \mathbf{P}^{2}$ | xy skew | xy hull | Box score | CHull | AMOI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A/B | 140 | 0.816 | 0.4 | 1 | 1.4 | 1 | 24.166 |
| C | 144 | 0.778 | 0.573 | 0.85 | 1.423 | 0.921 | 22.666 |
| D | 186 | 0.579 | 0.453 | 0.736 | 1.189 | 0.826 | 34.846 |

The six-seats outcome (D) is picked out as unreasonable on the basis of shape, but this method gives no guidance about the 2.5 seats (A) vs 1.5 seats (B) vs 4 seats (C).

DISCRETE COMPACTNESS?

USING THE GRAPH

> Many possible interventions in compactness. One simple idea (current project with Bridget Tenner): DISCRETIZE your geometry
> Use discrete/coarse definitions of area and perimeter, counting area of a district as the total number of nodes and perimeter as the number of boundary nodes

$$
\begin{array}{cc}
A=n^{2}, P=4 n-4 & A=3 n^{2}-3 n+1, P=6 n-6 \\
A / P^{2} \rightarrow 1 / 16 & A / P^{2} \rightarrow 1 / 12
\end{array}
$$

- Behaves well under refinement if the pattern is stable

DISCRETIZED POLSBY-POPPER

> D-Tenner: compare discrete A / P^{2} to classical

- PP is subject to coastline paradox, empty
 space effects, even sensitive to map projection-dPP corrects
- Relative rankings seem quite stable as you change the units

- Sees urban density
> BUT... seems to allow crazy-looking districts if they cut through low-population areas

NOW THROW OUT
 COMPACTNESS AND USE AN ENSEMBLE INSTEAD

HOW EXTREME IS YOUR GERRYMANDER?

I can tell you first-hand that the extreme gerrymander was harder to find. Let's model that with a computer.

We set up python runs that start with a districting plan and make pair swaps, checking contiguity of the proposal. (So population equality and contiguity are maintained, but compactness is ignored.)

This run began with 10 vertical columns (3 Orange seats). Orange had 40% of votes, but got $\geq 40 \%$ of seats in only 0.8% of the 14,564 maps produced by taking 100,000 random steps

Start with plan B (1.5 orange seats)

Start with plan D (6 orange seats)

