DETECTING GERRYMANDERS:

COMPACTNESS VS SAMPLING

BRIEF TOUR OF COMPACTNESS SCORES

ISOPERIMETRY

Isoperimetric Theorem: let *R* be a bounded open subset of the plane whose boundary is a rectifiable curve. Then

 $4\pi A \leq P^2$,

with equality only for circles. Here area is Lebesgue measure m(R) and perimeter is boundary length $\ell(\partial R)$.

Polsby-Popper score: $PP(R) = 4\pi A/P^2$.

"Isosquarimetric" version: $PP'(R) = 16A/P^2$.

SKEW

► Measure short axis/long axis, *W*/*L*. For instance,

- ► L=diameter, W=longest \perp cross-section
- In every direction, bound with rectangle, and choose the one with the most extreme ratio.

INDENTEDNESS

► Area of the region divided by the area of a comparison figure

- ► Convex hull
- Bounding rectangle
- Circumscribing circle

A COMBINATION SCORE

- We might notice: skew and convex hull scores have complementary blind spots.
- Convex hull gives a perfect score to arbitrarily long, skinny rectangles.
- Skew gives a perfect score to a square that is carved out like a swiss cheese.
- So maybe we can propose a combination Box Score that sums the two.

 \succ xy-Hull=1

- ► xy-Skew=.038
- ► Box=1.038

- ► xy-Hull=1
- ► xy-Skew=1

 \rightarrow Box=2

DISPERSION

- ► How spread-out or *sprawling* is your district?
- > Average distance between points in a domain or **moment of inertia**.

 $\mathbb{E}[(x_1-x_2)^2 + (y_1-y_2)^2] = 2 \mathbb{E}[(d(x,x_0)^2)]$

- Discrete/finite version: Average distance between voters, or from voters to district center
- Could use travel time instead of distance: How long does it take you to go yell at your Rep in a town-hall?
- ► For all of these, important to normalize for size.

Avg d(x,y) over round disk $\approx .453 \ d \approx .511 \ \sqrt{A}$ Avg d(x,y) over square $\approx .369 \ d \approx .522 \ \sqrt{A}$

Classical fact: disk has best coefficient of \sqrt{A} .

COMPACTNESS: BUT WHY?

WHAT IS COMPACTNESS GOOD FOR?

- How do compactness considerations help promote fair districting?
- ► Two main arguments:
 - 1. **Any** shape constraints generally limit the power of the map-drawer
 - 2. Extreme gerrymandering requires eccentrically shaped districts

TEST ON A SIMPLE EXAMPLE

How should we cut this up?

10×10 grid, 40% orange voters

if we make 10 districts, orange "should" win 4 seats, right?

2 safe orange seats + 1 toss-up

0 safe orange seats + 3 toss-up

4 safe orange seats

6 safe orange seats

This very successful gerrymander is brought to you by **"packing"** and **"cracking"**

2 safe orange seats + 1 toss-up

A

0 safe orange seats + 3 toss-up

total P	16A/P ²	Box score	CHull	AMOI
140	0.816	1.4	1	24.16

B

4 safe orange seats

total P	16A/P ²	Box score	CHull	AMOI
144	0.778	1.423	0.921	22.66

6 safe orange seats

D

SO, DOES COMPACTNESS DETECT GERRYMANDERING?

ON THIS SIMPLE EXAMPLE IT KIND OF WORKS

	total P	16A/P ²	xy skew	xy hull	Box score	CHull	AMOI
A/B	140	0.816	0.4	1	1.4	1	24.166
С	144	0.778	0.573	0.85	1.423	0.921	22.666
D	186	0.579	0.453	0.736	1.189	0.826	34.846

The six-seats outcome (D) is picked out as unreasonable on the basis of shape, but this method gives no guidance about the 2.5 seats (A) vs 1.5 seats (B) vs 4 seats (C).

DISCRETE COMPACTNESS?

USING THE GRAPH

- Many possible interventions in compactness. One simple idea (current project with Bridget Tenner): DISCRETIZE your geometry
- Use discrete/coarse definitions of area and perimeter, counting area of a district as the total number of nodes and perimeter as the number of boundary nodes

$$A = n^2$$
, $P = 4n - 4$
 $A/P^2 \rightarrow 1/16$
 $A = 3n^2 - 3n + 1$, $P = 6n - 6$
 $A/P^2 \rightarrow 1/12$

Behaves well under refinement if the pattern is stable

DISCRETIZED POLSBY-POPPER

- > D-Tenner: compare discrete A/P^2 to classical
- PP is subject to coastline paradox, empty space effects, even sensitive to map projection—dPP corrects
- Relative rankings seem quite stable as you change the units
- ► Sees urban density
- BUT... seems to allow crazy-looking districts if they cut through low-population areas

NOW THROW OUT COMPACTNESS AND USE AN ENSEMBLE INSTEAD

HOW EXTREME IS YOUR GERRYMANDER?

I can tell you first-hand that the extreme gerrymander was harder to find. Let's model that with a computer.

orange seats

We set up python runs that start with a districting plan and make *pair swaps*, checking contiguity of the proposal.

(So population equality and contiguity are maintained, but compactness is ignored.)

This run began with 10 vertical columns (3 Orange seats). Orange had 40% of votes, but got \geq 40% of seats in only 0.8% of the 14,564 maps produced by taking 100,000 random steps

Start with plan D (6 orange seats)

