Tutorial on

Optimal Transport
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Potential VRDI Motivation

Reasonable notion of compactness:
Travel time to voting booth

Connection to Voronoi and power diagrams

Natural measure of geometric similarity



What is Optimal Transport?

A geometric way
to compare
probability measures.
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Plan For Today

1. Introduction to optimal transport
* 1D examples
* Many formulas

2. Applications

3. Discrete/discretized transport
* Entropic regularization
* Eulerian transport

* Semidiscrete transport

4. Extensions & frontiers




Useful References

Computational Optimal Transport

Snapshots of modern mathematics Neg /2017
from Oberwolfach

Computational Optimal Transport

Justin Solomon

Optimal transport is the mathematical discipline of
matching supply to demand while minimizing ship-
ping costs. This matching problem becomes extremely
challenging as the quantity of supply and demand
points increases; modern applications must cope with
thousands or millions of these at a time. Here, we
introduce the computational optimal transport prob-

Topics in Optimal
Transportation

Cédric Villani

Progress in Nonlinear Differential Equations
800 Their Appications.
&7

imal
Transport
for Applied
Mathematicians

W Birkhauser

Optimal Transport on Discrete Domains
Justin Solomon

ABSTRACT. Inspired by the matching of supply to demand in logistical prob-
lems, the optimal transport (or Monge-Kantorovich) problem involves the
matching of probability distributions defined over a geometric domai
as a surface or manifold. In its most obvious discret:

1 such

ation, optimal transport
becomes a large-scale linear program, which typically is infeasible to solve ef:

ficiently on triangle meshes, graphs, point clouds, and other domains encoun-
tered in graphic
optimal transport, howeve:
problems, solvable in a fr
numerical optimal transport that leverage understanding of both rete and
smooth aspects of the problem. State-of-the-art techniques in discrete optimal
transport combine insight from partial differential equations (PDE) with con-
vex analysis to reformulate, discretize, and optimize transportation problems.
The end result is a set of theoretically- i s suitable for domai
with thousands or millions of vertices. Since numerical optimal transport is
relatively new discipline, special empha

and m

hine learning. Recent breakthroughs in numerical

able scalability to orders-of-magnitude larger

tion of a second. Here, we discuss

s is placed on identifying and explai
ing open problems in need of mathematical insight and additional research.

1. Introduction

Many tools from discrete differential geometry (DDG) were inspired by practi-
cal considerations in ai computer
require fine-grained understanding of geometrie structure and the relationships be-
tween different shapes—problems for which the toolbox from smooth geometry
nrovide substantial t. Indeed. a trinmnph of diserete differential eeometry

graphics and vision. Diseiplines like these
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Transport Philosophy

Understand geometry from a

“softened” probabilistic

standpoint.



Probability as Geometry

“Somewhere over here.”



Probability as Geometry

» L

“Exactly here.”



Probability as Geometry

» L

“One of these two places.”



Fuzzy Geometry

Which is closer, 1 or 2?
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Returning to the Question

Which is closer, 1 or 2?



Returning to the Question

Neither! Equidistant.



What's Wrong?

overlap
displacement



Alternative Idea

Compare in this direction

ot in this direction




Observation

Even the laziest shoveler
must do some work.

Property of the distributions themselves!




The Setup: TransportinaD

m(x,y) := Amount moved from z to y

7T(£U7 y) 2 O \V/ZC, y - R Mass is positive

Must scoop

W(LC, y) dy — /00(37) Vi € everything UP

/
/ W(xﬁ y) d.fC — pl (y) \v/y c R T;\,:i::,;,::
R



1-Wasserstein in 1D

( ming; [[r.g T(x,y)|x —y|ldxdy  Minimize total work
L st. > O Vx,y € R Nonnegative mass
Wileo 1) = Jr (%, y) dy = po(x) Vx € R Starts from py
\ Jr (x,y)dx = p1(y) Vy € R Ends at p;

L0

Source and target Transport map



When Is transport
computable?

Needed: Finite number of unknowns.



In One Dimension: Closed-Form

>» CDF+*
Wi(p,v) = /OO |ICDF (1) — CDF(v)| d¢

2

W3 (p,v) = / b (CDF~'(u) — CDF~'(v))” a¢



In One Dimension: Closed-Form




Fully-Discrete Transport

( minTE]RkOxkl Zij Tij’xm - xlj‘p
st. T>0
W, (1o, = ki
\ i Tij = ay;

Linear program: Finite number of variables
Algorithms: Simplex, interior point, auction, ...

“Empirical measures”




Semidiscrete Transport

ko
po = Zaoﬁm pi(S) == fspl(ﬂi‘) dx

Never a reason to “leapfrog” mass!

LA
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Probability Measure

p(X) =1

(SCX) 0, 1] _

ZEIE ZM

=y

«Prob(X)’ when F; disjoint,

I countable
Function from sets to probability



Measure Coupling

1 € Prob(X),v € Prob(Y)
|

H(M,y):z{vreProb(XXY): (Z(AXY) = p(A) )}

(X x B) =v(B)
A

A




Kantorovich Problem

OT(u,v;c) .= min //Xxy c(x,y)dmr(x,y)

mell(u,v)

General transport problem!



Example: Discrete Transport

X ={1,2,... .k}, Y ={1,2,... k)

“Earth Mover’s Distance”

( minTeRklxkz Zfij Tijcij
st. T >0
OT(v,w;C) = YT =vi Vie{l,... ki}
x 2iTij=w; Vi€l .. ka}.

Metric when d(x,y) satisfies the
triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 9g9—121.
Revised in:

“Ground Metric Learning”

Cuturi and Avis; JMLR 15 (2014)



p-Wasserstein Distance

)= min d(x,y)? dr(x y
WEH(M I/) XXX i i
P J(f

G odesic distance d(x,y)

a1 =N

http://www.sciencedirect.com/science/article/pii/S152407031200029X#



Kantorovich Duality

OT(My V. C) = { m;ntW {féﬁ(;(’xya)y) dﬂ(gj’ y)

Primal

:{max¢¢ fX dﬂ —I-IY I/() Dual
s.t. o(x) +¢Y(y) < (aty)foraea:EXyEY



Flow-Based W,

infp0 [0 500 D)o@, )] da dt
o

s.5. V- (p ( (a, 1)) = 2elzt)
W3 (po, p1)=+ v(x,t) - n(x) =0 Vo € 8M
p(z,0) = po(z)
L ) =g

Benamou & Brenier
“A computational fluid mechanics solution of the
Monge-Kantorovich mass transfer problem”
Numer. Math. 84 (2000), pp. 375-393




Displacement Interpolation

©0 Tip of an iceberg:
- Manifold theory of transport!




Plan For Today

1. Introduction to optimal transport
* 1D examples
* Many formulas

2. Applications

3. Discrete/discretized transport
* Entropic regularization
* Eulerian transport

* Semidiscrete transport

4. Extensions & frontiers




Wassersteinization

[wos-ur-stahyn-ahy-sey-sh u/-n]
noun.

Introduction of optimal transport
into a computational problem.

cf. least-squarification, L,ification, deep-netification, kernelization



Key Ingredients

We have tools to

Solve optimal transport problems
numerically

Differentiate transport distances in
terms of their input distributions

Bonus:
Transport cost from utovisa
convex function of u and v.




Redistricting?

Balanced power diagrams for redistricting

Vincent Cohen-Addad* Philip N. Klein' Neal E. Young?

January 6, 2018

Abstract

We explore a method for redistricting, decomposing a geographica.
districts, so that the populations of the districts are as close as pos
compact and contiguous. Each district is the intersection of a poly
area. The polygons are convex and the average number of sides pe
The polygons tend to be quite compact. With each polygon is assoc
is the centroid of the locations of the residents associated with the pd
be viewed as a heuristic for finding centers and a balanced assignmen
as to minimize the sum of squared distances of residents to centers;
said to have low dispersion.

1 Introduction

Redistricting. Redistricting, in the context of elections refers to de
into subareas such that all subareas have the same population. The st
most US states, districts are supposed to be contiguous to the exten§-
can reasonably be interpreted to mean connected.

In most states, districts are also supposed to be compact. This i
Some measures of compactness are based on boundaries; a district
are simpler rather than contorted. Some measures are based on dis
the district spreads from a central core” [17]. Idaho directs its redis
drawing districts that are oddly shaped.” Other states loosely addresd

. . .o . ]
“Arizona and Colorado focus on contorted boundaries; California,
on dispersion; and Iowa embraces both” [17].




Operations and Logistics

Demand

N\ :

Supply

Minimum-cost flow



Histograms and Descriptors

A
document 1 ‘oreets’ document 2
Obama Obama / ¢ The
o :
speaks . @ , ‘speaks’ President
to President sreets
the the
media ‘Chicago’ press
in o ‘media’ in
Illinois i " @ ‘, ’ Chicago
‘Illinois”  Press

word2vec embedding

[Kusner et al. 2015]

Word Mover’s Distance (WMD)



Distance Approximation

, o eigenfunctions 100 eigenfunctions
Proposition:




Registration and Reconstruction

[Digne et al. 2014]

Distance from point cloud to mesh



Blue Noise and Stippling

Image courtesy F. de Goes; photo by F. Durand



Statistical Estimation

{po:0 € O}

MLE := min KL(vgata|pe)
HeO

—— MKE := min WQ(Vdataapé’)

HecO [Bassetti 2006]

Minimum Kantorovich Estimator



Distributionally Robust Optimization

inf sup Eeglh(z, &)
xEXerN

[Esvahani & Kuhn 2017]




Domain Adaptation

Dataset
-
+ 4 2 ool
00 O
+H
-l_'“'::.‘.: ______________________________
o+

. ++ Class 1
@ 9 O O C(lass 2
“ +_O Samples x7}
o & O3 Samples x!

______ i

— Classifier onx}

Optimal transport

+ O Samples T, (x7)

O Samples x’i

transport map

T R

Classification on transported samples

— Classifier on T, (x)

labeled samples to new domain
classifier on transported labeled samples

[Courty et al. 2017]



Engineering Design

EPFL Computer Graphics and Geometry Laboratory; Rayform SA
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Entropic Regularization

AN A W A N A W A\

\ \ \ ’

vy=0 ~=0.0001=0.001 vy=0.01 ~=0.1

minT Zij Tijc,,;j — OéH(T) OK to drop
nonnegative

S.T. Z] sz — U; constraint!
22 Tij = Wi gy =~ S 1108 T

©]

Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)



Interpretation as Projection

ZTijCij — aH(T) =KL(T|K,) where K,, := exp(—C,)

“Iterative Bregman Projections for Regularized Transportation Problems” (Benamou et al. 2014)



Sinkhorn Algorithm

T = diag(p) K, diag(q),
where K, := exp(—c/@)
p v (Kaq)

Y Tij =i

q < W (KTp) Jos

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices".
Pacific J. Math. 21, 343348 (1967).

Alternating projection



Ingredients for Sinkhorn

Supply vector p
Demand vector q
Multiplication by K

Solomon et al. "Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains." SIGGRAPH 2015.
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Discretization

t=0 t=1/4 t=1/2 3/4 t=1

Rectangular Domain
1-

0.9-

0.8-

0.7-

n.e-

= 0.5-

Open problem:
Discretize on a triangle mesh
Preserve triangle inequality

0.4-

0.3-

0.2-
0.1-

L] , L
., Talk to me if you’re interested!
] ] ] ] ] ] ] ] ] 1 ]
o 01 02 03 04 05 06 0.7 08 08 1
¥
Transportimage from “Optimal Transport with Proximal Splitting” (Papadakis, Peyré, and Oudet) ¢ Grid from http://zone.ni.com/




Beckmann Formulation

==
\ / mingy ), CelJe|

S.t. DTJ p1 Do
f

In computer science:
Network flow problem




Continuous Analog: Beckmann

“Eulerian”

inf; [y, /()] dz

Wl(Poaﬂl){ s.t. V- J(z) = p1(z) — po(z)
J(x) -n(zx)=0Ve e OM

Solomon, Rustamov, Guibas, and Butscher.
“Earth Mover’s Distances on Discrete Surfaces.”
SIGGRAPH 2014
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Semidiscrete Transport

ko
po = Zaoﬁm pi(S) == fspl(ﬂi‘) dx

Never a reason to “leapfrog” mass!

LA




General Case: Semidiscrete

https //WWWJaS'OHdaVIES com/power-diagram/



Semidiscrete Algorithm

S |aoit | pleasy) - oidAw
ag (g

aj — / ply) dA(y)
Lagé(xi) Concave in ¢!

Simple algorithm: Gradient ascent

Ingredients: Power diagram

More complex: Newton’s method
Converges globally [Kitagawa, Mérigot, & Thibert 2016]



Application
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Lévy. “"A numerical algorithm for L2 semi-discrete optimal transport in 3D.” (2014

Points to tetrahedra



Application




Entropic regularization * Fast
* Easy to implement
* Works on mesh using
heat kernel

Eulerian optimization * Provides displacement
interpolation
* Connection to PDE

Semidiscrete * No regularization
optimization * Connection to
“classical” geometry

Many others:

Disadvantages

*Blurry
* Becomes singular as
a—0

* Hard to optimize
* Triangle mesh
formulation unclear

* Expensive
computational
geometry algorithms

Stochastic transport, dual ascent, Monge-Ampere PDE, ...
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Example: Averaging

1
Euclidean: z* := i E —xl2] == § )
uclidean: =z [a,rg min > |lx —x 2] B




Barycenter Example

Wasserstein: u* := [arg min ZWQQ (/%M)]

pEProb(R™) <=
i




Barycenters in Machine Learning

T - =y | L | A o] | - o j :
4 . —— | w ‘ F f# “but ‘?
d §- J = “ ( F 4

B ' ke ‘ “f“ 1 |

Olasdswuser8 9

“Fast Computation ofWasserstein.Barycenters” (Cuturi and Doucet)




Model Problem: Linear Assignment

miny (7T, D)
s.t. T'>0
71 =1
T'1=1

“No matched
point should
travel too far.”




Model Problem: Quadratic Matching

minT <MOT, TM1>
s.t. 120
71 =1
TT1=1

Nonconver 7aac/ﬁa tie /M;mam/

“Nearby
points stay
nearby.”




Variety of Correspondence Tasks

Inconsistent Consistent

[Solomon et al. 2016]




Gradient Flows

t =20 t =30

“Entropic Wasserstein Gradient Flows” [Peyré 2015]

Interesting possibility for preserved structure!



Matrix Fields and Vector Measures

»»»»»»

/// sA\ I}z SR B0 oooo 2oeao WP O s aesis mse s ausyoe
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~ - i . .= - ~~ P =N - sS\\/Fr- a% L 4d
== = P R S —— —— — ——— — . - [ ] [ ]
- - — — —~ —— —~— - -~ i L v 4 .g.
7 ot i ias TN ATNNE Ny g s see
// \\ ,/// A\ ///‘\\\ ..................
/ A\ /1 H\ 2VTUNN S ee coov o0 BUNSLsos oonoionbty i
t=0 i =1/8 t=1/4 t=3/8 i=1/2 i = t=3/4 i=T/8 =1
Image from

“*Quantum Optimal Transport for Tensor Field Processing”
[Peyré et al. 2017]

Open problem: Dynamical version? Curved surfaces?



Sampling Problems

Image from

“Stochastic Wasserstein Barycenters”
[Claici et al. 2018]

Open problem: Sample from barycenter?



2 FA aa
S
(B N *:

Source points

Point Cloud Learning

Other point clouds from the same
category

) a9

Image from
“"Dynamic Graph CNN for

Learning on Point Clouds”
[Wang et al. 2018]

Open problem: Many repeated
instances of transport?
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