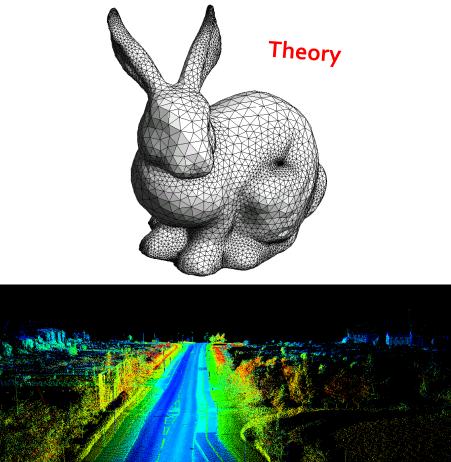


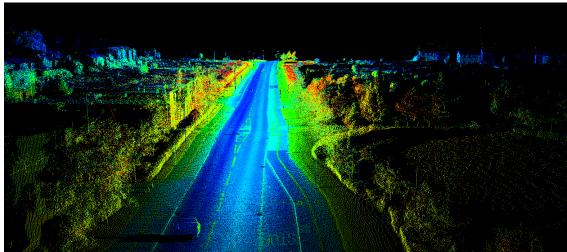
Tutorial on Optimal Transport

Justin Solomon

Motivation



Practice



Potential VRDI Motivation

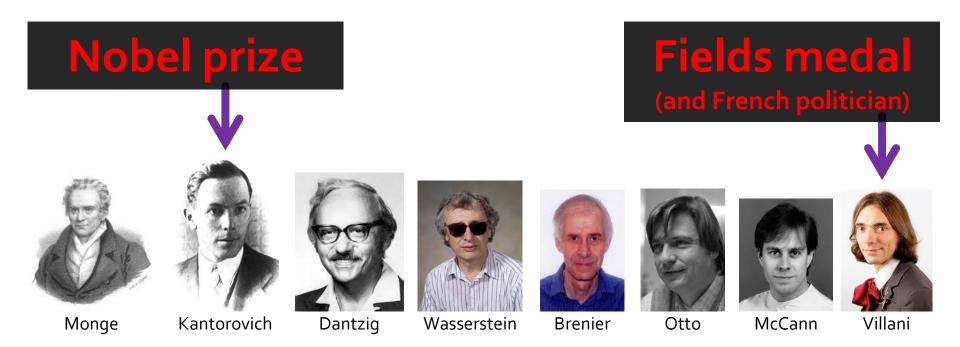
 Reasonable notion of compactness: Travel time to voting booth

Connection to Voronoi and power diagrams

Natural measure of geometric similarity

What is Optimal Transport?

A geometric way to compare probability measures.



Plan For Today

1. Introduction to optimal transport

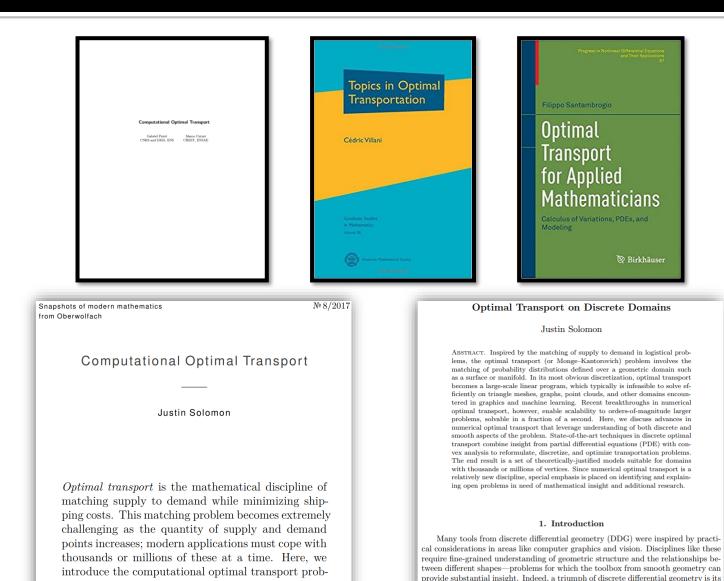
- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions & frontiers

Useful References



Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

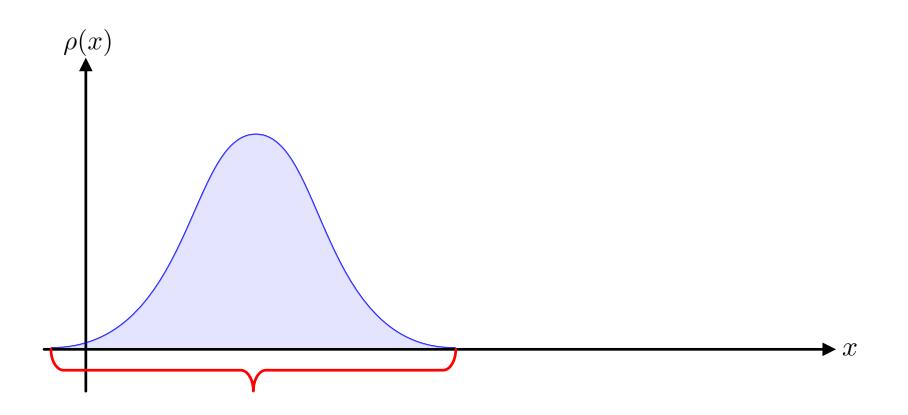
- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions & frontiers

Transport Philosophy

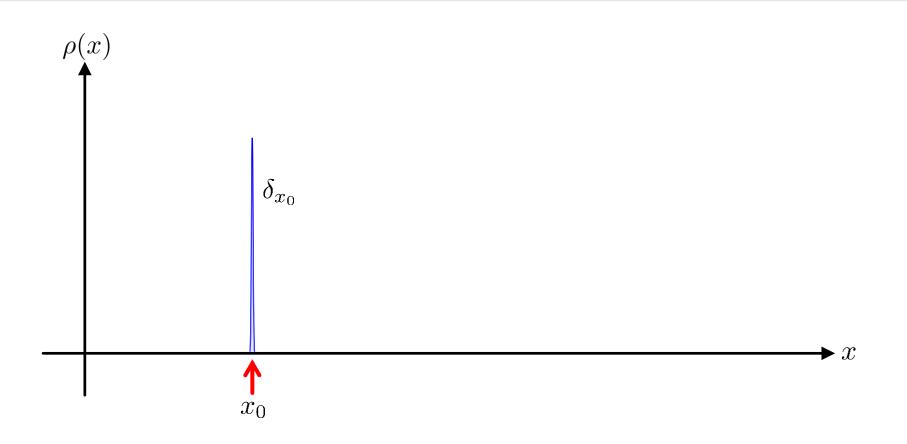
Understand geometry from a "softened" probabilistic standpoint.

Probability as Geometry



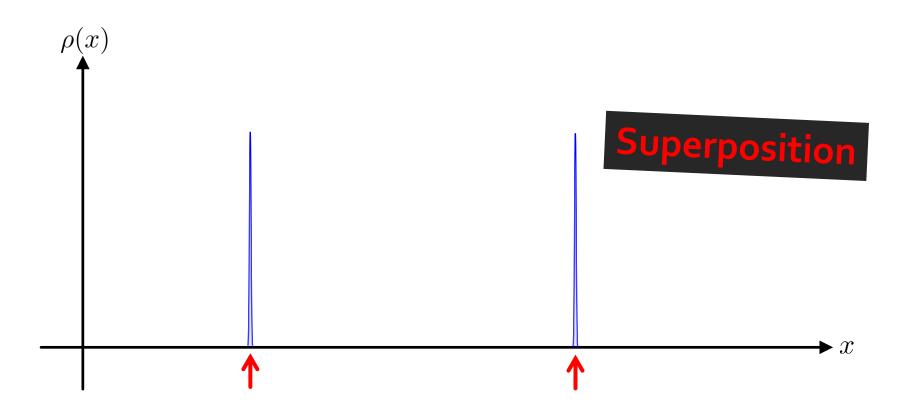
"Somewhere over here."

Probability as Geometry



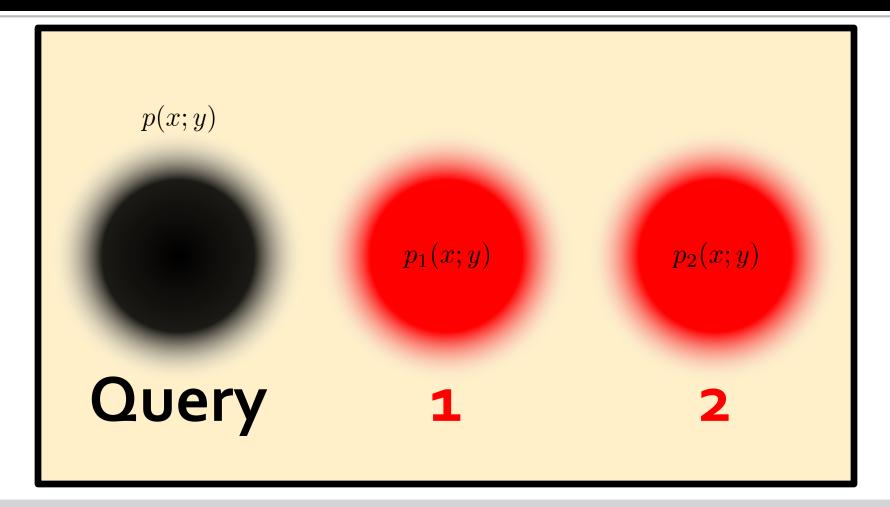
"Exactly here."

Probability as Geometry



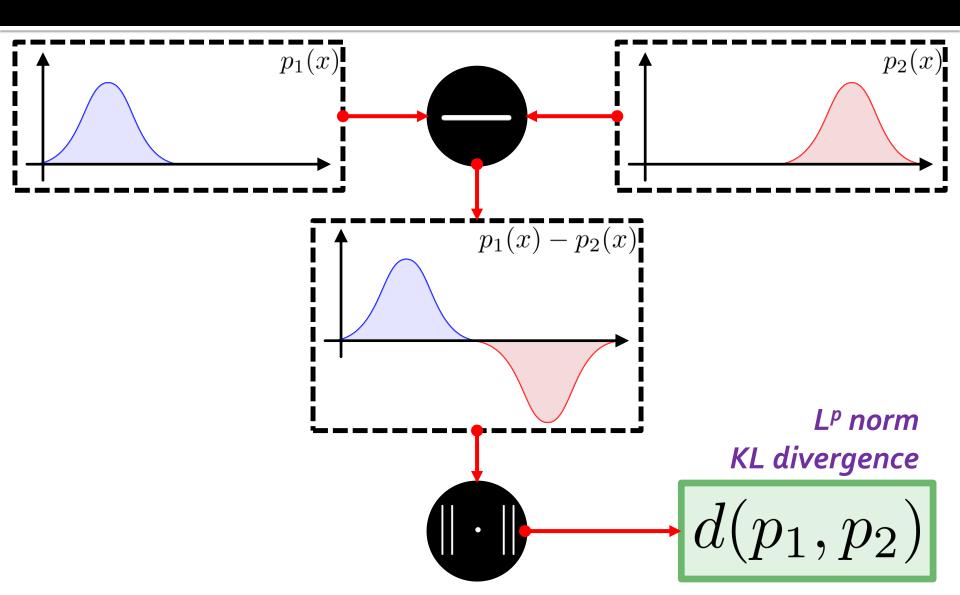
"One of these two places."

Fuzzy Geometry

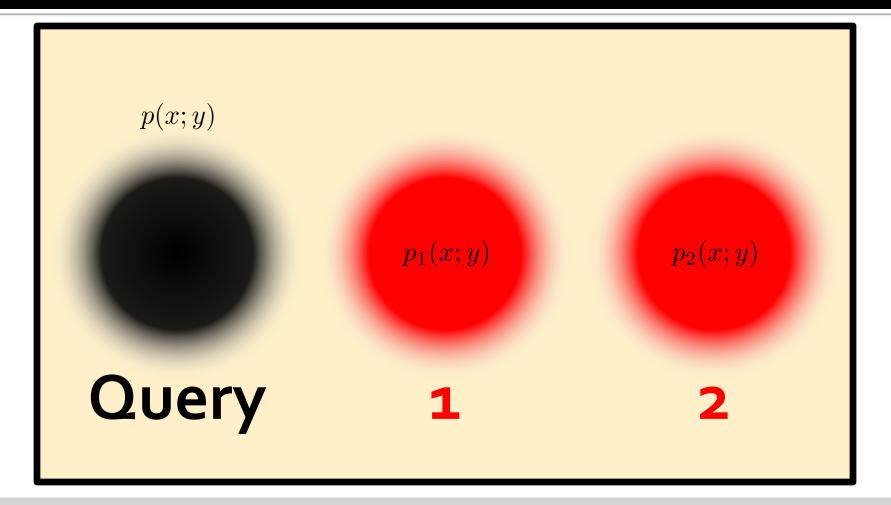


Which is closer, 1 or 2?

Typical Measurement

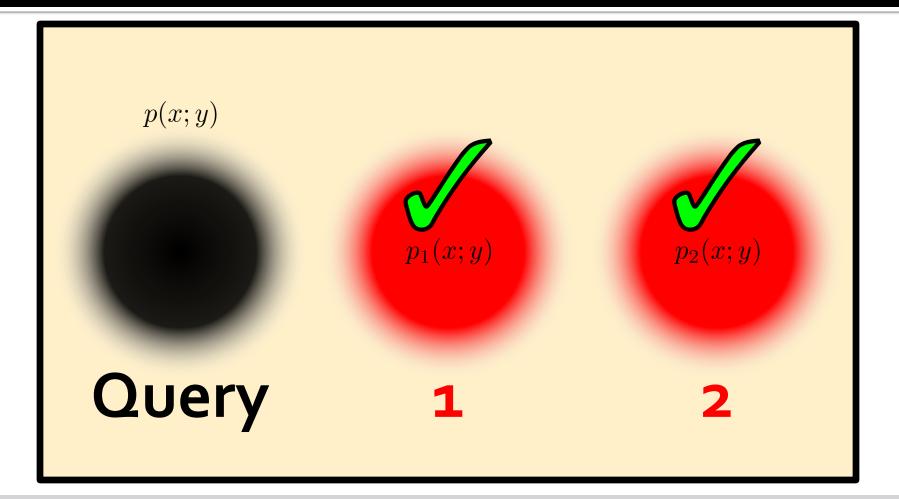


Returning to the Question



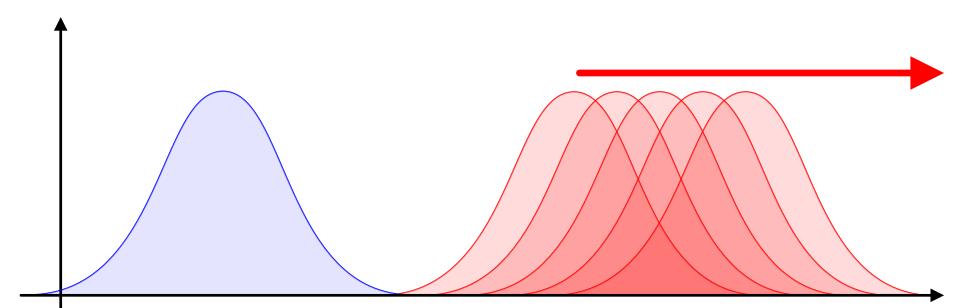
Which is closer, 1 or 2?

Returning to the Question



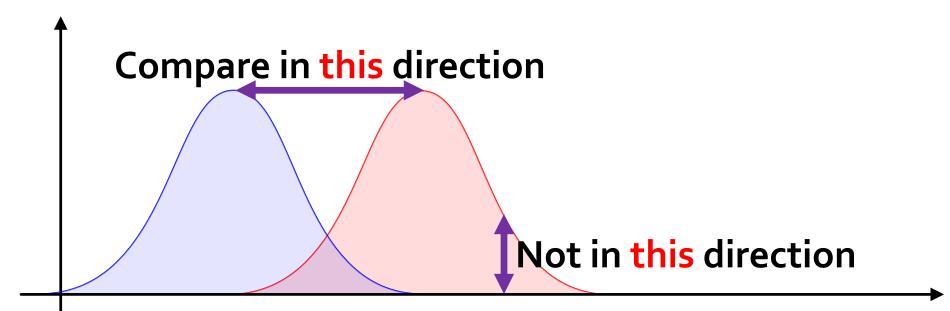
Neither! Equidistant.

What's Wrong?



Measured overlap, not displacement.

Alternative Idea



Observation

Even the laziest shoveler **must do some work.**

Property of the distributions themselves!

My house!

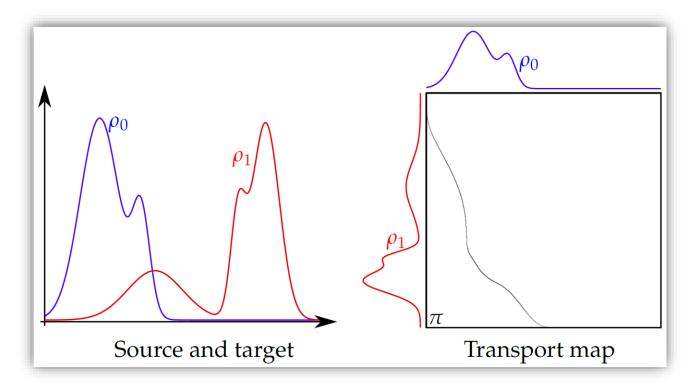
The Setup: Transport in 1D

$\pi(x,y) :=$ Amount moved from x to y

 $\pi(x, y) \ge 0 \; \forall x, y \in \mathbb{R}$ Mass is positive $\int_{\mathrm{TD}} \pi(x,y) \, dy = \rho_0(x) \; \forall x \in \mathbb{R}$ Must scoop everything up $\int_{\mathbb{R}} \pi(x, y) \, dx = \rho_1(y) \; \forall y \in \mathbb{R}$ Must cover the target

1-Wasserstein in 1D

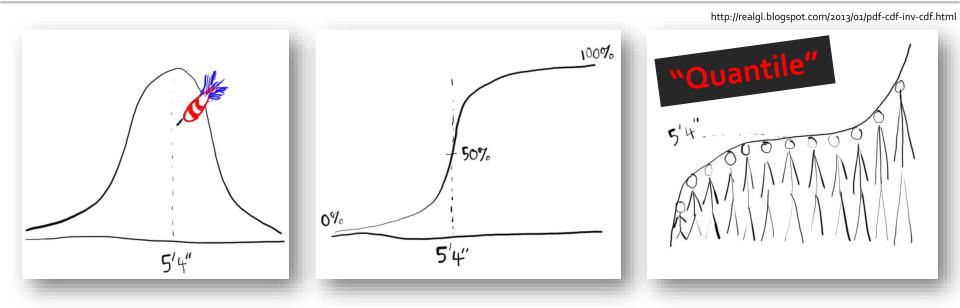
$$\mathcal{W}_{1}(\rho_{0},\rho_{1}) := \begin{cases} \min_{\pi} & \iint_{\mathbb{R}\times\mathbb{R}} \pi(x,y) | x - y | \, dx \, dy & \text{Minimize total work} \\ \text{s.t.} & \pi \ge 0 \, \forall x, y \in \mathbb{R} & \text{Nonnegative mass} \\ & \int_{\mathbb{R}} \pi(x,y) \, dy = \rho_{0}(x) \, \forall x \in \mathbb{R} & \text{Starts from } \rho_{0} \\ & & \int_{\mathbb{R}} \pi(x,y) \, dx = \rho_{1}(y) \, \forall y \in \mathbb{R} & \text{Ends at } \rho_{1} \end{cases}$$



When is transport computable?

Needed: Finite number of unknowns.

In One Dimension: Closed-Form

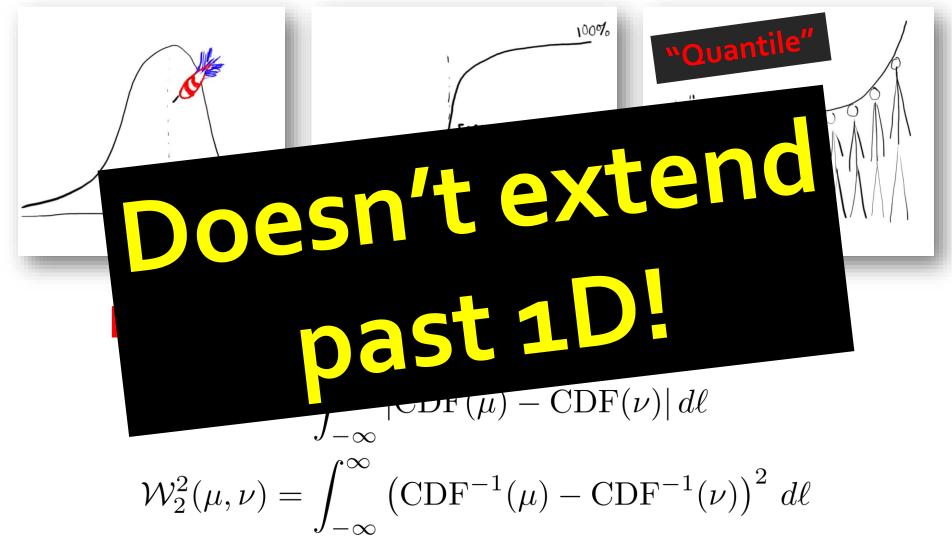


PDF **[CDF]** **CDF**⁻¹

$$\mathcal{W}_1(\mu,\nu) = \int_{-\infty}^{\infty} |\mathrm{CDF}(\mu) - \mathrm{CDF}(\nu)| \, d\ell$$
$$\mathcal{W}_2^2(\mu,\nu) = \int_{-\infty}^{\infty} \left(\mathrm{CDF}^{-1}(\mu) - \mathrm{CDF}^{-1}(\nu)\right)^2 \, d\ell$$

In One Dimension: Closed-Form

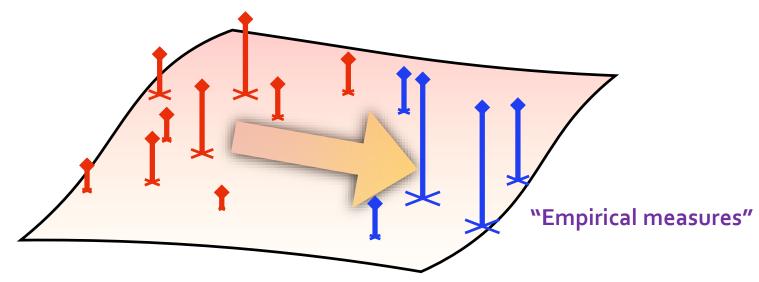
http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html



Fully-Discrete Transport

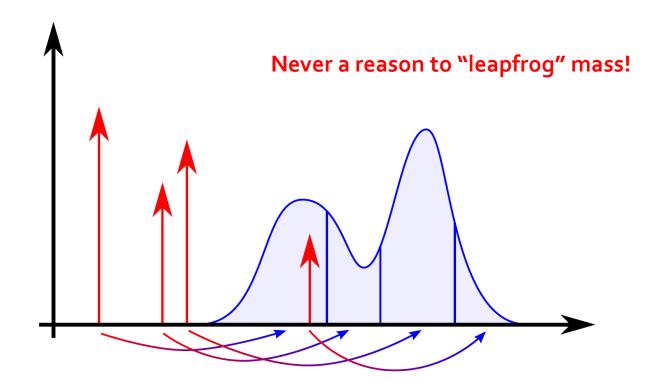
$$[\mathcal{W}_{p}(\mu_{0},\mu_{1})]^{p} = \begin{cases} \min_{T \in \mathbb{R}^{k_{0} \times k_{1}}} & \sum_{ij} T_{ij} |x_{0i} - x_{1j}|^{p} \\ \text{s.t.} & T \ge 0 \\ & \sum_{j} T_{ij} = a_{0i} \\ & \sum_{i} T_{ij} = a_{1j} \end{cases}$$

Linear program: Finite number of variables Algorithms: Simplex, interior point, auction, ...



Semidiscrete Transport

$$\mu_0 := \sum_{i=1}^{k_0} a_{0i} \delta_{x_{0i}} \qquad \qquad \mu_1(S) := \int_S \rho_1(x) \, dx$$



Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions & frontiers

Probability Measure

$$\mu(X) = 1$$

$$\mu(S \subseteq X) \in [0, 1]$$

$$\mu(\cup_{i \in I} E_i) = \sum_{i \in I} \mu(E_i)$$

" $\operatorname{Prob}(X)$ "

when E_i disjoint,

the

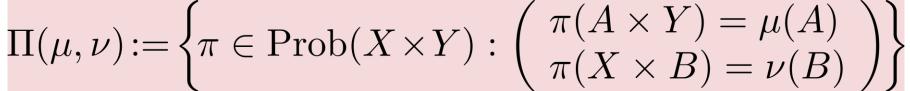
lain

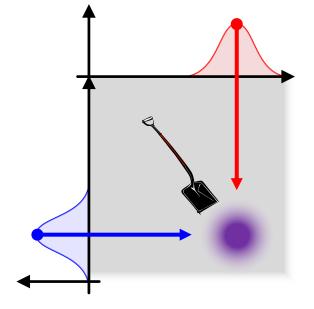
I countable

Function from sets to probability

Measure Coupling

 $\mu \in \operatorname{Prob}(X), \nu \in \operatorname{Prob}(Y)$





Analog of transportation matrix

Kantorovich Problem

$$OT(\mu,\nu;c) := \min_{\pi \in \Pi(\mu,\nu)} \iint_{X \times Y} c(x,y) \, d\pi(x,y)$$

General transport problem!

Example: Discrete Transport

$$X = \{1, 2, \dots, k_1\}, Y = \{1, 2, \dots, k_2\}$$

 $OT(v, w; C) = \begin{cases} \min_{T \in \mathbb{R}^{k_1 \times k_2}} & \sum_{ij} T_{ij} c_{ij} \\ \text{s.t.} & T \ge 0 \\ & \sum_j T_{ij} = v_i \ \forall i \in \{1, \dots, k_1\} \\ & \sum_i T_{ij} = w_j \ \forall j \in \{1, \dots, k_2\}. \end{cases}$

Metric when d(x,y) satisfies the triangle inequality.

"The Earth Mover's Distance as a Metric for Image Retrieval" Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.

> Revised in: **"Ground Metric Learning"** Cuturi and Avis; JMLR 15 (2014)

*p***-Wasserstein Distance**

$$\mathcal{W}_{p}(\mu,\nu) \equiv \min_{\pi \in \Pi(\mu,\nu)} \left(\iint_{X \times X} d(x,y)^{p} d\pi(x,y) \right)^{1/p}$$
Shortest path distance
Expectation

IIIIP

Kantorovich Duality

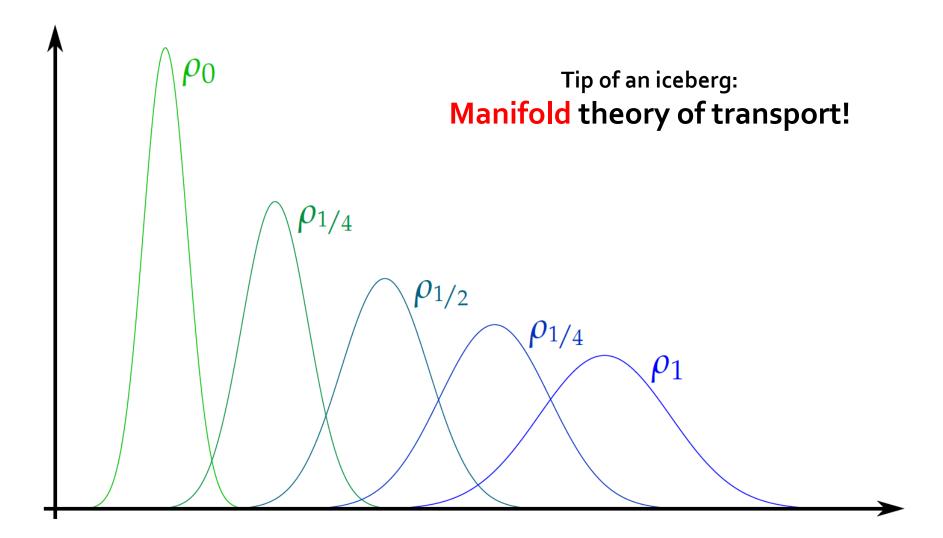
Flow-Based W₂

$$\mathcal{W}_{2}^{2}(\rho_{0},\rho_{1}) = \begin{cases} \inf_{\rho,v} \iint_{M \times [0,1]} \frac{1}{2}\rho(x,t) \|v(x,t)\|^{2} \, dx \, dt \\ \text{s.t. } \nabla \cdot (\rho(x,t)v(x,t)) = \frac{\partial \rho(x,t)}{dt} \\ v(x,t) \cdot \hat{n}(x) = 0 \, \forall x \in \partial M \\ \rho(x,0) = \rho_{0}(x) \\ \rho(x,1) = \rho_{1}(x) \end{cases}$$

Benamou & Brenier

"A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem" Numer. Math. 84 (2000), pp. 375-393

Displacement Interpolation



Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions & frontiers

Wassersteinization

[wos-ur-stahyn-ahy-sey-sh*uh*-n] noun.

Introduction of optimal transport into a computational problem.

cf. least-squarification, L_1 ification, deep-netification, kernelization

Key Ingredients

We have tools to

- Solve optimal transport problems numerically
- Differentiate transport distances in terms of their input distributions

Bonus:

Transport cost from μ to ν is a **convex** function of μ and ν .

Redistricting?

Balanced power diagrams for redistricting

Vincent Cohen-Addad^{*}

Philip N. Klein[†]

Neal E. Young[‡]

January 6, 2018

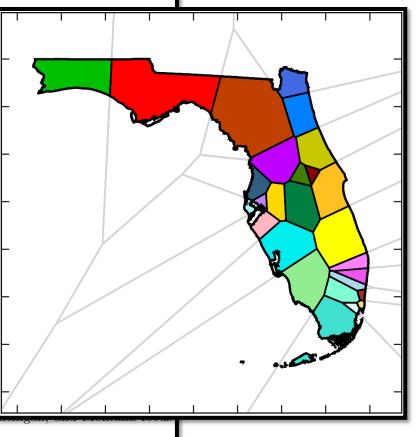
Abstract

We explore a method for *redistricting*, decomposing a geographical *districts*, so that the populations of the districts are as close as poss compact and contiguous. Each district is the intersection of a polyg area. The polygons are convex and the average number of sides per The polygons tend to be quite compact. With each polygon is associ is the centroid of the locations of the residents associated with the pc be viewed as a heuristic for finding centers and a balanced assignment as to minimize the sum of squared distances of residents to centers; said to have low dispersion.

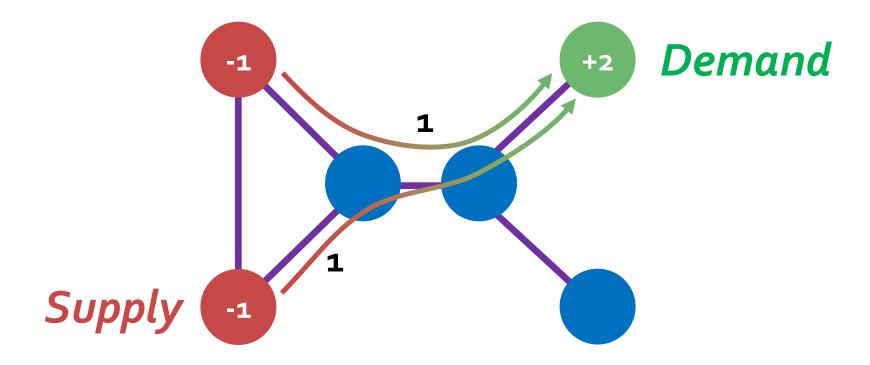
1 Introduction

Redistricting. *Redistricting*, in the context of elections refers to ded into subareas such that all subareas have the same population. The su most US states, districts are supposed to be *contiguous* to the extent can reasonably be interpreted to mean *connected*.

In most states, districts are also supposed to be *compact*. This is Some measures of compactness are based on boundaries; a district are simpler rather than contorted. Some measures are based on *disj* the district spreads from a central core" [17]. Idaho directs its redis drawing districts that are oddly shaped." Other states loosely address "Arizona and Colorado focus on contorted boundaries; California, N on dispersion; and Iowa embraces both" [17].

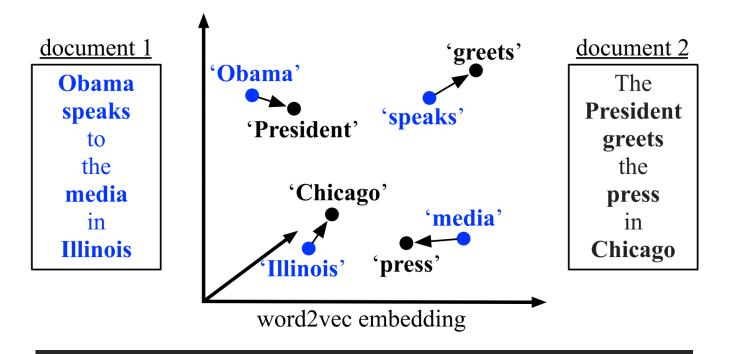


Operations and Logistics



Minimum-cost flow

Histograms and Descriptors

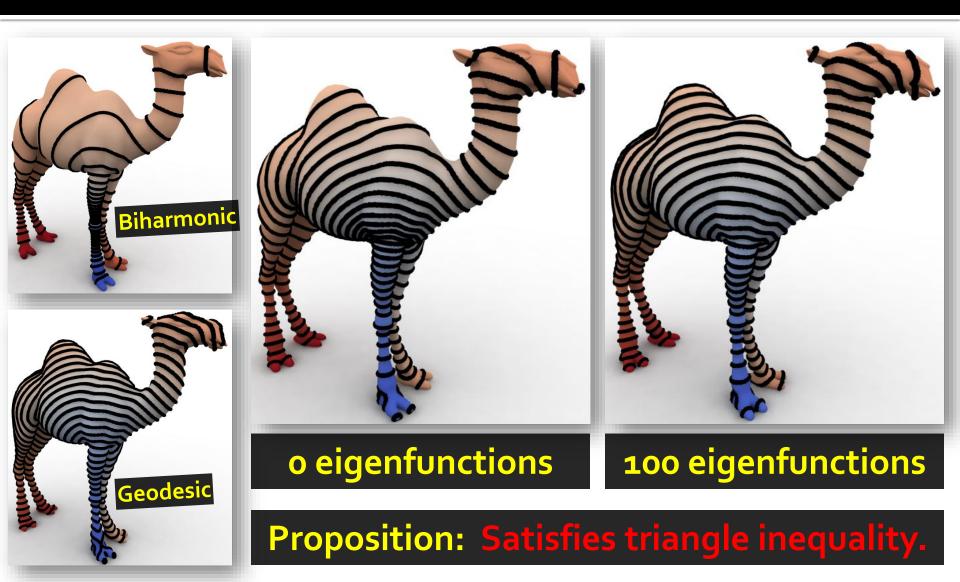


Use deep network embedding

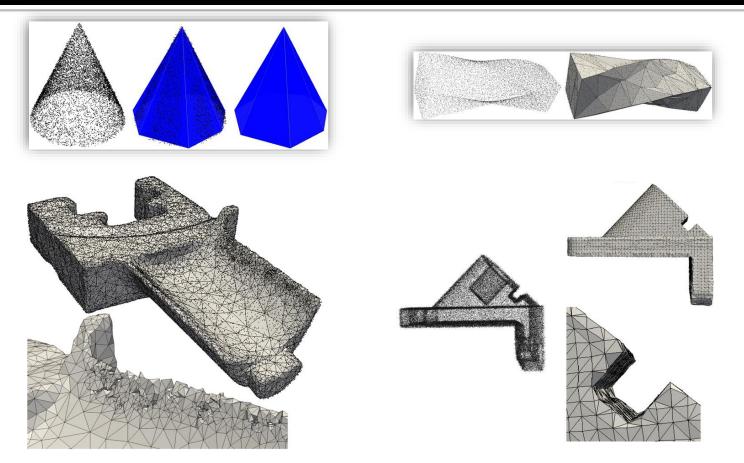
[Kusner et al. 2015]

Word Mover's Distance (WMD)

Distance Approximation



Registration and Reconstruction



[Digne et al. 2014]

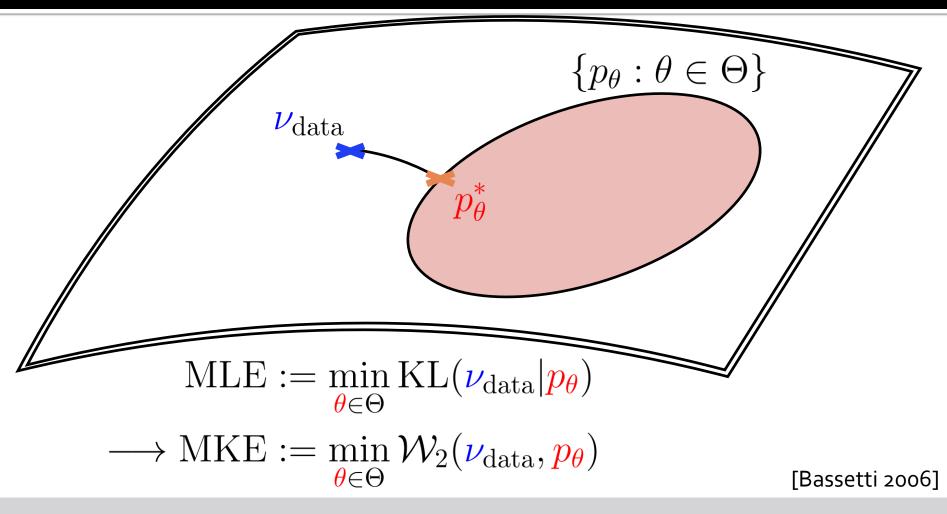
Distance from point cloud to mesh

Blue Noise and Stippling

$$\min_{x_1,\dots,x_n} \mathcal{W}_2^2\left(\mu, \frac{1}{n}\sum_i \delta_{x_i}\right)$$

Image courtesy F. de Goes; photo by F. Durand

Statistical Estimation



Minimum Kantorovich Estimator

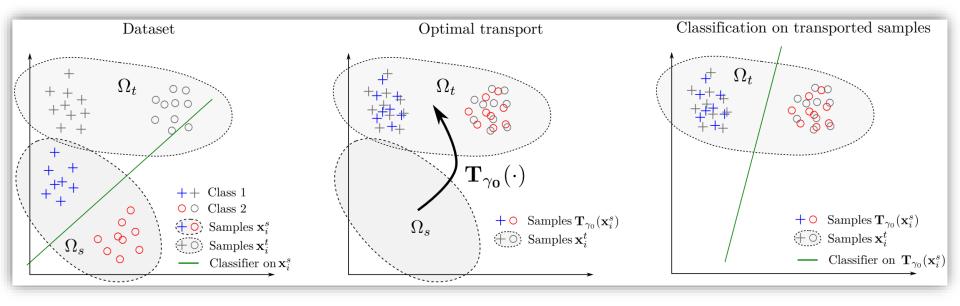
Distributionally Robust Optimization

$$\inf_{x \in \mathbb{X}} \sup_{\mathbb{Q} \in \hat{\mathcal{P}}_N} \mathbb{E}_{\xi \sim \mathbb{Q}}[h(x,\xi)]$$
Isserstein ball around pirical distribution
Loss function

6

[Esvahani & Kuhn 2017]

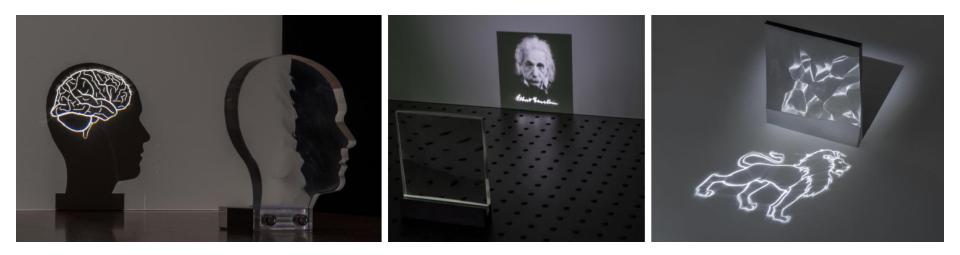
Domain Adaptation



- **1.** Estimate transport map
- 2. Transport labeled samples to new domain
- 3. Train classifier on transported labeled samples

[Courty et al. 2017]

Engineering Design



EPFL Computer Graphics and Geometry Laboratory; Rayform SA

Plan For Today

1. Introduction to optimal transport

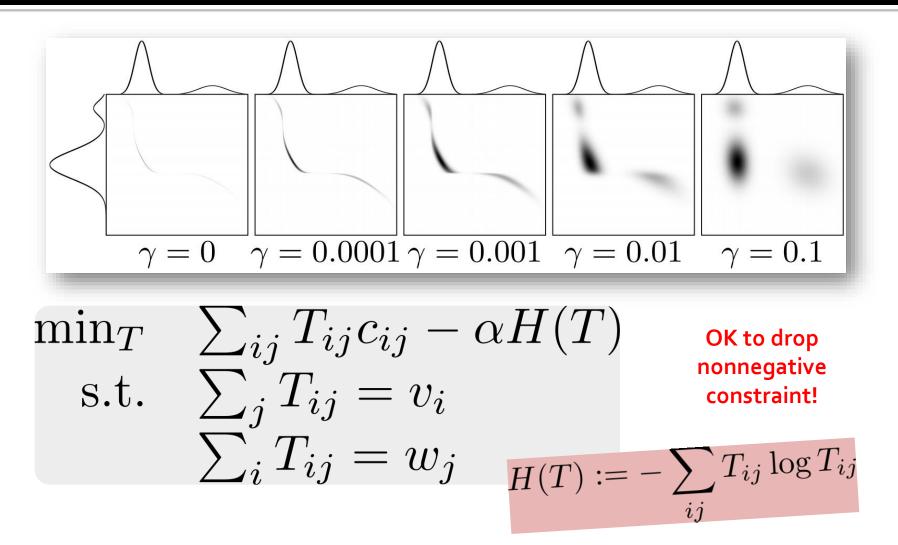
- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

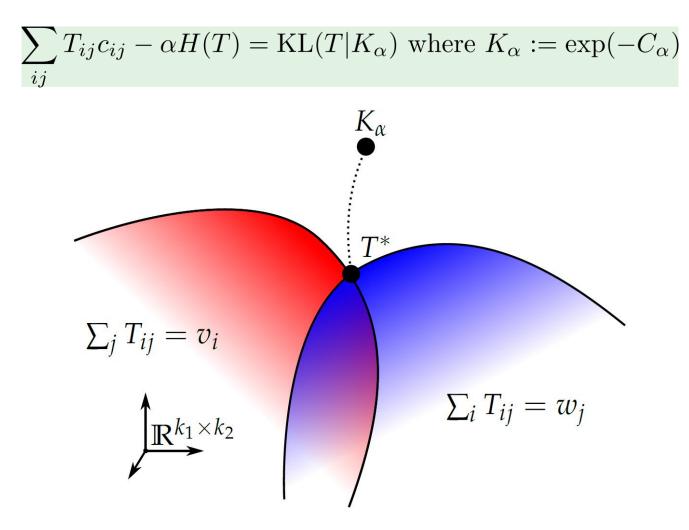
4. Extensions & frontiers

Entropic Regularization



Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport" (NIPS 2013)

Interpretation as Projection



"Iterative Bregman Projections for Regularized Transportation Problems" (Benamou et al. 2014)

Sinkhorn Algorithm

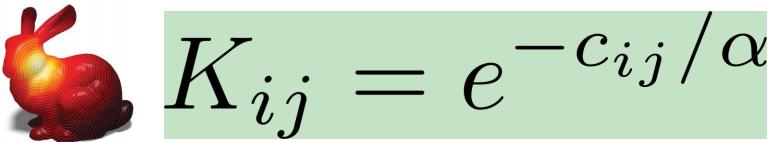
 $T = \operatorname{diag}(p) K_{\alpha} \operatorname{diag}(q),$ where $K_{\alpha} := \exp(-C/\alpha)$ $p \leftarrow v \oslash (K_{\alpha}q)$ $q \leftarrow w \oslash (K_{\alpha}^{\top}p) \stackrel{\Sigma_{j} I_{ij} = v_{i}}{\bigwedge}$ $\sum_i T_{ij} = w_j$

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". Pacific J. Math. 21, 343–348 (1967).

Alternating projection

Ingredients for Sinkhorn

Supply vector p
 Demand vector q
 Multiplication by K



Solomon et al. "Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains." SIGGRAPH 2015.

Plan For Today

1. Introduction to optimal transport

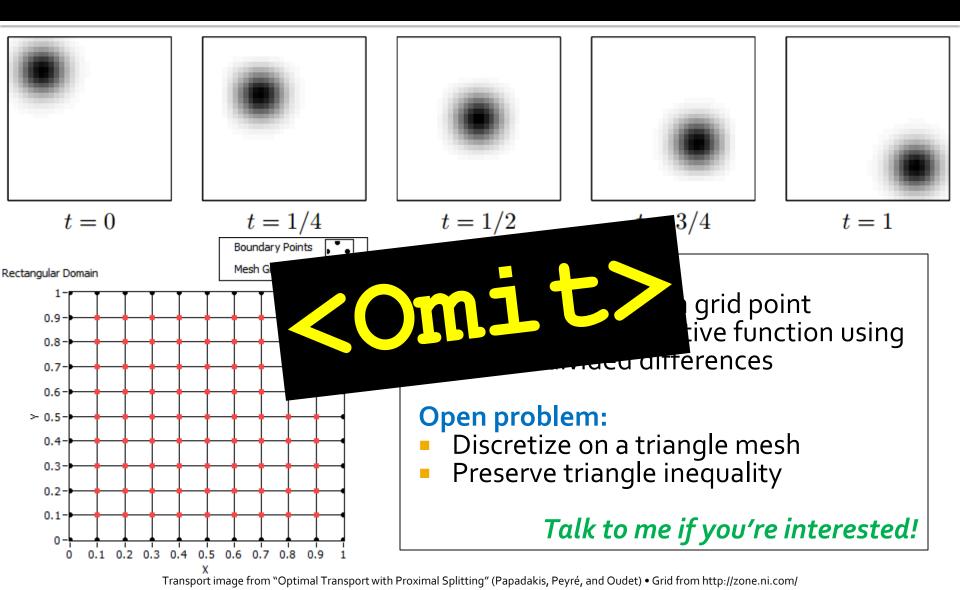
- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions & frontiers

Discretization



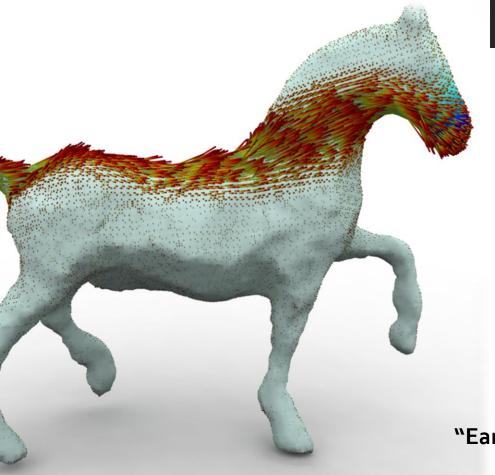
Beckmann Formulation

Better scaling for sparse graphs!

 $\begin{array}{ll} \min_{T} & \sum_{e} c_{e} |J_{e}| \\ \text{s.t.} & D^{\top} J = p_{1} - p_{0} \end{array}$

In computer science: Network flow problem

Continuous Analog: Beckmann



Probabilities *advect* along the surface

"Eulerian"

$$\mathcal{W}_1(\rho_0, \rho_1) = \begin{cases} \inf_J \int_M \|J(x)\| \, dx \\ \text{s.t. } \nabla \cdot J(x) = \rho_1(x) - \rho_0(x) \\ J(x) \cdot n(x) = 0 \, \, \forall x \in \partial M \end{cases}$$

Solomon, Rustamov, Guibas, and Butscher. "Earth Mover's Distances on Discrete Surfaces." SIGGRAPH 2014

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

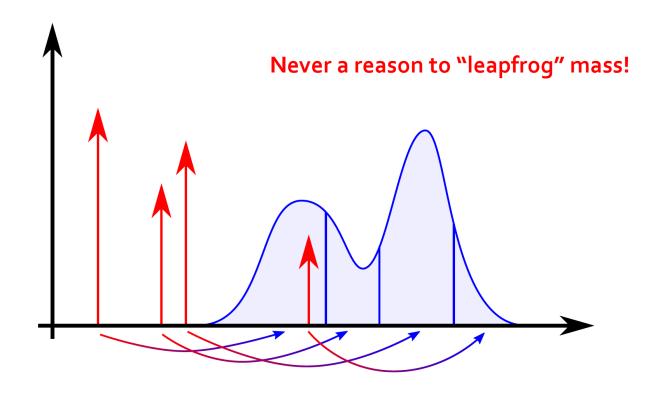
- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions & frontiers

Semidiscrete Transport

Recall:

$$\mu_0 := \sum_{i=1}^{k_0} a_{0i} \delta_{x_{0i}} \qquad \qquad \mu_1(S) := \int_S \rho_1(x) \, dx$$



General Case: Semidiscrete

$$\mu_{0} := \sum_{i=1}^{k} a_{i} \delta_{x_{i}} \qquad \nu(S) := \int_{S} \rho(x) dx$$

$$\mathcal{W}_{2}^{2}(\mu, \nu) = \sup_{\phi \in \mathbb{R}^{k}} \sum_{i} \left[a_{i} \phi_{i} + \int_{\operatorname{Lag}_{\phi}^{c}(x_{i})} \rho(y) [c(x_{i}, y) - \phi_{i}] dA(y) \right]$$

$$\operatorname{Lag}_{\phi}^{c}(x_{i}) := \{ y \in \mathbb{R}^{n} : c(x_{i}, y) - \phi_{i} \leq c(x_{j}, y) - \phi_{j} \forall j \neq i \}$$
Power diagram Laguerre cell

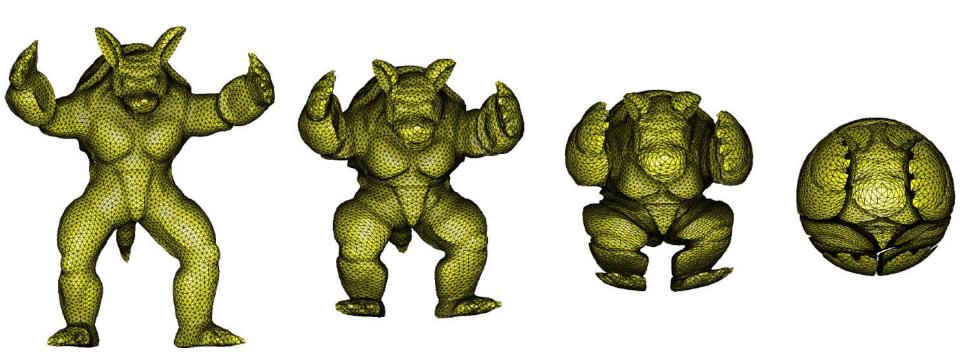
https://www.jasondavies.com/power-diagram/

Semidiscrete Algorithm

$$\begin{split} F(\phi) &:= \sum_{i} \left[a_{i}\phi_{i} + \int_{\operatorname{Lag}_{\phi}^{c}(x_{i})} \rho(y) [c(x_{i}, y) - \phi_{i}] \, dA(y) \right] \\ \frac{\partial F}{\partial \phi_{i}} &= a_{i} - \int_{\operatorname{Lag}_{\phi}^{c}(x_{i})} \rho(y) \, dA(y) \end{split}$$
Concave in ϕ !

- Simple algorithm: Gradient ascent
 Ingredients: Power diagram
- More complex: Newton's method
 Converges globally [Kitagawa, Mérigot, & Thibert 2016]

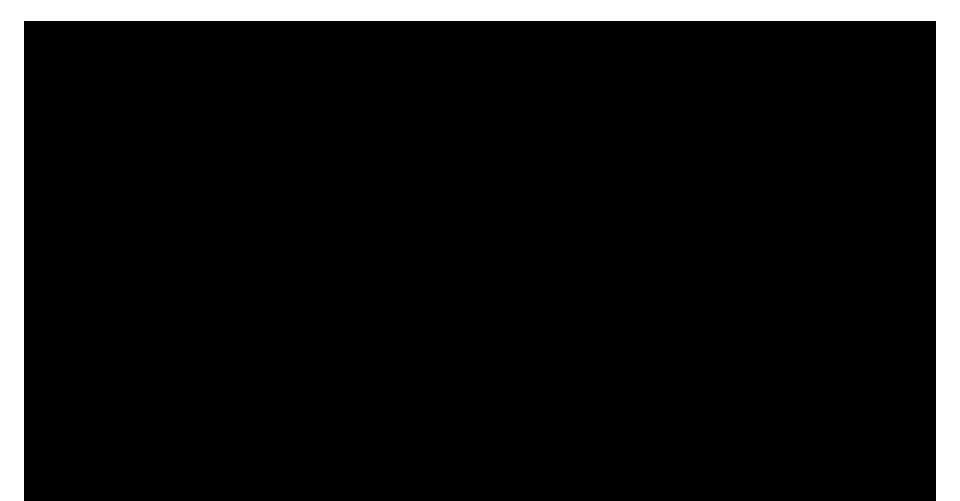
Application



Lévy. "A numerical algorithm for L2 semi-discrete optimal transport in 3D." (2014)

Points to tetrahedra

Application



Redux

Method	Advantages	Disadvantages
Entropic regularization	 Fast Easy to implement Works on mesh using heat kernel 	• Blurry • Becomes singular as $\alpha \rightarrow 0$
Eulerian optimization	 Provides displacement interpolation Connection to PDE 	 Hard to optimize Triangle mesh formulation unclear
Semidiscrete optimization	 No regularization Connection to "classical" geometry 	 Expensive computational geometry algorithms

Many others: Stochastic transport, dual ascent, Monge-Ampère PDE, ...

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions & frontiers

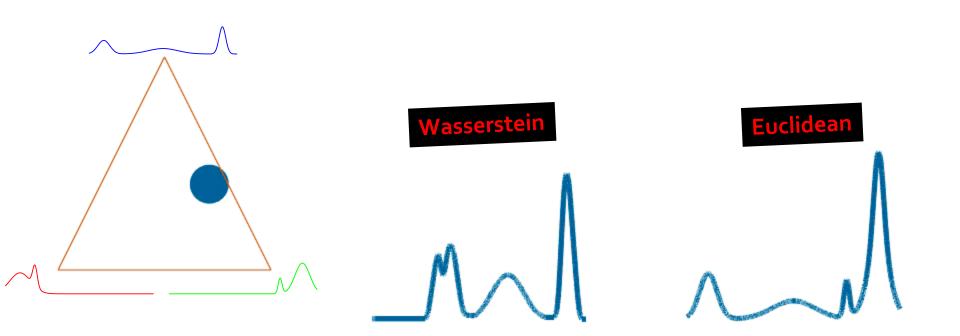
Application 1: Example: Averaging

Euclidean:
$$x^* := \left[\arg\min_{x \in \mathbb{R}^n} \sum_i ||x - x_i||_2^2 \right] = \frac{1}{k} \sum_i x_i$$

 \mathbf{P}^{x^*}

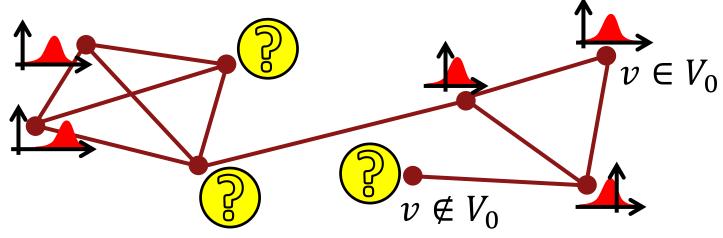
 x_1

Barycenter Example

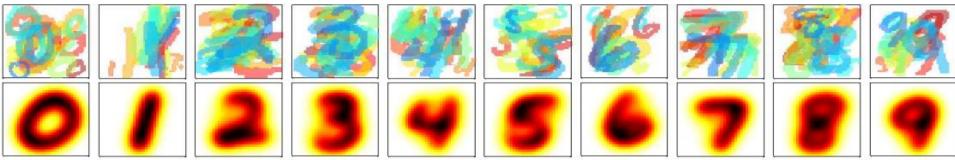


Wasserstein:
$$\mu^* := \left[\arg \min_{\mu \in \operatorname{Prob}(\mathbb{R}^n)} \sum_i \mathcal{W}_2^2(\mu, \mu_i) \right]$$

Barycenters in Machine Learning

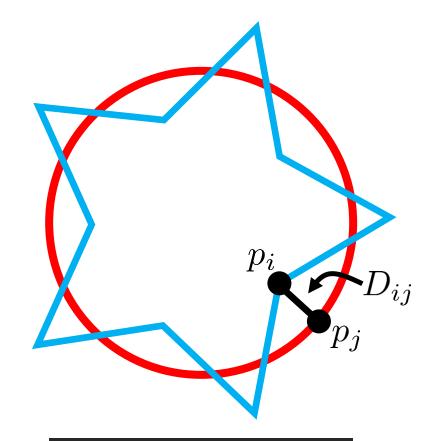


"Wasserstein Propagation for Semi-Supervised Learning" (Solomon et al.)



"Fast Computation of Wasserstein Barycenters" (Cuturi and Doucet)

Application 2: Model Problem: Linear Assignment



Between signals

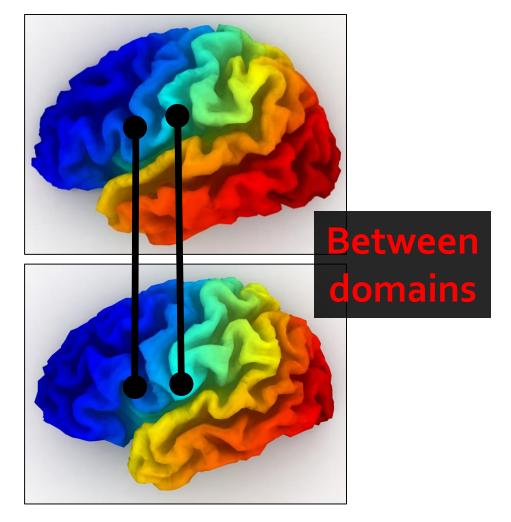
 $\begin{array}{ll} \min_{T} & \langle T, D \rangle \\ \text{s.t.} & T \geq 0 \\ & T\mathbf{1} = \mathbf{1} \\ & T^{\top}\mathbf{1} = \mathbf{1} \end{array} \end{array}$

"No matched point should travel too far."

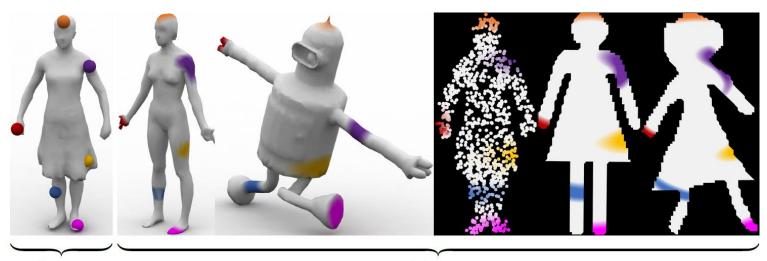
Model Problem: Quadratic Matching

 $\min_{T} \langle M_0T, TM_1
angle$ s.t. $T \geq 0$ $T\mathbf{1} = \mathbf{1}$ $T^{ op}\mathbf{1} = \mathbf{1}$ <u>Nonconvex</u> quadratic program!

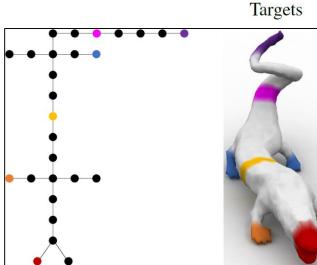
> "Nearby points stay nearby."

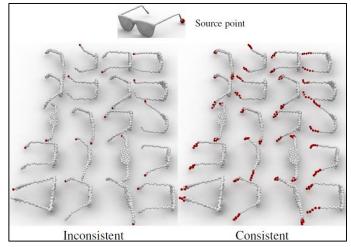


Variety of Correspondence Tasks



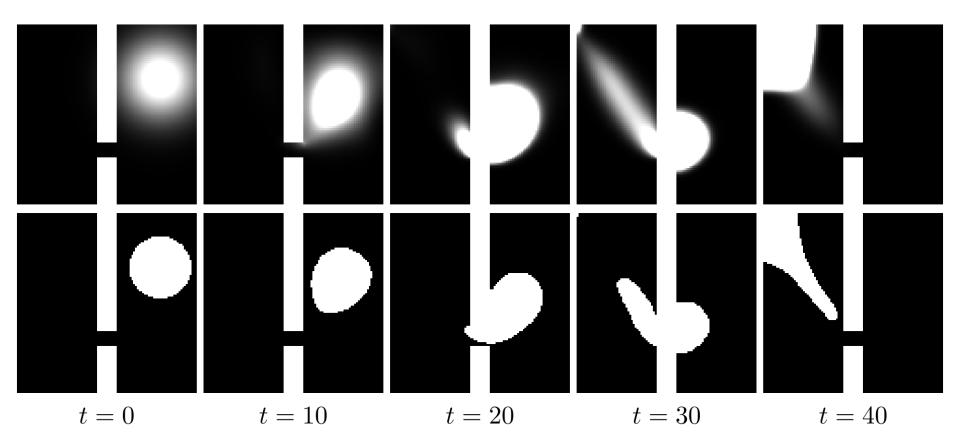
Source





[Solomon et al. 2016]

Application 3: Gradient Flows



"Entropic Wasserstein Gradient Flows" [Peyré 2015]

Interesting possibility for preserved structure!

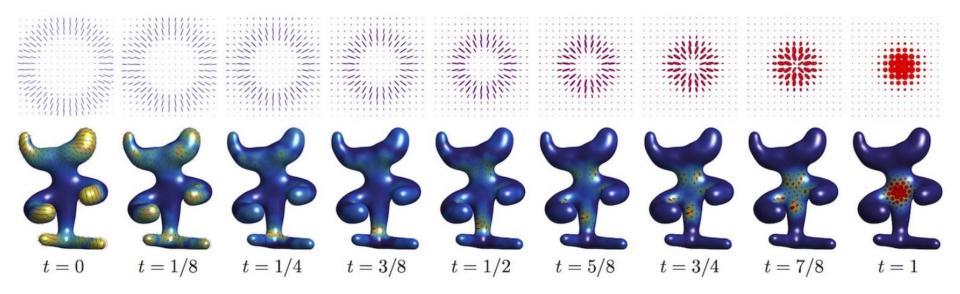


Image from "Quantum Optimal Transport for Tensor Field Processing" [Peyré et al. 2017]

Open problem: Dynamical version? Curved surfaces?

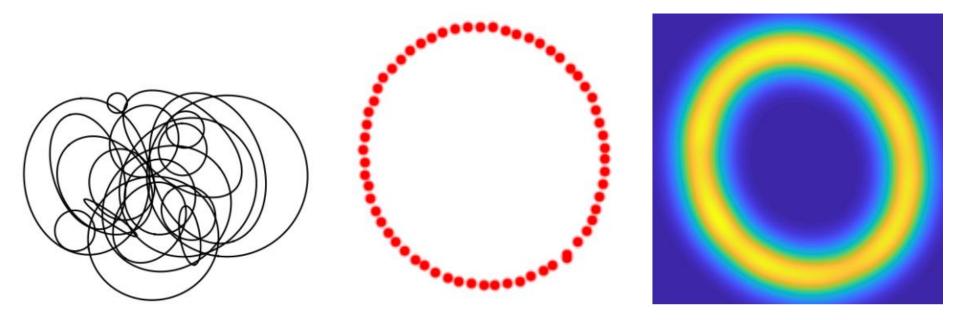


Image from "Stochastic Wasserstein Barycenters" [Claici et al. 2018]

Open problem: Sample from barycenter?

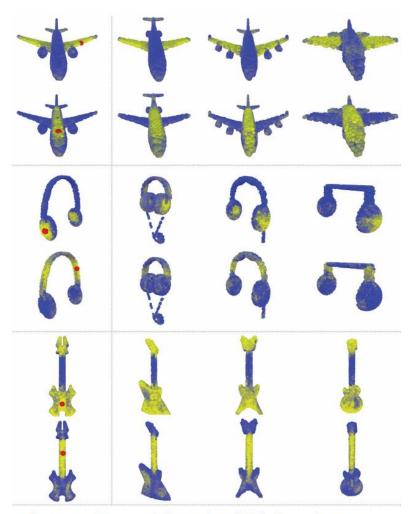


Image from "Dynamic Graph CNN for Learning on Point Clouds" [Wang et al. 2018]

Open problem: Many repeated instances of transport?

Source points

Other point clouds from the same category

Plan For Today

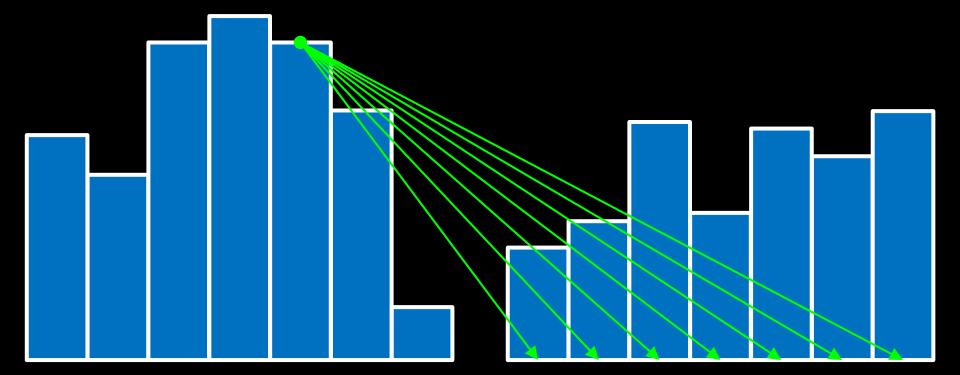
1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions & frontiers



Tutorial on Optimal Transport

Questions?