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 Reasonable notion of compactness:
Travel time to voting booth

 Connection to Voronoi and power diagrams

 Natural measure of geometric similarity



A geometric way
to compare 

probability measures.

Monge Kantorovich Dantzig Wasserstein Brenier McCann VillaniOtto

Nobel prize Fields medal
(and French politician)
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Understand geometry from a

“softened” probabilistic
standpoint.



“Somewhere over here.”



“Exactly here.”



“One of these two places.”



Which is closer, 1 or 2?

Query 1 2



Lp norm
KL divergence



Which is closer, 1 or 2?

Query 1 2



Neither!  

Query 1 2



Measured overlap, 
not displacement.



Compare in this direction

Not in this direction



Even the laziest shoveler

must do some work.
Property of the distributions themselves!

My house!







When is transport 
computable?

Needed:  Finite number of unknowns.



http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html
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“Empirical measures”

Linear program:  Finite number of variables
Algorithms:  Simplex, interior point, auction, …



Never a reason to “leapfrog” mass!
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Function from sets to probability





General transport problem!



Metric when d(x,y) satisfies the 
triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000):  99—121.

Revised in:

“Ground Metric Learning”
Cuturi and Avis; JMLR 15 (2014)

“Earth Mover’s Distance”



http://www.sciencedirect.com/science/article/pii/S152407031200029X#

Shortest path 
distance

Expectation

Geodesic distance d(x,y)



Primal

Dual



Benamou & Brenier
“A computational fluid mechanics solution of the

Monge-Kantorovich mass transfer problem”
Numer. Math. 84 (2000), pp. 375-393



Tip of an iceberg:

Manifold theory of transport!
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Wassersteinization
[wos-ur-stahyn-ahy-sey-shuh-n]
noun.

Introduction of optimal transport 
into a computational problem.
cf.  least-squarification, L1ification, deep-netification, kernelization



We have tools to

 Solve optimal transport problems 
numerically

 Differentiate transport distances in 
terms of their input distributions

Bonus:
Transport cost from 𝝁 to 𝝂 is a 

convex function of 𝝁 and 𝝂.





Minimum-cost flow

-1 +2

-1Supply

Demand

1

1



[Kusner et al. 2015]

Use deep network embedding

Word Mover’s Distance (WMD)



Proposition: Satisfies triangle inequality.

0 eigenfunctions 100 eigenfunctions



Distance from point cloud to mesh
[Digne et al. 2014]



Image courtesy F. de Goes; photo by F. Durand



[Bassetti 2006]

Minimum Kantorovich Estimator



Wasserstein ball around 
empirical distribution

Loss function

[Esvahani & Kuhn 2017]



[Courty et al. 2017]

1. Estimate transport map
2. Transport labeled samples to new domain

3. Train classifier on transported labeled samples



EPFL Computer Graphics and Geometry Laboratory; Rayform SA



1. Introduction to optimal transport
• 1D examples
• Many formulas

2. Applications

3. Discrete/discretized transport
• Entropic regularization
• Eulerian transport
• Semidiscrete transport

4. Extensions & frontiers



Cuturi.  “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)

OK to drop 
nonnegative 
constraint!



“Iterative Bregman Projections for Regularized Transportation Problems” (Benamou et al. 2014)



Alternating projection

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". 
Pacific J. Math. 21, 343–348 (1967).



1. Supply vector p
2. Demand vector q

3. Multiplication by K

Solomon et al. "Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains." SIGGRAPH 2015.



1. Introduction to optimal transport
• 1D examples
• Many formulas

2. Applications

3. Discrete/discretized transport
• Entropic regularization
• Eulerian transport
• Semidiscrete transport

4. Extensions & frontiers



Transport image from “Optimal Transport with Proximal Splitting” (Papadakis, Peyré, and Oudet) • Grid from http://zone.ni.com/

Benamou-Brenier:
 Store 𝐽, 𝜌 on each grid point
 Approximate objective function using 

FEM or divided differences

Open problem:
 Discretize on a triangle mesh
 Preserve triangle inequality

Talk to me if you’re interested!



In computer science:

Network flow problem



Probabilities advect
along the surface

Solomon, Rustamov, Guibas, and Butscher.
“Earth Mover’s Distances on Discrete Surfaces.”

SIGGRAPH 2014

“Eulerian”
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Never a reason to “leapfrog” mass!



https://www.jasondavies.com/power-diagram/



 Simple algorithm:  Gradient ascent
Ingredients:  Power diagram

 More complex:  Newton’s method
Converges globally [Kitagawa, Mérigot, & Thibert 2016]

Concave in 𝝓!



Points to tetrahedra

Lévy.  “A numerical algorithm for L2 semi-discrete optimal transport in 3D.” (2014)





Method Advantages Disadvantages

Entropic regularization •Fast
•Easy to implement
•Works on mesh using 

heat kernel

•Blurry
•Becomes singular as 
𝜶 → 𝟎

Eulerian optimization •Provides displacement 
interpolation
•Connection to PDE

•Hard to optimize
•Triangle mesh 

formulation unclear

Semidiscrete
optimization

•No regularization
•Connection to 

“classical” geometry

•Expensive 
computational 
geometry algorithms

Many others:
Stochastic transport, dual ascent, Monge-Ampère PDE, …
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𝑣 ∈ 𝑉0

𝑣 ∉ 𝑉0
“Wasserstein Propagation for Semi-Supervised Learning” (Solomon et al.)

“Fast Computation of Wasserstein Barycenters” (Cuturi and Doucet)



Between signals

“No matched 
point should 

travel too far.”



Between 
domains

“Nearby 
points stay 

nearby.”



[Solomon et al. 2016]



“Entropic Wasserstein Gradient Flows” [Peyré 2015]

Interesting possibility for preserved structure!



Image from

“Quantum Optimal Transport for Tensor Field Processing”
[Peyré et al. 2017]

Open problem:  Dynamical version?  Curved surfaces?



Image from

“Stochastic Wasserstein Barycenters”
[Claici et al. 2018]

Open problem:  Sample from barycenter?



Image from

“Dynamic Graph CNN for 
Learning on Point Clouds”

[Wang et al. 2018]

Open problem:  Many repeated 
instances of transport?
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Questions?


