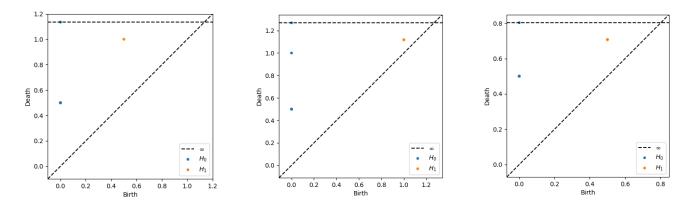

## TDA BREAKOUT: DAY 2 WORKSHEET

THOMAS WEIGHILL


## 1. RIPS COMPLEXES

Consider the following point cloud:



- Using the usual Euclidean distance, draw (roughly) the Vietoris-Rips complexes  $V_{0.25}$ ,  $V_{0.5}$  and  $V_2$ .
- What is the least  $x \in [0, 2]$  for which the Vietoris-Rips complex has one connected component? What is the zeroth Betti number  $\beta_0$  for this complex?
- What is the least  $x \in [0, 2]$  for which the Vietoris-Rips complex has a "hole"? In other words, what is the least x for which the first Betti number of  $V_x$  is non-zero?
- What is the greatest x for which the Vietoris-Rips complex has a "hole"? In other words, what is the greatest x for which the first Betti number of  $V_x$  is non-zero?
- Which of the persistence diagrams below matches the point cloud? The little numbers represent the multiplicities of the points (when greater than 1).
- Of the two remaining diagrams, one comes deleting the points (0, 0.5) and (1, 0.5), and one comes from adding the point (0.5, 0.5). Can you tell which is which?

Date: June 24, 2019.



2. Computational investigations

Go to www.github.com/thomasweighill/VRDI\_TDA\_Breakout and go through the notebooks there, which are based on notebooks provided by T. Needham.