POLITICALTHICKET, MATHEMATICAL QUAGMIRE

 how voting is and is not a math problemMoon Duchin @ Stanford University, May 2019

SALEM GAZETTE.

FELIX FRANKFURTER
 Colegrove v Green, 1946

- "Throughout our history... the most glaring disparities have prevailed as to the contours and the population of districts.'
- "Courts ought not to enter this political thicket.'

FELIX FRANKFURTER

Baker v Carr, 1962

- "One of the Court's supporting opinions, as elucidated by commentary, unwittingly affords a disheartening preview of the mathematical quagmire (apart from divers judicially inappropriate and elusive determinants) into which this Court today catapults the lower courts of the country without so much as adumbrating the basis for a legal calculus as a means of extrication."

FELIX FRANKFURTER Baker v Carr, 1962

- "This [intervention], of course, implies that geography, economics, urban-rural conflict, and all the other nonlegal factors which have throughout our history entered into political districting are to some extent not to be ruled out in the undefined vista now opened up by review in the federal courts of state reapportionments."

8-I MAJORITY
 Reynolds \vee Sims, 1964

- "We are told that the matter of apportioning representation in a state legislature is a complex and many-faceted one. We are advised that States can rationally consider factors other than population in apportioning legislative representation. We are admonished not to restrict
 the power of the States to impose differing views as to political philosophy on their citizens. We are cautioned about the dangers of entering into political thickets and mathematical quagmires. Our answer is this: a denial of constitutionally protected rights demands judicial protection; our oath and our office require no less of us."

OK SO HOW HARD IS THE MATH ANYWAY?

Suppose orange has about 40% of the vote vs pink.
You might expect a fair outcome to be 40% orange seats - proportionality.

First note: proportionality can occur in many ways that are qualitatively different to live in.

is is is is ist is is is

But it's hardly guaranteed-a roughly 40\% orange vote can be arranged to get anywhere from 0-80\% of the representation.

Maybe geometry will save us? - discreteness and geography might limit the power of the gerrymanderers, and bad shapes might give them away.

Real-sized problem: 9059 precincts of Pennsylvania

> 18 Congressional districts 50 State Senate districts 203 State House districts

THE UNIVERSE OF POSSIBLE PLANS

How many are there?

Depends on the rules.
population balance contiguity
compactness
racial fairness
respect for boundaries respect for communities

JUSTICE ALITO: No, no, but can you just answer that -- that question, because it's a real puzzle to me. So you've got -- let's say you've got 100 maps or you might even have
25. I think you probably have thousands.

IE
明
铝

7×7 grid into 7 districts:
 158,753,8|4 ways

How many ways to make 67 state Senate districts in Minnesota?

just from pairing:
6, I56,723,7। $8,225,577,984$

EXPLORING AT RANDOM

7×7 grid into 7 districts: | 58,753,8| 4 ways

explore with Markov chain that makes swaps at random

Recall:

40\% orange votes
How many seats to expect?

For the 10×10 grid, even though we have so far failed to fully enumerate the valid plans, we seem to explore effectively in just I 0,000 Swap steps.

Start with rectangles (1.5 orange seats)

Start with "plan O" (6 orange seats)

The bad news: Flip/Swap scales up badly
The good news: there are other Markov chains to try

Two Markov chains:
Flip vs Recombination

2011

2018 Do-over

538 GOP

Gov

538 Dem

Stanford

538 Compact

8th Graders

SENW101216

APPLICATIONS

SO ARE WE ANY CLOSER TO A LEGAL STANDARD?

- Some of us think so
- see Mathematicians' Brief for the Supreme Court
- Does a plan behave as though chosen only from the stated rules?

PROPORTIONALITY ...not what we ordered

COUNSEL: I'd like a grilled cheese.
ALITO: OK, one tuna melt.
COUNSEL: No, I said grilled cheese.
KAVANAUGH: I hear the tuna melt's good.
GORSUCH: You want that tuna melt open face or
closed?
COUNSEL: I don't want a tuna melt, I want a-
GORSUCH: It seems like you don't want to just come out and say it, but don't you want a tuna melt?

COUNSEL: No!

KAGAN: She asked for a grilled cheese. That's not a tuna melt because there's no tuna in it.
GORSUCH: But if, as you say, you don't want a tuna melt, what do you want? Are we supposed to just make up a sandwich for you?

ALITO: You come in here, you ask for a hot sandwich on toasted bread with cheese on it. To me, that's a tuna melt.

BREYER: Nobody ever orders the chopped liver, but have they really given it a chance?
OPPOSING COUNSEL: The framers had every opportunity to make you a tuna melt, but they chose not to.

INTHE END, WHAT IS A FAIR MAP?

Abstract

(questions that were asked before? If you -- if you make a list of the so-called neutral criteria -- compactness, contiguity, protecting incumbents, if that's really neutral, respecting certain natural features of the geography -- and you have a computer program that includes all of those and weights them all, and let's assume all that is neutral, and at the end, what you get is a large number of maps that satisfy all those criteria.

JUSTICE ALITO: No, no, but can you just answer that -- that question, because it's a real puzzle to me. So you've got -- let's say you've got 100 maps or you might even have 25. I think you probably have thousands. So you have all of these maps, and you have to choose among them. The legislature chooses among them.

And you've already programmed in all of the so-called neutral criteria. How do you -- how does the legislature go about choosing among those maps? Would anything other than just random choice be sufficient -- be satisfactory?

