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Examples

Qi

How do you embed domains into one another
efficiently and with low distortion?

Claici et al. "Isometry-Aware Preconditioning for Mesh Parameterization." SGP 2017, London.
Li et al. "OptCuts: Joint Optimization of Surface Cuts and Parameterization.” SIGGRAPH Asia 2018, Tokyo.
Gehre et al. “Interactive Curve Constrained Functional Maps.” SGP 2018, Paris.



Examples

How can we tile a shape with simpler elements?

Solomon, Vaxman, and Bommes. “"Boundary Element Octahedral Fields inVolumes.” TOG 2018.
Zhang et al. “Spherical Harmonic Frames for Feature-Aligned Cross-Fields.” Submitted.



input tet mesh

Examples

corrected singularity graph singularity-constrained octahedral field hex mesh (ours)

How do we optimize in exotic spaces
with topological constraints?

Liu, Zhang, Chien, Solomon, and Bommes.

"Singularity-Constrained Octahedral Fields for Hexahedral Meshing.” SIGGRAPH 2018.



Examples

HliIlfeLl (R™) TV[f]
ISV (t) = subject to [ f(z)dz =1
0< f<1g

How do we stabilize classical geometric measurements?

DeFord, Lavenant, Schutzman, and Solomon.
“Total Variation Isoperimetric Profiles.” SIAM SIAGA 201g.



Examples

How do we learn from geometrically-structured data?

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds.” TOG 2019.
Smirnov et al. "Deep Parametric Shape Predictions using Distance Fields.” Submitted.



Examples

" Frame 0/50 Frame 5/50 Frame 10/50 Frame 15/50 Frame 20/50 Frame 25/50 Frame30/50  Frame35/50  Frame 40/50 Frame 45/50  Frame 50/50

How do we interpolate along geometric domains?

Lavenant et al. "Dynamical Optimal Transport on Discrete Surfaces.” SIGGRAPH Asia 2018.
Solomon & Vaxman. “Optimal Transport-Based Polar Interpolation of Directional Fields.” SIGGRAPH 2019.



Examples

@e Great War S}rndicab

by Frank R. Stockton

sailing: captain ship sea boat
deck water board men vessel
island sail wind shore crew
ships time boats mate cabin three

elemental: air water surface action
small current much made body power
first part parts electricity bodies
found acid glass force great

war: men army enemy general
troops force officers colonel french

soldiers war british officer left march
fire camp attack river guns /

18.8%

/ The Past Condition \
of Organic Nature
by Thomas H. Huxley

knowledge: must nature general

knowledge fact thus mind first case ideas

another certain different things without
matter science present true idea

geography: feet sea water miles

great found south north land island

islands rock mountains rocks large
valley like coast small west

flora/fauna: species plants animals
birds many male selection long forms

case flowers thus much self fertilised
\ man cases natural see female

Can we find geometry in data?

Yurochkin et al. “Lightspeed Document Distance Computation
via Hierarchical Optimal Transport.” Submitted.




Today: Redistricting
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Huge Landscape of Possibilities
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lowa: 99 counties, 4 districts, quintillions of possible plans



Reality Check

Likely no single “best” plan.

Typical criteria:

Contiguity Municipal boundaries
Population balance Competitiveness
Compactness Incumbency

Communities of
Interest



Reality Check 2.0

THE COMPUTATIONAL COMPLEXITY OF
AUTOMATED REDISTRICTING: IS AUTOMATION
THE ANSWER?

MICAH ALTMAN* Even if We COUId agree

There is only one way to do reapportionment—feed into the
computer all the factors except political registration.

s ON @ SINQle measure...

The rapid advances in computer technology and education dur-
ing the last two decades make it relatively simple to draw con-

tiguous districts of equal population

[and] at the same time to

further whatever secondary goals the State has,

—Justice William Brennan®

I. REDISTRICTING AND COMPUTERS

Ronald Reagan and Justice Brennan have both suggested that

computers can remove the cnnmv?LuLW1q-
tricting.* In fact proponents of auto

the “optimal” districting plan can be
specified values. The Supreme Cg
sentiment by addressing such mecha
and compactness in two recent redis

* Division of Humanities and Socia
tute of Technology, Pasadena, CA, 91125
Kousser, Scott Page, and Richard McKelve
helpful suggestions.
1.  Tom Goff, Reinecke Denounces Co
tion, L.A. TIMES, Jan, 19, 1972, at A24.

2. Karcher v. Daggett, 462 U5, 725, 7

D. Redistricting is a Computationally Hard Problem

Redistricting is deeply connected to mathematical partitioning
problems. Many researchers in computer science have examined
partition problems and have reached some conclusions about their
computational complexity. The redistricting problem in general,
and even many simpler redistricting sub-problems, are likely to
be intractable.




Reality Check 3.0

And even if P=NP...

"The Times, Places and Manner of holding Elections for Senators and Representatives, shall be prescribed in
each State by the Legislature thereof”
US Constitution (Article |, Section 2)

"...the legislature shall by law reapportion the state senatorial districts and representative districts...”
Kansas Constitution (Article 10, Section 1)

"...the legislature shall enact a redistricting plan for congressional districts apportioned to Michigan.”
Michigan Congressional Redistricting Act of 1999, Section 3.62

"...the legislature shall apportion and district anew the members of the senate and assembly, according to
the number of inhabitants.”
Wisconsin state constitution, Section 3

"The independentredistricting commission ... shall prepare a redistricting plan to establish senate,
assembly, and congressional districts every ten years commencing in two thousand twenty-one...”
New York State Constitution, Article Ill, Section 4(b)

Humans draw districts.



Aside:
Computational Redistricting is Valuable

109 computations/second ?? computations/second
No legal understanding Strong legal understanding
No sympathy Potentially sympathetic




Recent Focus
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Trustworthiness

Quantitative # Fair



Critical Challenges

Disingenuous analysis

Incentive to make your proposed plan looked good

Mistaken analysis

Many objectives and a huge space of possible plans



Today: Two Examples

Single measurement:

Measuring compactness

Challenge: Instability
(Partial) solution: Isoperimetric profile

Aggregate measurement:

Ensemble analysis
Challenge: Mixing time
(Even more partial) solution: Recombination



Today: Two Examples

Single measurement:

Measuring compactness

Challenge: Instability
(Partial) solution: Isoperimetric profile

Aggregate measurement:

Ensemble analysis
Challenge: Mixing time
(Even more partial) solution: Recombination



Compactness as a Proxy for Fairness?
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Polsby-Popper Score

Theorem (Isoperimetric inequality). Let Q be be a bounded open subset of the plane R?

with perimeter P < o and area A. Then, 4mA < P?, with equality if and only if Q is a circle.
Rigorous proof by Weierrstrass, 1870; dates back to ~8oo BC

A A
PP(Q2) = 52

Polsby & Popper, 1991 &=

Image from Fusco 2015



Issue with Polsby-Popper

R
Resolution: 1:20,000,000 Resolution: 1:5,000,000 Resolution: 1:500,000
Perimeter: 10.951 Perimeter: 14.328 Perimeter: 18.266
Area: 1.233 Area: 1.188 Area: 1.162
400mA/p2: 12.92% 400A/p2: 7.27% 400 A/ p2: 4.38%

Example courtesy Mira Bernstein and Assaf Bar-Natan

Maryland district 1
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Image from “User preferences for world map projections” (Savri¢ et al. 2015)

Map projections?
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https://blogs.mathworks.com/simulink/2009/12/02/floating-point-numbers/

Floating point?



Adversarial Problem

Input:
List of compactness scores
Set of districts
Desired percentile

Output:
Score that achieves percentile

"Gerrymandering and Compactness: Implementation Flexibility and Abuse”
Barnes & Solomon, Political Analysis (pending revision)



Frightening Results

You can engineer your percentile!
Variables: Score, map resolution, map projection



Recent Theoretical Result

A\

we ... demonstrate that for any choice of map projection, there are two regions, A and B,
such that A is more compact than B on the sphere but B is more compact than A when
projected to the plane.”

Texas 115th Congressional Districts, Reock
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“The Gerrymandering Jumble: Map Projections Permute Districts' Compactness Scores.”
Bar-Natan, Najt, & Schutzman; Arxiv 1905.03173.
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Potentially Intractable Solution

Io(t) := min{area(0Y) : ¥ C Q and vol(X) =t}

Isoperimetric profile



Perimeter as Total Variation

V)= s [ (@9 ola)]do

[0 o<1

:f area(0{f > s})d /HVf )2 dx
0

Iy (z) = 1 ifeeX
W79 0 otherwise

areal0X| = TV|1y]



Convex Relaxation: TV Profile

Io(t) := min{area(9Y) : X C Q and vol(X) =t}

minfeLl (R™) TV[f]
I3V (1) = subject to [, f(z)dr =1t
0< f<1I1g

Theoretical properties:

* Convex function of t

* Minimized at any t for a circle

* (Surprising) optimal f takes
on at most 3 values: {o, ¢, 1}

DeFord et al. Total Variation Isoperimetric Profiles. SIAM SIAGA, pending revision.



Examples

0
0

—NC11
Judges
—NC16
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9




In Case You're Wondering

®
=
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t=0.12

t=0.23

t=0.34

t =0.45

t = 0.56

t =0.67

t

0.78

t=0.89

N

=10

Works in 3D (Why bother? Why not!)



Graph Analog
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Open Problem

Problem:

Compute isoperimetric profile without TV relaxation.

Corner
point

Non-generic
point
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Normal point

Medial axis?

End point

Bifurcation
point

Image from [Au 2012]



Trade-Off

Positive:
Stable
Computable
Nuanced/multiscale

Negative:
Not a single score
Not a great proxy
for fairness



Fundamental Issue

(b) NC16



Thematic Take-Away

Stability is subtle and can be
leveraged by an adversary.

Provably stable measurements
are hard to design.




Today: Two Examples

Single measurement:

Measuring compactness

Challenge: Instability
(Partial) solution: Isoperimetric profile

Aggregate measurement:

Ensemble analysis
Challenge: Mixing time
(Even more partial) solution: Recombination



Ensembles: Redistricting in Context
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I Ensemble gene‘ated by Wendy Ci10



Discrete Problem
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Language Matters

OK:
"We were able to generate k plans with
favorable property P.”

Not (necessarily) OK:
"Our plan scores better/worse than p% of
reasonable plans.”



Random Walk Approach

o S A AYAY,

AmA AN
L e O
oooooo

Key issue:
Mixing time

https://www.amacad.org/news/redistricting-and-representation



https://www.amacad.org/news/redistricting-and-representation

Sampling Problem

Uniform distribution:

i _P(partltlon)

L

1

—

# paftltIOHS«

| | _
AR | A | R | R WP | o R~ | -
X | p| AP | | wp | | g |y
| < | x| o | gy | | | g

~ Najt, DeFord, & Solomon. *Complexity of Sampling from Connected Graph Partitions.” In preparation. =



From 2-Partitions to Cycles




RP Completeness

Randomized polynomial time (RP):

Exists a probabilistic Turing machine that

Runs in polynomial time

Always correctly returns NO

If the correct answer is YES, returns YES with
probability > 1/,




Hamiltonian Cycle

Hits every vertex once

NP-Complete
= RP-Complete



A Simple Counterexample

Chain of bigons:
Linear number
of edges in |E]

Proof follows [Jerrum, Valiant, and Vazirani 1986]



A Simple Counterexample

Proof follows [Jerrum, Valiant, and Vazirani 1986]



A Simple Counterexample

RP-Hard!

piL coples

Hamiltonian cycle

Proof follows [Jerrum, Valiant, and Vazirani 1986]



Tougher Proof, Same Result

Remains hard with extra assumptions:

Maximal planar graph
Bounded vertex degree
Balanced partition




Relationship to Mixing

Fast mixing would imply polynomial
time (near)-uniform sampling!



Series Parallel Graphs

\) \)
series
4 composition
S
[ 4
parallel Polynomial-time sampler
composition Exponentially slow mixing
S
[



Implication

Popular sampling tools are
unlikely to see a significant or
representative sample of plans.

L

2011 538 GOP 538 Dem

538 Compact

- "
b e w 'er ana‘ S‘S.
Gov Remedial TS Serious Cha“enge for Outh y



Is Uniform Even Desirable?

Ending Point Ending Point Ending Point
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Saturation of Compactness
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(a) Compactness (b) 11996 cut edges



Recall: Flip Proposal

1. Uniformly choose a cut edge
2. Change label of an incident node

[Mattingly et al. 2017, 2018; Pegden et al. 2017]
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(a) District (b) Spanning Tree

“Recombination: A Markov Chain for Redistricting”
DeFord, Duchin, & Solomon, in preparation



Recombination Step

Select two adjacent districts

Merge them together

Draw a random spanning tree

Delete an edge (can maintain balance)

Conjecture. Mixing time is proportional
to the number of districts. Other

“tree pfoposa‘S'
poSS-lb\e





















Distributional Bias

In all spanning trees

P(A, B) o |trees(A)|-[trees(B)|-|cut(A, B)]

n

1
Kirchoff: trees(G) = — H "y
n
k=2



Empirical Evidence
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Compactness

45 45
— Initial Value — Initial Value

40 A 40
L 35 - g 35 4
o =]
(=) o
w w
W wn
w (%]
2 30 g 30 -
e At
[*) )
a . a
: Flip : ReCom
9] 25 O 25

20 4 204

15 T T T T T T 15 T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0 2500 5000 7500 10000 12500 15000 17500 20000

Step 1le7 Step



Example Application

Comparison of Districting Plans
for the Virginia House of Delegates

Moo.

Metric Geometry and Gerrymanaering

0Q
(@R
O
=

Abstract

At the time of writing, Virginia is in the process of replacing its House of Delegates districting
plan after eleven of the districts were ruled unconstitutional by a District Court in June 2018.
This report presents a large ensemble of alternative valid districting plans, which we propose
to use as a baseline for comparison in the evaluation of newly proposed plans. Our method
highlights and quantifies the dilutive effects of packing Black Voting Age Population.

This is a novel application to racial gerrymandering of industry-standard techniques from
statistics and computational science.



Take-Away

Quantitative analysis of
districting plans is subtle.

Computational redistricting is
not a solved problem.

with apologies to D. DeFord
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Counterexamples
In Redistricting




