

Counterexamples in Political Redistricting

Justin Solomon MIT EECS

GDP @ MIT

GDP@MIT Home Team Publications Courses Contact

IIF

Geometric Data Processing Group
 Principal investigator: Prof. Justin Solomon

Computer Science and Artificial Intelligence Laboratory (CSAIL)
Massachusetts Institute of Technology (MIT)

```
http://gdp.csail.mit.edu
```


Welcome!

The MIT Geometric Data Processing Group studies geometric problems in computer graphics, computer vision, machine learning, and other disciplines.

Our team includes students and researchers spanning a variety of disciplines, from theoretical mathematics to applications in engineering and software development. We enthusiastically welcome collaborators and staff at all levels and encourage interested parties to contact us with ideas, challenging problems, and avenues for joint research.

News
Affiliations: EECS, CSAIL, Metric Geometry \& Gerrymandering Group, MIT Center for Computational Engineering, MIT-IBM Watson AI Lab

Examples

How do you embed domains into one another efficiently and with low distortion?

Claici et al. "Isometry-Aware Preconditioning for Mesh Parameterization." SGP 2017, London. Li et al. "OptCuts: Joint Optimization of Surface Cuts and Parameterization." SIGGRAPH Asia 2018, Tokyo. Gehre et al. "Interactive Curve Constrained Functional Maps." SGP 2018, Paris.

Examples

How can we tile a shape with simpler elements?

Solomon, Vaxman, and Bommes. "Boundary Element Octahedral Fields in Volumes." TOG 2018. Zhang et al. "Spherical Harmonic Frames for Feature-Aligned Cross-Fields." Submitted.

Examples

input tet mesh

corrected singularity graph

singularity graph

singularity-constrained octahedral field

hex mesh (standard)

hex mesh (ours)

How do we optimize in exotic spaces with topological constraints?

Liu, Zhang, Chien, Solomon, and Bommes.
"Singularity-Constrained Octahedral Fields for Hexahedral Meshing." SIGGRAPH 2018.

Examples

$$
I_{\Omega}^{\mathrm{TV}}(t):=\left\{\begin{aligned}
\min _{f \in L^{1}\left(\mathbb{R}^{n}\right)} & \mathrm{TV}[f] \\
\text { subject to } & \int_{\mathbb{R}^{n}} f(x) d x=t \\
& 0 \leq f \leq \mathbb{1}_{\Omega}
\end{aligned}\right.
$$

How do we stabilize classical geometric measurements?

DeFord, Lavenant, Schutzman, and Solomon.
"Total Variation Isoperimetric Profiles." SIAM SIAGA 2019.

Examples

How do we learn from geometrically-structured data?
Wang et al. "Dynamic Graph CNN for Learning on Point Clouds." TOG 2019. Smirnov et al. "Deep Parametric Shape Predictions using Distance Fields." Submitted.

Examples

How do we interpolate along geometric domains?

Lavenant et al. "Dynamical Optimal Transport on Discrete Surfaces." SIGGRAPHAsia 2018. Solomon \& Vaxman. "Optimal Transport-Based Polar Interpolation of Directional Fields." SIGGRAPH 2019.

Examples

The Great War Syndicate
by Frank R. Stockton
sailing: captain ship sea boat deck water board men vessel island sail wind shore crew ships time boats mate cabin three
elemental: air water surface action small current much made body power first part parts electricity bodies found acid glass force great
war: men army enemy general troops force officers colonel french soldiers war british officer left march fire camp attack river guns

Frank R. Stockion

The Past Condition

 of Organic Nature by Thomas H. Huxleyknowledge: must nature general knowledge fact thus mind first case ideas another certain different things without matter science present true idea
geography: feet sea water miles great found south north land island islands rock mountains rocks large valley like coast small west
flora/fauna: species plants animals birds many male selection long forms case flowers thus much self fertilised man cases natural see female

Can we find geometry in data?

Yurochkin et al. "Lightspeed Document Distance Computation via Hierarchical Optimal Transport." Submitted.

Today: Redistricting

(a) Geography

(b) Dual Graph

Huge Landscape of Possibilities

Iowa: 99 counties, 4 districts, quintillions of possible plans

Reality Check

Likely no single "best" plan.

Typical criteria:

- Contiguity
- Population balance
- Compactness
- Communities of interest
- Municipal boundaries
- Competitiveness
- Incumbency
- ...

Reality Check 2.0

THE COMPUTATIONAL COMPLEXITY OF AUTOMATED REDISTRICTING: IS AUTOMATION THE ANSWER?

MICAH ALTMAN*

There is only one way to do reapportionment-feed into the computer all the factors except political registration.
-Ronald Reagan ${ }^{1}$
The rapid advances in computer technology and education during the last two decades make it relatively simple to draw contiguous districts of equal population [and] at the same time to further whatever secondary goals the State has.
-Justice William Brennan ${ }^{2}$

I. REDISTRICTING AND COMPUTERS

Ronald Reagan and Justice Brennan have both suggested that computers can remove the controversy and molitics from redistricting. ${ }^{3}$ In fact proponents of auto the "optimal" districting plan can be specified values. The Supreme C sentiment by addressing such mecha and compactness in two recent redis

[^0]D. Redistricting is a Computationally Hard Problem
2. Karcher v. Daggett, 462 U.S. 725,733 (1983).

Even if we could agree on a single measure...

Redistricting is deeply connected to mathematical partitioning problems. Many researchers in computer science have examined partition problems and have reached some conclusions about their computational complexity. The redistricting problem in general, and even many simpler redistricting sub-problems, are likely to be intractable.

Reality Check 3.0

And even if $\mathrm{P}=\mathrm{NP}$...

"The Times, Places and Manner of holding Elections for Senators and Representatives, shall be prescribed in each State by the Legislature thereof" US Constitution (Article I, Section 2)
"...the legislature shall by law reapportion the state senatorial districts and representative districts..." Kansas Constitution (Article 10, Section 1)
"...the legislature shall enact a redistricting plan for congressional districts apportioned to Michigan."
Michigan Congressional Redistricting Act of 1999, Section 3.62
"...the legislature shall apportion and district anew the members of the senate and assembly, according to the number of inhabitants." Wisconsin state constitution, Section 3
"The independent redistricting commission ... shall prepare a redistricting plan to establish senate, assembly, and congressional districts every ten years commencing in two thousand twenty-one..."

New York State Constitution, Article III, Section 4 (b)

Computational Redistricting is Valuable

10^{9} computations/second No legal understanding No sympathy
?? computations/second Strong legal understanding Potentially sympathetic

Recent Focus

Trustworthiness

Quantitative \neq Fair

Critical Challenges

- Disingenuous analysis

Incentive to make your proposed plan looked good

- Mistaken analysis

Many objectives and a huge space of possible plans

Today: Two Examples

- Single measurement:

Measuring compactness

Challenge: Instability
(Partial) solution: Isoperimetric profile

- Aggregate measurement:

Ensemble analysis

Challenge: Mixing time
(Even more partial) solution: Recombination

Today: Two Examples

- Single measurement:

Measuring compactness

Challenge: Instability
(Partial) solution: Isoperimetric profile

- Aggregate measurement:

Ensemble analysis

Challenge: Mixing time
(Even more partial) solution: Recombination

Compactness as a Proxy for Fairness?

Polsby-Popper Score

Theorem (Isoperimetric inequality). Let Ω be be a bounded open subset of the plane \mathbb{R}^{2} with perimeter $P<\infty$ and area A. Then, $4 \pi A \leq P^{2}$, with equality if and only if Ω is a circle.

Rigorous proof by Weierrstrass, 1870; dates back to ~ 800 BC

$$
\operatorname{PP}(\Omega):=\frac{4 \pi A}{P^{2}}
$$

Polsby \& Popper, 1991 (©)

Issue with Polsby-Popper

Example courtesy Mira Bernstein and Assaf Bar-Natan

Maryland district 1

More Issues

Robinson

Eckert IV

Wagner VII

Plate Carrée

Mollweide

Interrupted Mollweide

Winkel Tripel

Mercator

Goode Homolosine

Image from "User preferences for world map projections" (Šavrič et al. 2015)

Map projections?

More Issues

https://blogs.mathworks.com/simulink/2009/12/02/floating-point-numbers/

Floating point?

Adversarial Problem

Input:

- List of compactness scores
- Set of districts
- Desired percentile

Output:

- Score that achieves percentile
"Gerrymandering and Compactness: Implementation Flexibility and Abuse"
Barnes \& Solomon, Political Analysis (pending revision)

Frightening Results

You can engineer your percentile!
Variables: Score, map resolution, map projection

Recent Theoretical Result

"we ... demonstrate that for any choice of map projection, there are two regions, A and B, such that A is more compact than B on the sphere but B is more compact than A when projected to the plane."

Texas 115th Congressional Districts, Reock

"The Gerrymandering Jumble: Map Projections Permute Districts' Compactness Scores." Bar-Natan, Najt, \& Schutzman; Arxiv 1905.03173.

Additional Observation

Multiple versions of non-compactness

Potentially Intractable Solution

$$
I_{\Omega}(t):=\min \{\operatorname{area}(\partial \Sigma): \Sigma \subseteq \Omega \text { and } \operatorname{vol}(\Sigma)=t\}
$$

Isoperimetric profile

Perimeter as Total Variation

$$
\begin{aligned}
\mathrm{TV}[f] & :=\sup _{\|\phi\|_{\infty} \leq 1} \int[f(x) \nabla \cdot \phi(x)] d x \\
& =\int_{0}^{\infty} \operatorname{area}(\partial\{f \geq s\}) d s^{"}=" \int\|\nabla f(x)\|_{2} d x \\
\mathbb{1}_{\Sigma}(x) & := \begin{cases}1 & \text { if } x \in \Sigma \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\operatorname{area}[\partial \Sigma]=\mathrm{TV}\left[\mathbb{1}_{\Sigma}\right]
$$

Convex Relaxation: TV Profile

$$
I_{\Omega}(t):=\min \{\operatorname{area}(\partial \Sigma): \Sigma \subseteq \Omega \text { and } \operatorname{vol}(\Sigma)=t\}
$$

$\min _{f \in L^{1}\left(\mathbb{R}^{n}\right)} \operatorname{TV}[f]$

$$
I_{\Omega}^{\mathrm{TV}}(t):= \begin{cases}\text { subject to } & \int_{\mathbb{R}^{n}} f(x) d x=t \\ & 0 \leq f \leq \mathbb{1}_{\Omega}\end{cases}
$$

Theoretical properties:

- Convex function of t
- Minimized at any t for a circle
- (Surprising) optimal f takes on at most 3 values: $\{0, c, 1\}$

DeFord et al. Total Variation Isoperimetric Profiles. SIAM SIAGA, pending revision.

Examples

In Case You're Wondering

							8	
8	8	8	8	2	2	23	1	,
-	-	-	-	-	-	\bigcirc	$\stackrel{\sim}{\circ}$	
((0)	(0)	(0	(0)	0	0	0

Works in 3D (Why bother? Why not!)

Graph Analog

\mid								
-	K			-4	4.			
	-		4		24		3	
$t=0.12$	$t=0.23$	$t=0.34$	$t=0.45$	$t=0.56$	=0.67	$t=0.78$	$t=0$.	$t=1.0$

$$
I_{V_{0}}^{\mathrm{TV}}(t):=\left\{\begin{aligned}
\min _{f \in \mathbb{R}^{V}} & \sum_{(v, w) \in E}|f(v)-f(w)| \\
\text { subject to } & \sum_{v \in V_{0}} f(v)=t\left|V_{0}\right| \\
& f(v)=0 \forall v \notin V_{0} \\
& f(v) \in[0,1] \forall v \in V
\end{aligned}\right.
$$

Open Problem

Problem:

Compute isoperimetric profile without TV relaxation.

Image from [Au 2012]

Trade-Off

Positive:

- Stable

Computable

- Nuanced/multiscale

Negative:

- Not a single score
- Not a great proxy for fairness

Fundamental Issue

(a) $\mathrm{NC12}$
(b) NC 16

Thematic Take-Away

Stability is subtle and can be leveraged by an adversary.

 Provably stable measurements are hard to design.
Today: Two Examples

- Single measurement:

Measuring compactness

Challenge: Instability
(Partial) solution: Isoperimetric profile

Aggregate measurement:
Ensemble analysis
Challenge: Mixing time
(Even more partial) solution: Recombination

Ensembles: Redistricting in Context

I
I

Discrete Problem

(a) Geography

(b) Dual Graph

$$
p: V \rightarrow\left\{a_{1}, \ldots, a_{n}\right\}
$$

Language Matters

OK:

"We were able to generate k plans with favorable property P."

Not (necessarily) OK:
"Our plan scores better/worse than $p \%$ of reasonable plans."

Random Walk Approach

https://www.amacad.org/news/redistricting-and-representation

Sampling Problem

Uniform distribution:

Najt, DeFord, \& Solomon. "Complexity of Sampling from Connected Graph Partitions." In preparation.

From 2-Partitions to Cycles

RP Completeness

Randomized polynomial time (RP):

Exists a probabilistic Turing machine that
Runs in polynomial time
Always correctly returns NO

- If the correct answer is YES, returns YES with probability $\geq 1 / 2$

Hamiltonian Cycle

A Simple Counterexample

Chain of bigons:
Linear number of edges in |E|

Proof follows [Jerrum, Valiant, and Vazirani 1986]

A Simple Counterexample

Proof follows [Jerrum, Valiant, and Vazirani 1986]

A Simple Counterexample

RP-Hard!

Proof follows [Jerrum, Valiant, and Vazirani 1986]

Tougher Proof, Same Result

Remains hard with extra assumptions: Maximal planar graph Bounded vertex degree Balanced partition

Relationship to Mixing

Fast mixing would imply polynomial time (near)-uniform sampling!

Series Parallel Graphs

Polynomial-time sampler Exponentially slow mixing

Implication

Popular sampling tools are

 unlikely to see a significant or representative sample of plans.

2011

8th Grade

Gov

538 Dem

${ }^{\text {TS }}$ Serious challenge for "outlier analysis."

Is Uniform Even Desirable?

Ending Point

Ending Point

Ending Point

Saturation of Compactness

(a) Compactness

(b) 11996 cut edges

Recall: Flip Proposal

1. Uniformly choose a cut edge
2. Change label of an incident node
[Mattingly et al. 2017, 2018; Pegden et al. 2017]

Potential Way Out

(a) District

Cut one edge

(b) Spanning Tree
"Recombination: A Markov Chain for Redistricting" DeFord, Duchin, \& Solomon, in preparation

Recombination Step

- Select two adjacent districts
- Merge them together
- Draw a random spanning tree
- Delete an edge (can maintain balance)

Conjecture. Mixing time is proportional to the number of districts.

Example

Example

Example

Example

Example

Example

Distributional Bias

$P(A, B) \propto[\operatorname{trees}(A)] \cdot[\operatorname{trees}(B)] \cdot[\operatorname{cut}(A, B)]$

$$
\text { Kirchoff: } \operatorname{trees}(G)=\frac{1}{n} \prod_{k=2}^{n} \lambda_{k}
$$

Empirical Evidence

Compactness

Example Application

Comparison of Districting Plans for the Virginia House of Delegates

Abstract

At the time of writing, Virginia is in the process of replacing its House of Delegates districting plan after eleven of the districts were ruled unconstitutional by a District Court in June 2018. This report presents a large ensemble of alternative valid districting plans, which we propose to use as a baseline for comparison in the evaluation of newly proposed plans. Our method highlights and quantifies the dilutive effects of packing Black Voting Age Population.

This is a novel application to racial gerrymandering of industry-standard techniques from statistics and computational science.

Take-Away

Quantitative analysis of districting plans is subtle.

Computational redistricting is not a solved problem.

Counterexamples

 in Redistricting
Questions?

[^0]: * Division of Humanities and Socia tute of Technology, Pasadena, CA, 91125 Kousser, Scott Page, and Richard McKelvey helpful suggestions.

 1. Tom Goff, Reinecke Denounces Cot tion, L.A. Tmes, Jan. 19, 1972, at A24.
