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Tutte’s Spring Embedding Theorem

Given a three-connected planar graph G , if a face of G is
embedded in R2 as a convex polygon and every other vertex is
placed at the mass center of its neighbors, then this embedding is
planar and uniquely determined by the embedding of the face.



Energy Minimization in Spring Embeddings

Let Γ, nΓ := |Γ|, be the vertices of the “outer” face of G . Given an
embedding XΓ ∈ RnΓ×2 of the outer face, the Tutte condition

Xi ,· =
1

d(i)

∑
j∈N(i)

Xj ,· i ∈ V (G )\Γ

also minimizes the sum of squared edge lengths, conditional on the
embdding XΓ of Γ.



Graph Laplacian

The graph Laplacian LG ∈ IRn×n of G is the symmetric matrix
defined by

〈LGx , x〉 =
∑
{i ,j}∈E

(xi − xj)
2,

and, in general, a matrix is the graph Laplacian of some weighted
graph if it is symmetric diagonally dominant, has non-positive
off-diagonal entries, and the vector 1 := (1, ..., 1)T lies in its
nullspace.



Block Notation

Let V = {1, ..., n} and Γ = {n − nΓ + 1, ..., n}. We can write both
the Laplacian and embedding of G in block-notation,
differentiating between interior and boundary vertices as follows:

LG =

(
Lo + Do −Ao,Γ

−AT
o,Γ LΓ + DΓ

)
∈ IRn×n, X =

(
Xo

XΓ

)
∈ IRn×2,

where Lo and LΓ are the Laplacians of G [V \Γ] and G [Γ],
respectively.



Energy Minimization in Spring Embeddings

Using block notation, the system of equations for the Tutte spring
embedding of some convex embedding XΓ is given by

Xo = (Do + D[Lo ])−1[(D[Lo ]− Lo)Xo + Ao,ΓXΓ],

where D[A] is the diagonal matrix with diagonal entries given by
the diagonal of A. The unique solution to this system is

Xo = (Lo + Do)−1Ao,ΓXΓ.

Xo not only guarantees a planar embedding of G , but also
minimizes Hall’s energy, namely,

arg min
Xo

h(X ) = (Lo + Do)−1Ao,ΓXΓ,

where h(X ) := Tr(XTLX ).



Spring Embeddings vs Spectral Layouts

Embedding a graph using the two minimal non-trivial eigenvectors
of the graph Laplacian minimizes the sum of squared edge lengths
(Tr(XTLX )) subject to XTX = I and XT1 = 0.

The problem is that, for planar graphs, the resulting embedding
can often be far from planar.



Spring Embeddings vs Spectral Layouts

Spring embeddings give the best of both worlds. It produces a
planar embedding while minimizing the sum of squared edges,
conditional on the boundary embedding.

But how to embed the boundary?



A Natural Choice

A natural choice is to embed the outer face using the restriction of
two minimal non-trivial eigenvectors of the graph Laplacian.

Unfortunately, the restriction to the boundary is also often
non-convex.

Another choice is the two minimal non-trivial eigenvectors of the
graph Laplacian of the boundary LΓ.

Unfortunately, this results in a regular nΓ-gon, and fails to take
into account the dynamics of the interior.



A Minimization Problem

Let X be the set of all convex, planar embeddings XΓ that satisfy
XT

Γ XΓ = I and XT
Γ 1 = 0. Consider the optimization problem

min Tr(XTLX ) s.t. XΓ ∈ cl(X ), (0.1)

where cl(·) is the closure of a set.

The normalizations XT
Γ 1 = 0 and XT

Γ XΓ = I ensure that the
solution does not degenerate into a single point or line.



A Minimization Problem

Given some choice of XΓ, by Tutte’s theorem the minimum value
of Tr(XTLX ) is attained when Xo = (Lo + Do)−1Ao,ΓXΓ, and
given by

Tr(XTLX ) = Tr

[ (
[(Lo + Do)−1Ao,ΓXΓ]T XT

Γ

)(Lo + Do −Ao,Γ

−AT
o,Γ LΓ + DΓ

)
(

(Lo + Do)−1Ao,ΓXΓ

XΓ

)]
= Tr

(
XT

Γ

[
LΓ + DΓ − AT

o,Γ(Lo + Do)−1Ao,Γ

]
XΓ

)
= Tr

(
XT

Γ SΓXΓ

)
,

where SΓ is the Schur complement of LG with respect to V \Γ,

SΓ = LΓ + DΓ − AT
o,Γ(Lo + Do)−1Ao,Γ.



A Minimization Problem, Reparameterized

Given that
min
Xo

Tr(XTLX ) = Tr
(
XT

Γ SΓXΓ

)
,

we can treat Xo as a function of XΓ and instead consider the
optimization problem

min Tr
(
XT

Γ SΓXΓ

)
s.t. XΓ ∈ cl(X ). (0.2)

This immediately implies that, if the minimal two non-trivial
eigenvectors of SΓ produce a convex embedding, then this is the
exact solution of (0.2).

Do we have any reason to think that this embedding would be
planar or convex?



The Schur Complement

Spectral Layout Schur Complement Spring Embedding



The Schur Complement

Proposition

Let G = (V ,E ), n = |V |, be a graph and LG ∈ IRn×n the
associated graph Laplacian. Let LG and vectors v ∈ IRn be written
in block form

L(G ) =

(
L11 L12

L21 L22

)
, v =

(
v1

v2

)
,

where L22 ∈ IRm×m, v2 ∈ IRm, and L12 6= 0. Then

(1) S = L22 − L21L
−1
11 L12 is a graph Laplacian,

(2)
∑m

i=1(eTi L221m)eie
T
i − L21L

−1
11 L12 is a graph Laplacian,

(3) 〈Sw ,w〉 = inf{〈Lv , v〉|v2 = w}.



Schur Complement

Based on the previous proposition, we see the semi-norm for the
Schur complement corresponds to the energy semi-norm of the
harmonic extension of the boundary vertices.

The Schur complement is a Laplacian and is the sum of the
boundary Laplacian LΓ and another Laplacian
DΓ − AT

o,Γ(Lo + Do)−1Ao,Γ representing the dynamics of the
interior.

For graphs with a certain amount of structure (i.e., triangulations
of convex regions, etc.), we can mathematically quantify the

behavior of SΓ, and show that SΓ is spectrally equivalent to L
1/2
Γ .



Trace Theorems for Lipschitz Domains from PDE Theory

Let Ω be a domain in Rd with boundary which is locally a graph of
a Lipschitz function. We denote by H1(Ω) the Sobolev space of
square integrable functions with square integrable gradient. The
norm on this space is defined as

‖u‖2
1,Ω = ‖∇u‖2

L2(Ω) + ‖u‖2
L2(Ω), where ‖u‖2

L2(Ω) =

∫
Ω
u2dx ,

We introduce the following norm for functions defined on Γ:

‖ϕ‖2
1/2,Γ = ‖ϕ‖2

L2(Γ) +

∫∫
Γ×Γ

(ϕ(x)− ϕ(y))2

|x − y |d
dxdy .

and we denote by H1/2(Γ), Γ = ∂Ω the Sobolev space of functions
defined on the boundary Γ for which the ‖ · ‖1/2,Γ is finite.



Trace Theorems for Lipschitz Domains from PDE Theory

Theorem (Trace Theorem)

Let Ω ⊂ Rd be a Lipschitz domain and u ∈ H1(Ω) be a given
function. Then

(i) The trace operator γ : H1(Ω) 7→ H1/2(Γ), γu = u
∣∣
Γ

is
bounded, namely there exists a constant c such that

‖γu‖1/2,Γ ≤ c‖u‖1,Ω

(ii) The trace operator has a continuous right inverse, namely, for
any ϕ ∈ H1/2(Γ) there exists u ∈ H1(Ω) such that

γu = ϕ, and ‖u‖1,Ω ≤ c2‖ϕ‖1/2,Ω.

(iii) The following norm equivalence holds:

‖ϕ‖1/2,Ω h inf{‖u‖1,Ω

∣∣ γu = ϕ}.



Spectral Equivalence

If we can prove a discrete version of a trace theorem for energy
semi-norms, i.e. show that, for any ϕ ∈ IRnΓ ,

1

C1
〈L̃Γϕ,ϕ〉 ≤ 〈SΓϕ,ϕ〉 ≤ C2 〈L̃Γϕ,ϕ〉,

where

〈L̃Γϕ,ϕ〉 =
∑

p,q∈Γ,
p<q

(ϕ(p)− ϕ(q))2

d2
Γ (p, q)

and C1 and C2 are constants that do not depend on n, then to

show our desired result, we just have to show L
1/2
Γ is spectrally

equivalent to L̃Γ.



Spectral Equivalence

Theorem
If there exists a planar spring embedding X of (G , Γ) ∈ Gf≤c1

n for
which

(1) K = conv
(
{[XΓ]i ,·}nΓ

i=1

)
satisfies

sup
u∈K

inf
v∈∂K

sup
w∈∂K

‖u − v‖
‖u − w‖

≥ c2 > 0,

(2) X satisfies

max
{i1,i2}∈E
{j1,j2}∈E

‖Xi1,· − Xi2,·‖
‖Xj1,· − Xj2,·‖

≤ c3 and min
i∈V

j1,j2∈N(i)

∠Xj1,· Xi ,· Xj2,· ≥ c4 > 0,

then, for any ϕ ∈ IRnΓ ,

1
C1
〈L1/2

Γ ϕ,ϕ〉 ≤ 〈SΓϕ,ϕ〉 ≤ C2 〈L1/2
Γ ϕ,ϕ〉,

where C1 and C2 are constants that depend on c1, c2, c3, and c4.



(Part of) the Proof

Let us define

`(i , j) = min{i − j mod n, j − i mod n}.

By definition, Γ induces a cycle, so L̃(i , j) = −`(i , j)−2 for i 6= j .

Because LΓ is the cycle graph, its spectral decomposition is well
known,

LΓ =

bn2 c∑
k=1

λk(LΓ)

(
xkx

T
k

‖xk‖2
+

yky
T
k

‖yk‖2

)
,

where λk = 2− 2 cos

(
2πk
n

)
and xk = sin

(
2πki
n

)
,

yk = cos

(
2πki
n

)
, i = 1, ..., n. We can use the spectral

decomposition to write L
1/2
Γ explicitly.



(Part of) the Proof
Namely, (suppose wlog that n is odd)

LΓ =

n−1
2∑

k=1

λk(LΓ)

(
xkx

T
k

‖xk‖2
+

yky
T
k

‖yk‖2

)

where λk = 2− 2 cos

(
2πk
n

)
and xk = sin

(
2πki
n

)
,

yk = cos

(
2πki
n

)
, i = 1, ..., n. We first compute the value of ‖xk‖2

and ‖yk‖2. We have

‖xk‖2 =
n∑

i=1

sin2(
2πk

n
i) =

n

2
− 1

2

n∑
i=1

cos(
4πk

n
i)

=
n

2
− 1

4

(sin(2πk(2 + 1
n ))

sin( 2πk
n )

− 1
)

=
n

2
,

which, from ‖xk‖2 + ‖yk‖2 = n, implies that ‖yk‖2 = n
2 as well.



(Part of) the Proof
This gives

L
1/2
Γ (i , j) =

2
√

2

n

b n
2
c∑

k=1

[
1− cos

(
2kπ

n

)]1/2

×
[

sin

(
2πki

n

)
sin

(
2πkj

n

)
− cos

(
2πki

n

)
cos

(
2πkj

n

)]

=
2
√

2

n

b n
2
c∑

k=1

[
1− cos

(
π

2k

n

)]1/2

cos

(
`(i , j)π

2k

n

)
.

By the properties of a Riemann sum, we have∣∣∣∣∣L
1/2
Γ (i , j)√

2
−
∫ 1

0
(1− cos(πx))1/2 cos(`πx)

∣∣∣∣∣ =

∣∣∣∣∣L
1/2
Γ (i , j)√

2
− −2

√
2

π(4`2 − 1)

∣∣∣∣∣
≤ C

n

for some C . This immediately implies that L
1/2
Γ is spectrally

equivalent to the Laplacian L̂ with L̂(i , j) = (4`(i , j)2 − 1)−1, i 6= j .
Finally, one can easily verify that

〈L̂ϕ,ϕ〉 ≤ 〈L1/2
Γ ϕ,ϕ〉 ≤ 4〈L̂ϕ,ϕ〉

This completes the proof.



From Analysis to Algorithm

The above analysis inspires a simple meta-algorithm.

Compute the minimal two eigenpairs of SΓ. If the resulting
embedding of Γ is planar and convex, we are done.

Otherwise, use an initial guess (a convex version of the above
embedding, or a regular polygon, etc.) and iteratively smooth the
approximation using SΓ. The spectral equivalence implies an initial
guess with objective function within a factor of C1C2 of the
optimum.



An Obligatory Message about SΓ and S−1
Γ

The Schur complement SΓ is a dense matrix and requires the
inversion of a large matrix, but can be represented as the
composition of functions of sparse matrices.

In practice, SΓ should NEVER be formed explicitly.

The operation of applying SΓ to a vector x should occur in two
steps:
1) Solve (Lo + Do)y = Ao,Γx should be solved for y .
2) Compute SΓx = (LΓ + DΓ)x − AT

o,Γy .

Each application of SΓ is therefore an O(n log n) procedure (using
an O(n log n) Laplacian solver).



An Obligatory Message about SΓ and S−1
Γ

The application of the inverse S−1
Γ defined on the subspace

{x | 〈x , 1〉 = 0} also requires the solution of a Laplacian system.

The action of S−1
Γ on a vector x ∈ {x | 〈x , 1〉 = 0} is given by

S−1
Γ x =

(
0 I

)(Lo + Do −Ao,Γ

−AT
o,Γ LΓ + DΓ

)−1(
0
x

)
.

Given that the application of S−1
Γ has the same complexity as an

application SΓ, the inverse power method is naturally preferred
over the shifted power method for smoothing.



Examples



Thank You!

Thank you to MGGG Redistricting Lab and Moon Duchin for
having me.

The associated preprint is

John C. Urschel, Ludmil T. Zikatanov. Discrete Trace Theorems
and Energy Minimizing Spring Embeddings of Planar Graphs.

and can be found on arXiv.

If you have any further questions, feel free to send me an email at
urschel ’at’ mit ’dot’ edu.


