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Does market access protect children against poor health conditions at birth?   

 

 

Abstract 

Seasonal fluctuations in early life circumstances can be associated with later differences in health 

outcomes, especially for rural people in developing countries. Other evidence finds that access to markets 

and public services can help rural households improve their well-being. This study links these two 

phenomena, using spatial diversity across the Democratic Republic of Congo (DRC) to investigate 

whether proximity to towns confers resilience against seasonal determinants of maternal and infant health.  

To identify a potentially causal effect, we use the random component of birth timing relative to the 

intensity of seasonal climate fluctuations and households’ distance to the nearest town. This spatial 

difference-in-differences approach is made possible by systematic variation in the intensity and duration 

of a dry “winter” season from north to south across DRC, independent variation in geographic isolation 

among survey sites, and uniform distribution in birth timing within years. Controlling for mother fixed 

effects and a variety of robustness tests, we find that that children in households closer to towns have 

significantly smaller impact of their birth timing on their subsequent heights and risk of death. The 

protective effect of market access could involve a variety of mechanisms such as consumption smoothing, 

health services and public assistance. Future work might find ways to distinguish among these channels 

using additional data. For this initial study, we merged geocoded Demographic and Health Survey (DHS) 

results with remote-sensing measures of physical geography as well as administrative data on civil 

conflict and other factors, providing an unusual opportunity to identify the consequences of geographic 

isolation for child health.  
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1. INTRODUCTION 

This study investigates the hypothesis that access to towns and cities can help protect rural children 

against poor health conditions before and soon after birth. Since urbanization and rural infrastructure 

cannot be assigned experimentally, we turn to other sources of variation in children’s exposure to 

adversity. Our outcomes of interest are each child’s height, weight, and mortality risk, which collectively 

are indicators of past health conditions, as well as predictors of future well-being. Our setting is the 

Democratic Republic of Congo (henceforth DRC), whose vast expanse generates extreme variation in 

household’s degrees of rural isolation, and also variation in the severity of seasonal cycles. We use the 

randomness of a given child’s birth month to measure their exposure to seasonal risk factors, in a spatial 

difference-in-differences approach designed to estimate the impact of households’ access to markets and 

public services on their resilience against typical seasonal cycles.    

 

In the heart of Africa, DRC is rich in natural resources and agricultural potential, yet nutrition indicators 

and standards of living have steadily declined and are now among the worst in the world (Ulimwengu et 

al. 2012: ICF International 2014). The vast size, lack of roads, and weak institutions of DRC limit market 

integration, which causes substantial variation in local agricultural conditions across space. In DRC and in 

other settings, infrastructure and other investments to improve rural households’ access to markets and 

public services could increase their productivity and welfare, as well as allow for more effective 

consumption smoothing across the year (Barrett et al. 2001; Dercon 2002).  

 

Our analytical method is spatial difference-in-differences, in three dimensions. First, we use climate data 

to identify regions with and without seasonal fluctuations. Next, we use the randomness of birth timing to 

identify exposure to seasonal risk where it exists. Finally, we use remoteness of households to identify 

whether access to towns confers resilience for children born in those places at riskier times. We use 

continuous variables for diagnostic regressions and exploratory exercises, then aggregate observations 

into dichotomous categories, add mother fixed effects and conduct various robustness checks against our 

identification strategy to address concerns about endogeneity and correlated errors as in Bertrand et al. 

(2004).  

 

One contribution of the study is to demonstrate the use of spatial difference-in-differences for child health 

data, exploiting randomness in birth timing against differences in exposure across space to estimate the 

average effect of exposure using a repeated cross-section of household surveys, implemented twice, in 

2007 and 2013. This approach treats each survey location as spatially repeated cross-sections, invoking a 

“parallel trends” assumption to estimate the magnitude of exposure within each area. DRC has many 
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unique features driving our results, but the method may have broad applicability in other settings with 

limited data availability. 

 

The outcomes we consider are mortality, as well as z scores of both height-for-age (HAZ) and weight-for-

height (WHZ) for those children who were alive at the time of each survey. By definition, for a 

population of healthy children the mean z score is zero at every age, but for populations at risk of 

shortfalls in height (stunting) and weight (wasting) the onset and duration of stunting and wasting follows 

characteristic time paths from month to month (Victora et al. 2010). To avoid bias introduced by when 

children are measured in relation to survey implementation, we follow Cummins (2013) and use a flexible 

age spline to control for the timing of observation. For measuring market access, we use the Euclidean 

distance from each survey site to the nearest major town. Finally, we use mother fixed effects, clustered 

standard errors by survey site, and grid-cells as our spatial units of observation when aggregation is 

necessary, such as for the civil conflict data. The use of grid-cells helps limit potential biases associated 

with endogeneity of administrative boundaries (Masters and McMillan 2001). 

 

2. BACKGROUND AND MOTIVATION 

2a. Living standards and child nutrition on the Democratic Republic of the Congo 

In DRC, approximately 75% of the population doesn’t consume sufficient calories for a healthy and 

active life (FAOSTAT 2014; Grebmer et al. 2011; WHO 2000), and the country has some of the world’s 

highest rates of child stunting (45.8%), wasting (14%), and underweight (28.2%) (UNICEF 2011). These 

data reflect both longstanding poverty and recent disruptions associated with a protracted civil war:  the 

Food and Agriculture Organization (FAO) estimates that per-capita food supply declined from 2595 kcal 

per person per day in 1994 to 1833 kcal per person per day in 2009 (FAOSTAT 2014), and various other 

indicators are worsening over time in contrast to encouraging trends in neighboring countries (Kandala et 

al. 2011; Tollens 2003).  

 

As in most of Africa, the majority of DRC’s population is agricultural, and arable land per person or per 

agricultural worker have declined sharply in recent decades (FAOSTAT 2014). The volume and value of 

crops commonly grown in DRC, such as cassava, sugar cane, maize, and plantains has been declining 

since 1997 (FAOSTAT 2014), and the lack of infrastructure or markets and services ensures that many 

households cannot effectively smooth consumption or protect children against adverse health shocks.   
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2b. Environmental variability and child health in other settings 

Variation in environmental conditions has opened countless opportunities to study the causes of 

differences in health and other child development outcomes (Angrist et al. 2001; DiNardo 2008). The 

substantial body of literature in this area uses severe environmental shocks such as a drought, famine, or 

war, as well as seasonal or other more subtle variations to identify exposed children (Akresh et al. 2011; 

Akresh et al. 2012; Almond 2006; Banerjee et al. 2007; Bundervoet et al. 2009; Chay and Greenstone 

2003; Ferreira and Schady 2009; Godoy et al. 2008; Hoddinot and Kinsey 2001; Maccini and Yang 2009; 

Minoiu and Shemyakina 2012; Skoufias and Vinha 2012; Yamano et al. 2005). The impacts of 

environmental conditions, whether extreme shocks or typical variations, on child health are especially of 

interest because of the potential long-term consequences affecting an individual’s risk of disease, attained 

height, and labor productivity (Alderman et al. 2006; Almond and Currie 2011; Barker 2008; Barker 

1990; Black et al. 2008; Deaton 2007; Dewey and Begum 2011; Martorell 1999).  

 

A key feature of child development is its sensitivity to environmental shocks at critical ages and 

developmental periods (Shrimpton et al. 2001; Victora et al. 2010; Aguero and Deolalikar 2012). Much of 

the variance in later outcomes can be traced to early events, and a given nutritional deficit or illness may 

have greater effect when it occurs earlier in life (e.g. Yamano et al. 2005, Hoddinot and Kinsey 2001). 

These timing effects may be such that birth timing and hence age at which children were exposed to a 

given shock can be used to measure differences in resilience or vulnerability as in Tetens et al. (2003), or 

Maccini and Yang (2009) who found that boys were protected more than girls from the harmful effects of 

rainfall shocks in Indonesia.   

 

Many studies addressing how people protect themselves from environmental harm use a direct measure of 

specific climatic conditions, such as deviation from normal rainfall at the time of a child’s birth. For this 

study we have no direct observations of climate shocks. We are concerned with seasonal variations that 

are entirely predictable, and yet people may be unable to avoid their negative impact. One reason could be 

that so many factors move together:  during the hungry or lean season, food supplies from the previous 

harvests dwindle, gainful employment may be more difficult to find, disease incidence often increases, 

and maternal labor time and calorie expenditure may rise (Buckles and Hungerman 2013; Panter-Brick 

1997).   

 

Despite the predictability of seasonal shocks, Gambian children born at unhealthy times have 

systematically lower weight-for-age and height-for-age than others (Gajigo and Schwab 2012), and have 

increased risk of mortality as young adults (Moore et al. 2004). Seasonal patterns of this type can be 
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extremely robust, for example even after controlling for within-mother characteristics by comparing 

siblings (Currie and Schwandt 2013). A wide variety of health outcomes are typically affected at once, 

such as age of gestation at birth and birth weight (Rayco-Solon et al. 2005; Chodick et al. 2009), and the 

timing of harm may remain unknown since annual cycles hit before conception, once during pregnancy 

and again each year of the child’s life. The worst time to be born is an empirical question, and is likely to 

depend on the type of shock and the circumstances of the household. One of the few biological constraints 

is that total energy demands on the mother are typically greatest in the last trimester of pregnancy, at birth 

and while breastfeeding (Chodick et, al. 2009). This could help explain why children born during lean 

seasons may be most disadvantaged, as the harm they experience just before conception and around 0, 12 

and 24 months of age outweighs the benefits of favorable conditions in mid-pregnancy and around 6, 18 

and 30 months of age. 

 

3c. Market access and child health 

The goal of this paper is to ask whether access to towns and cities helps rural households escape seasonal 

health shocks. We build on the rich body of literature investigating the relationships between market 

access and consumption smoothing (Morduch 1995; Foster 1995), particularly Burgess and Donaldson 

(2010) who show that the expansion of railroads in India had a protective effect in maintaining real 

incomes and reducing mortality in the face of environmental shocks. Households that rely on agriculture 

for income and food may be most susceptible to climate variation and most unable to smooth 

consumption across seasons (Jensen 2000; Gajigo and Schwab 2012; Rabassa et al, 2012; Thai and 

Falaris 2014). Anthropological evidence from Peru suggests that these fluctuations may be greatest for the 

most isolated rural households (Pomeroy et al. 2014), but in other settings such as Bangladesh, even city-

dwellers may experience seasonal shifts in food security and child weight-for-age (Hillbruner and Egan 

2008).  

 

For our study, an important feature of the DRC is that children’s average health is not necessarily worst 

where seasonal variation is most extreme. For example, being geographically isolated could actually 

benefit households and children, as isolation and rugged terrain may protect them from violence in more 

populated or wealthy areas (Nunn and Puga 2012; Le Billon 2001). Furthermore, being located around the 

equator may provide relatively uniform weather and low seasonality, but also impose worse disease 

conditions than places with more seasonal fluctuations. Our research design is intended to take account of 

these factors, building on the diverse literature described above to isolate seasonal fluctuations from other 

factors and test for a protective effect of market access. 
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3. METHODS 

3a. Data 

To conduct this study, we merged spatial and temporal data on child health, household characteristics, 

roads, terrain, land cover, towns, and civil conflict incidents across DRC. We used a one degree by one 

degree grid cells as spatial units, which avoids the endogeneity problems that may arise from using 

administrative boundaries as spatial units of observation (Harari and La Ferarra 2013; Masters and 

McMillan 2001). Each of these grid cells is approximately 69 square miles in size, an area which varies 

only slightly across the country because distances between degrees of longitude and latitude are relatively 

more constant at lower latitudes closer the equator than at higher latitudes closer to the poles.  

 

For data on child health and household characteristics, we utilized DRC’s Demographic and Health 

Survey (DHS), which was conducted in 2007 and again in 2013. The DHS are nationally representative 

surveys, and cover N=27,724 children born of women participating in the 2007 survey and N=41,917 

children born of women participating in the 2014 survey (ICF International 2014). The heights and 

weights of a sub-sample of children for each of the survey rounds were measured, for N=2,931 children in 

2007 and N=5,504 children in 2013. Observations where the families had moved in the previous 6 years 

were dropped (n=4,060), to ensure that household market access and child exposure to conflict were 

measured as accurately as possible, including during the mother’s pregnancy with the child. Observations 

flagged by DHS for biologically implausible measurements (where the absolute value of HAZ or WHZ 

was greater than 5) were also dropped (n=3,302). This left N=69,641 births and N=8,435 measured 

children across both survey rounds to conduct our study.  

 

We controlled for exposure to civil conflict because violence is widespread and endemic in DRC. The 

conflict data are from the Armed Conflict Location and Event Dataset (ACLED), which details specific 

incidents of civil insecurity between 1997 and the present day for DRC and other countries (Raleigh et al. 

2010). Events which occurred between 2001 and 2013 were retained for this project to correspond first 

with the oldest children surveyed for the 2007 DHS round during their mother’s pregnancies, up until 

births that took place during the year of the most recent 2013 DHS round. The ACLED data are geocoded 

daily incident reports. Therefore, each day that an incident (such as a battle) continues is counted as an 

additional event. We aggregated the incident reports into the number of events by month in each one-

degree grid cell. The events are categorized into eight different types of conflict incidents, including 

violent and non-violent activities (Raleigh et al. 2010). The dataset is designed to provide an accurate 

picture of overall conflict activity in a country, but clearly under-counts incidents in places where people 

are less likely to report them. 
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We used geocoded data on 160 major towns from the Multipurpose Africover Database on Environmental 

Resources (FAO MADE 2014) to assess a survey cluster’s market access. We calculated the Euclidean 

distances from the centers of each DHS survey cluster to the centers of each nearest major town point 

location, using ArcGIS 10.0 (ESRI 2013). ‘Proximity’, defined as inverse distance (km
-1

) enters the 

regressions as our measure of access to all kinds of markets and public services.  

 

3b. Nutrition outcomes for children 

The outcomes of interest are mortality (a binary indicator of whether the child was alive at the time of the 

survey), height-for-age z scores (HAZ) and weight-for-height z scores (WHZ) for children under the age 

of 5 years. The z scores were calculated by Measure DHS using WHO reference values for the 

distribution of heights and weights in a healthy population at each age and sex (Measure DHS 2008).  

There is mounting evidence that shortfalls in height (stunting) and weight (wasting) share common causes 

(Martorell and Young 2012), and may reflect a wide variety of health insults which may have disrupted 

the child’s immune function (Raqib et al. 2007), gut microbiome (Gordon et al. 2012; Kau et al. 2011) or 

other influences on healthy growth. Food availability can also matter, but a wide variety of factors at 

every stage of child development can also lead to systematic differences in mortality risk, heights and 

weights attained by children who were born in different seasons, even in the presence of sufficient calorie 

intake. 

 

3c. Identification strategy 

The naturally occurring random variation we exploit is the child’s month of birth. We hypothesize that 

this quasi-random variation influences survival, heights, and weights only in regions with seasonal 

rainfall, and does so less where households are closer to towns and cities. For this spatial difference-in-

differences design, we also control for mother fixed-effects, to account for time-invariant unobservable 

attributes that cannot be included in regressions.  In this way, we effectively compare many pairs of 

siblings, allowing us to reduce the effects of unobservable heterogeneity across mothers. To account for 

spatially correlated errors, we pool the children by risk exposure into dichotomous groups based on birth 

season, distance to the nearest town, and distance from the equator. This strategy mirrors one of the 

suggested approaches for addressing autocorrelated errors across time in traditional difference-in-

differences, as described in Bertrand et al. (2004). 

 

Our analytical approach is illustrated in Table 1, showing how each subsample is classified in terms of 

exposure to seasonal risk and the potentially protective effect of market access.   
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     [Insert Table 1 about here] 

 

As shown by the first two rows of Table 1, our first hypothesized effect is that, in regions with distinct 

seasons, being born in one half of the year is associated with worse outcomes than being born in the other 

half. Inferring a causal effect of seasons relies on randomness of the child's birth month. We test that 

identifying assumption following the presentation of our main results, and find that other influences on 

heights and weights are not driving selection into the season with adverse outcomes.   

 

Our main hypothesis, shown in the third row of Table 1, is that among children born in places and at 

times where they are vulnerable to seasonal risk, being closer to towns is associated with less harmful 

outcomes. Here, inferring a causal effect relies on a “parallel trends” assumption that seasonal risk factors 

would have been similar across households if not for their differences in distance to town. That 

identifying assumption is itself untestable, but we can show robustness of the design using a variety of 

placebo regressions. In these falsification tests, a valid specification would show no effect, and any 

significant result would be an artifact of the method. We perform two types of such tests: first in our 

placebo region where rainfall varies little from season to season, and then for placebo outcomes such as 

maternal education and household altitude that are predetermined and cannot have been affected by a 

child’s birth month.  

 

Measuring exposure to seasons 

To accurately capture seasonality in the DRC context and divide the sample into locations with more or 

less variation in rainfall, we used the absolute value of latitude of each DHS cluster’s location. Locations 

closer to the equator have relatively uniform temperature and rainfall throughout the year, while locations 

both north and south of the equator have a more pronounced dry “winter” season (World Bank CRU 

2014). The country stretches from approximately +5 degrees north to about -14 degrees south. Our 

demarcation lines, chosen to divide the sample into two roughly equal halves, are at +4 and -4 degrees of 

latitude. Thus, most of the surveyed households who are subject to seasonal fluctuations are in the 

southern hemisphere, where the drier winter season occurs around June-August. Almost 20 percent of our 

sample, or 13,841 of our 69,641 births, are located in the northern hemisphere where the timing of 

seasons is shifted by six months so that winter occurs around December- February. To construct a single 

variable that indicates births in a given season, we define “rain months” to be the calendar month for 

households located in the southern hemisphere,  and shifted 6 months forward for households in the 

northern hemisphere. For example, children born in the calendar month of January are recorded as such if 
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in the southern hemisphere, and that month is recorded  as “June” for the few children born in the 

northern hemisphere. These birth months are then aggregated into birth seasons, capturing a child’s 

exposure to similar seasonal conditions anywhere in the country using a single variable. 

 

Controlling for age to avoid survey timing effects 

The DHS, like other surveys, are typically implemented in waves at specific times of year. Our data were 

primarily collected in June 2007 and in December of 2013 as detailed in Tables 8a-8b. So, children born 

in earlier months (e.g. in May and in November of the respective survey round years) are surveyed at a 

younger age than those born in later months (e.g. in July or January, respectively). Since height and 

weight z scores vary systematically with age, to avoid artifacts due to survey timing we follow Cummins 

(2013) and control for age using a linear spline specification based on the average time path of stunting 

and wasting actually observed in our data. For HAZ, the piecewise linear controls have three splines with 

knots at 6 months and 22 months of age, and for WHZ we use two splines with one knot at 12 months of 

age. The number and location of these splines approximates the nonparametric relationship we observe in 

the DRC data, which is similar to the age effects found in other settings (Victora et al. 2010). 

 

3d. Econometric specification 

Our primary specification is a fixed effects OLS regression with interaction terms. The mother fixed 

effects absorb unobservable characteristics of mothers in our sample, allowing us to compare siblings 

who were and were not born during dry winters. Standard errors are clustered by survey cluster, of which 

there are 300 in the 2007 survey and 540 in the 2013 survey, for a total of 840 locations.  

 

There are three dependent variables of interest, indicated by Zi on the left-hand sides of the equations: a 

binary indicator of whether the child was alive at the time of the survey, the height-for-age z score (HAZ) 

and weight-for-height z score (WHZ). We control for age in months, or time elapsed since birth in the 

case of mortality regressions, (Agei) in piecewise linear form as described above, and for child sex (Sexi) 

defined as 1= male. Birth season for child i (as BSi) enters as a binary variable (with 1= births occurring 

between January through June in the southern hemisphere and occurring between July through December 

in the northern hemisphere). The absolute value of latitude for each DHS cluster j is used to stratify the 

sample between children around the equator who face little seasonal variation, and those farther from the 

equator who experience a dry winter season. Household wealth (Hi) enters as a categorical variable 

computed by DHS as quintiles of the national distribution, based on ownership of durable goods in the 

household. To control for civil conflict, we use a continuous measure (Cj) defined as the number of 
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conflict fatalities recorded in the child’s grid-cell from their conception over their lifetime to the survey 

date. The underlying civil conflict data span from 2001 to 2013, and cover every grid cell in the country.  

 

Household proximity to the nearest major town enters as a binary indicator (Rj) of whether the household 

is relatively remote, with 1= household faces greater distance to access the nearest major town. The cut-

off was designated as 28.8km based on the median Euclidean distance in our sample. The Rj binary 

variable also enters as part of an interaction with birth season, to construct our difference-in-difference 

specification, where the estimated coefficients on that interaction ( ijETA ˆ ) can be interpreted as the 

average treatment effect of household remoteness on child mortality, heights or weights, given their 

exposure to the seasonal risk. A negative estimated ATE indicates that being located far from town limits 

households’ ability to protect their children from harm, and conversely that proximity helps confer 

resilience.  

 

The reduced form econometric models are shown below in Equations 1-2.  These estimating equations 

could be derived from a typical health production function where health status at the time of survey is a 

function of current and lagged health inputs, as well as key environmental characteristics such as 

sanitation, disease exposure, and parents’ health and childcare knowledge (Rosenzweig and Schultz 

1983).  For our empirical purposes, the reduced form model is sufficient. The main pathway through 

which we expect birth season to affect the health production function is through the presence of adverse 

conditions such as low food supply or high rates of disease transmission, either of which could affect a 

child directly or indirectly through the mother’s health during the sensitive periods of gestation and 

infancy. The subscript i indexes children, k indexes the linear age splines, and j indexes DHS clusters 

(household locations). i is a stochastic error term with the usual properties, and r are the region fixed 

effects.   

 

Equation 1 is a diagnostic regression using continuous variables and no interaction terms, estimated using 

Ordinary Least Squares (OLS).  In this equation, the absolute value of latitude (Latitudej) enters linearly 

and continuously as degrees, and household remoteness enters continuously as proximity to the nearest 

major town in km
-1

 (Pj).  Equation 2 is our spatial difference-in-difference specification, pooling 

observations into binary variables for the child’s location and birth timing. We split the sample by 

distance from the equator to construct a placebo region where no effect is expected, and estimate the 

model with region fixed effects to account for time invariant regional factors omitted from the model. 

Standard errors are robust and clustered by region to account for potential correlations among respondents 
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who reside in the same areas. Management of the spatial data was done in ArcGIS 10 (ESRI 2013), and 

econometric analysis was performed in StataMP 12 (StataCorp 2011).   
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In the results reported below, mother fixed effects are included in the preferred specification in Table 6, 

but the estimated coefficients for each region are not reported individually.  

 

4. RESULTS 

Descriptive statistics for our data are presented in Table 2, for the whole sample and for each sub-sample 

used in the regressions.  There is some variation in these means and standard deviations by group, with 

most children being quite short at a mean HAZ score around -1.5, and children in regions with a dry 

winter are particularly thin with mean WHZ scores around -0.5 versus -0.2 for children around the 

equator. Conflict events appear to be more frequent or intense for locations closer to the equator.   

 

    [Insert Table 2 about here] 

 

Exploratory t-tests for differences in child mortality, heights and weights across groups are shown in 

Table 3, for effects of the child’s gender, remoteness, and birth season. Mean HAZ and WHZ is lower for 

boy children than for girls, and mean HAZ but not WHZ is lower in remote areas compared to other 

locations. Boys have higher mortality risk, as do children living in remote locations. Mean HAZ is also 

lower for children born during Jan.-June as opposed to births during the second half of the year.  

 

[Insert Table 3 about here] 

 

The onset and duration of stunting follows standard age patterns as shown in Figure 1, which uses kernel-

weighted (Epanechnikov kernel) local polynomial regressions to estimate mean HAZ values for each age 

in months, separated between remote and non-remote households. There is a steep decline in HAZ before 

24 months of age, and then the slope flattens but is still negative. For WHZ the decline ends at around 12 

months of age, and is followed by catch-up back to near zero by 5 years of age. There does not appear to 

be differences between remote and non-remote households in the weights of their children at the time of 
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the survey (charts not shown). Comparing remote versus other households we see no significant 

differences at each month, although the HAZ path is consistently lower and the overall difference is 

significant as shown in Table 3. Figure 2 shows that children in remote areas are systematically more 

likely to have died, and this disparity increases with the time elapsed since birth.  

 

[Insert Figures 1-2 about here] 

 

The variation in stunting and mortality by month of birth is shown in Figures 3 and 4, which like the 

previous charts use Epanechnikov kernel weighted local polynomial smoothing to estimate mean HAZ 

and mortality risk values for children born in each month, accounting for the inversion of seasons by 

hemisphere. Figure 3 reveals that the children born in July-December are systematically taller, and that 

children in remote areas are systematically shorter for each different month of birth. Figure 4 shows that 

the fluctuations in mortality risk by month of birth have greater amplitude in remote areas, and that the 

children in remote areas are still more likely to have died. These bivariate relationships do not control for 

exposure to seasonality, however, or to the other confounders for which we have data.    

 

[Insert Figures 3-4 about here] 

 

To address the relationship among all our variables, Table 4 presents the results of a diagnostic OLS 

regression to estimate the association between children’s z scores and their age, sex, birth order, 

preceding birth interval, conflict exposure, household wealth, proximity to the nearest major town, and 

birth season. This exercise reveals the characteristic pattern that HAZ and WHZ both decline with age, 

although for HAZ the rate of decline is not significant for the first spline covering 0-6 months of age, and 

WHZ is shown to have recover significantly in the second spline after 12 months of age. Risk of death 

also decreases as more time since birth has elapsed, as is expected. Male children have consistently lower 

z scores and higher risk of mortality. Conflict incidents in the grid-cell of a child’s residence have 

statistically significant associations with nutritional outcomes: a negative association with HAZ and a 

positive association with WHZ. Firstborn children are more likely to have survived, and having a short 

preceding birth interval is associated with poorer height and survival outcomes. Conflict exposure is 

associated with an increased risk of death. Household wealth is positively associated with HAZ, but not 

WHZ. Wealth is also positively correlated with survival. Having controlled for these key factors, our 

variables of interest for the difference-in-difference design are not individually significant except for the 

mortality regressions. To obtain a clearer picture of the causal pathways, we need to simplify our model 

and add mother fixed effects.  
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[Insert Table 4 about here] 

 

First, we will present the full triple difference-in-differences specification, where our main variable of 

interest is the triple interaction term indicating a child who was born during January-June, lives in a 

location with a dry winter, and lives in a relatively remote location far from town. It turns out that the 

estimated coefficient on this variable for the triple difference-in-difference specification is statistically 

significant for heights as an outcome. The estimated coefficient on the key interaction term is not 

statistically significant for the other outcomes of interest.  

  

[Insert Table 5 about here] 

 

Results of our preferred difference-in-difference specification (Equation 2) are shown in Table 5.  

Following the research design described in Table 1, this test splits the sample into areas of interest with a 

dry winter season (columns 1 and 3) and the placebo regions with less seasonal rainfall variation 

(columns 2 and 4). Each regression then includes interaction terms between season of birth and 

remoteness, where both are specified as binary variables. 

 

To begin with our control variables, all regressions include fixed effects for mothers, and standard errors 

clustered by survey site. Age profiles for HAZ are similar to the diagnostic regression and similar in the 

two regions. Gender differences for mortality, HAZ, and WHZ are also similar to the diagnostic 

regression and across the two regions. Interestingly, in this specification children are taller where there 

are more reported conflicts, but only in the areas without a dry winter. We do not control for wealth in 

this final specification because these effects are perfectly collinear with the mother fixed-effects.  

 

The average treatment effect of being remote when exposed to seasons is the estimated coefficient on the 

interaction term between them. Looking first at the treatment regions (columns 1, 3, and 5), the average 

treatment effect of household remoteness is statistically significant for survival and heights, but only in 

the locations with a dry winter season. The average treatment effect of remoteness is not significant for 

weights as an outcome. The effects for survival and heights are quite large in magnitude, with the height 

effect being similar to jumping about two quintiles in household wealth, and the survival effect similar to 

jumping one quintile in household wealth.  

 

    [Insert Table 6 about here] 
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To test robustness of this result, we can look first within Table 6 at results in the placebo regions, where 

there is less seasonal fluctuation in rainfall. Here, there are no statistically significant average treatment 

effect estimates for any of the outcomes.   

 

5. ROBUSTNESS CHECKS 

To address limitations of our main result, we conducted a wide variety of other tests.   

 

5a. Sample selection  

We exclude children with biologically implausible measurements as discussed above. We are reasonably 

confident that measurement error in the DHS data is random and not systematic. Results do not change 

whether including or excluding households which have lived in their survey location for fewer than 6 

years at the time of the interview (N=4,060). Results also do not change whether including or excluding 

households which took trip lasting more than 1 month during the 12 months preceding the interview date 

(N=6,969). These observations were originally flagged for attention to ensure that exposure to conflict 

and remoteness was accurately measured for all children under the age of 60 months, including during 

pregnancy. There are approximately 3 million internally displaced persons residing in DRC, and this at-

risk population may not have a stable living situation, increasing the chances of measurement error and 

under-sampling in household surveys (UNHCR 2014).  

 

5b. Colinearity and heteroscedasticity  

First, we calculated variance inflation factors (VIF) for each of the explanatory variables in the diagnostic 

regression model to assess the presence of multicollinearity.  The results are reported below in Table 7. 

We did not include the VIF for the difference-in-difference model, as those contain interaction terms and 

therefore the VIF would not be as informative. The VIFs are all relatively low, ranging from 1.00-2.17, 

where the highest values are for age splines where colinearity is expected. This increases our confidence 

that colinearity is not affecting the accuracy of our standard errors.  

 

[Insert Table 7 about here] 

 

We also assessed the presence of heteroscedastic errors using residuals plots and the Breusch-Pagan test.  

Based on visual inspection of residuals plots not shown here and the results of the Breusch-Pagan tests, 

we reject the null hypothesis that the errors are homoscedastic and therefore use robust standard errors, 

clustered by administrative region.   
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5c. Seasonality in conflict incidence 

There is evidence in other studies that civil conflict follows seasonal patterns (O’Loughlin et al. 2012; 

Hendrix and Glaser 2007). If there is seasonality in the incidence of civil conflict, it could impact the 

results of this study. Coincident cycles often threaten identification by seasonality. We performed 

nonparametric tests to assess whether conflict incidents followed a seasonal pattern. From Figure 5 below, 

it does not appear that there is seasonality in our conflict data. We also disaggregated these kernel-

weighted local polynomial regressions by province, and the results are the similar across all provinces 

(results not shown here). There may be coincident cycles and other concerns with the conflict data, but 

since these are incident reports any patterns may reflect differences in reporting rates rather than actual 

conflict events.  

 

[Insert Figure 5 about here] 

 

5d. Timing of data collection and the Cummins critique 

Our research design uses birth month as a natural experiment in exposure to adverse factors during critical 

periods of child development. Since data were not collected uniformly over time, children born in 

different months were measured at different ages, and have consequently different levels of z score. As 

shown in Tables 8a and 8b, the majority of our data were collected between in February 2007 and 

December 2013.   

 

[Insert Tables 8a-8b about here] 

 

The consequences of age at measurement for identifying seasonal effects has been highlighted by 

Cummins (2013), using a type of diagram that we reproduce for each of the DRC survey rounds in 

Figures 6a-6b. These chart shows the average age of measured children who were born in each month, 

and their average HAZ score. Children born in July (January for the 2013 survey) were the oldest when 

surveyed, and they have the lowest average HAZ scores. Children born in December were the youngest 

on average when surveyed, and have the highest HAZ scores. This effect is controlled for in our 

regressions using age splines, as recommended by Cummins (2013). For an additional robustness test on 

survey timing we re-ran all regression models using only the June data, and that had no appreciable 

difference relative to the data from other months.   

 

[Insert Figure 6a-6b about here] 
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5e. Falsification tests  

In addition to the placebo region built into our main result, we also tested our design against a variety of 

placebo outcomes as in Leigh and Neill (2011). These are dependent variables with no plausible 

mechanism by which they could have been caused by our independent variables of interest, so any 

significant correlation would be from random chance or an artifact of the research design that might also 

have given rise to our main result. The specific placebos we use here are: mother’s education in single 

years, mother’s height, father’s education in single years, years that the household has lived in the 

interview location, the size of the household (number of people), and the altitude in meters of the 

household’s location. Each of these occurred or was arguably determined independently of when the child 

was born, and is used here to ask whether our main results in Table 6 are actually artifacts of the data and 

research design, by using these variables in that exact same regression specification.   

 

Figure 7 below provides a visual comparison of our main results with the placebo variables. Each dot and 

bar shows the ATE point estimate with its 95 percent confidence interval, first for the main results and 

then for the seven placebo tests. The chart has been cropped to show coefficient estimates for effect sizes 

between -1.5 and +1.5, since the randomness around some of the placebos resulted in such wide error bars 

that our outcomes of interest could no longer be distinguished on the same chart. As it is, the chart clearly 

shows that our precisely estimated negative effect on HAZ and WHZ is very different from the zero 

effects on any of the placebo outcomes. If we had found an effect of child’s birth season on any of the 

placebo outcomes, the validity of our identification strategy would have had to be questioned (Jones 

2007).  

 

[Insert Figure 7 about here] 

 

5f. Selective fertility and mortality  

Perhaps the most important threat to our research design is nonrandom birth timing. Figure 8 shows the 

frequency of births by month, which rises in March, April and May then has a long trough in July through 

December. These data are shown for both calendar month, and in terms of “rain months” which shift the 

birth dates for the few children in the northern hemisphere whose seasons are reversed. We do not know 

why the number of births rises in March, April and May. That pattern could stem from a rise in 

conceptions during the dry “winter” (June, July and August), or from seasonal patterns in miscarriage and 

neonatal mortality. The amplitude of the curve is slightly lessened when measuring by rain month, 

implying that socioeconomic factors involving calendar months may be more important than seasons.  
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[Insert Figure 8 about here] 

 

To test whether seasonality in birth month could confound our results, Table 9 presents the outcome of 

testing our binary season-of-birth variable against all the explanatory variables in our dataset. The 

regressions are estimated first for the whole sample together (column 1) and then for each of the climate 

zones separately (columns 2 and 3). These results suggest that the potential effect of endogeneity of birth 

timing is not influencing our findings. 

 

[Insert Table 8 about here] 

 

For selective mortality, Figure 9 shows no clear difference between children born in the first and second 

halves of the year. There may be some discontinuity around June, which is the month in which most of 

the survey visits occurred in 2007. As a result, respondents’ children who were born in July had the most 

elapsed time prior to the survey date, and correspondingly they are shown here to have had the most 

cumulative mortality.  Conversely, children who were born in May had the least elapsed time prior to the 

survey date, and turn out to have had the least cumulative mortality by the survey date. As with selective 

fertility, these patterns are interesting but cannot explain or contradict our main results. 

 

[Insert Figure 9 about here] 

 

6. CONCLUSION 

This study exploits temporal and spatial differences in health risks to test whether access to markets and 

services helps rural households smooth child health outcomes. Our setting is the Democratic Republic of 

Congo (DRC), one of the world’s most impoverished countries. Its vast expanse straddles the equator, 

exposing households to differing degrees of seasonal rainfall variation, and its lack of roads gives each 

household very different travel times to the nearest town. In this context, we can use the randomness of 

birth timing for a spatial difference-in-difference approach, asking whether households with easier access 

to markets and public services can use that to protect their children from seasonal fluctuations in 

malnutrition and disease.   

 

For the purposes of this paper, market access is defined as distance to the nearest major town, and health 

outcomes are defined in terms of child mortality, heights and weights at the time of the country’s 2007 

and 2013 Demographic and Health Surveys (DHS). The mechanisms by which easier access could help 

smooth variation associated with birth timing include product and factor markets, migration and 
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remittances as well as social services, health care and public assistance. Much more detailed data would 

be needed to distinguish among these possible channels. For now, our goal is to test whether any 

smoothing effect exists.   

 

Our main result is that households’ access to towns and markets is indeed linked to resilience, protecting 

children from seasonal fluctuations in health conditions at birth. The magnitude of gain for child heights 

is similar to the improvement associated with rising two quintiles in the local wealth distribution. Results 

of this magnitude are large but plausible, and help explain the differences in health outcomes found in a 

wide variety of other settings. We subject our finding to a variety of robustness tests, including 

comparisons of the estimated average treatment effect with similarly estimated coefficients in placebo 

regions and for placebo outcomes, selection bias in birth timing and child mortality, and other possible 

threats to identification. 

 

Further work would be needed to distinguish among the possible causal mechanisms involved, for 

example to distinguish between the role of private markets and the use of public services, or between 

improvements in the diet and reductions in disease burdens. Different mechanisms may matter for 

different people, but all rely on infrastructure to link rural households with towns and cities where goods 

are traded and services are provided. These results add a new dimension to the role of rural infrastructure 

and access to towns. Interventions to lower households’ travel costs could help reduce their vulnerability, 

in addition to the many well-known investments that target specific causes of malnutrition such as 

improved diets, health care and reduced disease transmission. 
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7. TABLES AND FIGURES 

 

Table 1: Spatial variation in exposure to seasons, birth timing and access to towns 

 

Analytical design and hypothesized effects over  triple difference-in-differences 

(region x birth timing x market access) 

Region has a distinct rainy season? 

(= farther from the equator) 
Yes No 

Child was born in or after rainy season? 

(=Jan-Jun if lat.<0, Jul-Dec otherwise) 
Yes* No Yes No 

Household is closer to town? 

(=distance to town in km) 
Yes No** Yes No Yes No Yes No 

                                   Hypothesized status: 
Vulnerable to seasonal variation 

Not vulnerable to 

seasonal variation 

Protected* Affected** Unexposed No effect 

Note: Asterisks indicate hypothesis of significantly worse child nutrition relative to other groups in the 

same row.  For *, the identifying assumption is that birth timing occurs randomly between seasons 

(tested).  For **, the identifying assumption is that seasonal risk factors would have been similar in the 

absence of towns (untestable). 
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Table 2: Descriptive statistics by birth timing and exposure to season variation 

Birth timing: 

Presence of seasons: 

Jan.-June 

None 

N=18,009 

Jan.-June 

Dry winter 

N=18,973 

July-Dec. 

None 

N=16,724 

July-Dec. 

Dry winter 

N=15,935 

All Births 

N=69,641 

 

Child status       

    Children Alive (%) 84.6% 84.5% 83.7% 85.2% 84.5%  

     HAZ -1.51 

(1.68) 

-1.51 

(1.62) 

-1.61 

(1.92) 

-1.26 

(1.80) 

-1.47 

(1.86) 

 

     WHZ -0.31 

(1.25) 

-0.47 

(1.12) 

-0.24 

(1.41) 

-0.45 

(1.31) 

-0.38 

(1.33) 

 

     Age  (months) 28.24 

(17.57) 

28.00 

(17.29) 

29.70 

(17.10) 

29.88 

(16.69) 

29.16 

(16.53) 

 

    Firstborn (%) 23.8% 24.9% 23.8% 23.5% 24.5%  

    Short interval (%) 28.2% 27.9% 26.1% 19.74% 25.6%  

    Boys (%) 50.5% 51.2% 50.4% 50.2% 50.6%  

Household       

     Wealth (quintile) 2.61  

(1.27) 

3.20  

(1.46) 

2.60  

(1.26) 

3.25  

(1.45) 

2.92   

(1.40) 

 

     Proximity (km
-1

) 0.11   

(0.23) 

0.16  

(0.27) 

0.10  

(0.23) 

0.15  

(0.27) 

0.13 

(0.26) 

 

Environment       

     Conflicts 108.72 

(716.5) 

15.03 

(65.7) 

93.52 

(596.8) 

15.95 

(69.7) 

31.28 

(66.9) 

 

     Latitude (abs val) 1.91  

(1.36) 

6.14  

(2.01) 

1.98  

(1.17) 

5.99  

(2.02) 

4.31 

(2.64) 

 

Note:  Data shown are means and standard deviations (in parentheses). Births labeled as January-June 

occurred in calendar months July-December for children born in the Northern hemisphere (N=418). 

Conflicts are total number of fatalities during the child’s year of birth in the respondent’s 1-degree square 

grid-cell of residence.  
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Table 3: Two-sample T-tests with equal variances 

 Alive HAZ WHZ 

Gender 
   

Girls 0.85 -1.31 -0.33 

Boys 0.84 -1.48 -0.44 

Difference 0.009 0.17 0.10 

Pr(T>t) 0.00** 0.000** 0.00*** 

    

Household Location    

Not Remote 0.85 -1.26 -0.38 

Remote 0.83 -1.53 -0.39 

Difference 0.03 0.26 0.02 

Pr(T>t) 0.00** 0.00*** 0.28 

    

Birth season    

Born Jan.-June 0.84 -1.50 -0.39 

Born July-Dec. 0.84 -1.28 -0.38 

Difference -.001 0.22 0.01 

Pr(T>t) 0.69 0.00*** 0.28 
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Table 4: Diagnostic regression with continuous explanatory variables 

  (1) (2) (3) 

Variables Unit/type Child is alive 

Exploratory 

HAZ 

Exploratory 

WHZ 

Exploratory 

     

Age spline 1 Linear spline -0.017*** -0.074** -0.107*** 

  (0.000) (0.015) (0.000) 

     

Age spline 2 Linear spline -0.002** -0.072*** 0.011*** 

  (0.015) (0.000) (0.000) 

     

Age spline 3 Linear spline  -0.006  

   (0.104)  

     

Child is male Binary -0.115* -0.133** -0.108** 

  (0.052) (0.046) (0.026) 

     

Child is firstborn Binary -0.288*** 0.021 -0.026 

  (0.000) (0.811) (0.690) 

     

Short preceding birth interval Binary -0.594*** -0.148* -0.020 

  (0.000) (0.060) (0.731) 

     

Ln(fatalities during birth year) Continuous -0.062*** -0.114*** 0.031** 

  (0.000) (0.000) (0.032) 

     

Household Wealth index Categorical 0.145*** 0.250*** 0.053*** 

  (0.000) (0.000) (0.005) 

     

Absolute value (latitude) Continuous -0.046*** -0.015 -0.017 

  (0.000) (0.313) (0.130) 

     

Proximity to town km
-1

 0.281** -0.022 0.162 

  (0.045) (0.878) (0.137) 

     

Born Jan.-June Binary 0.134** -0.107 0.075 

  (0.024) (0.114) (0.126) 

     

Constant Constant 2.940*** -0.256 0.407*** 

  (0.000) (0.200) (0.003) 

Observations N 18845 3405 3473 

R
2
 R

2
  0.179 0.073 

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions.  

Age splines control for child’s age at observation. Born Jan.-June is actually born July-Dec. in Northern hemisphere 

to account for inversion of seasons at the equator. Age splines control for child’s age at observation. Conflicts are 

the cumulative count in the child’s cluster of residence during the child’s birth year. Errors clustered by DHS survey 

cluster (v001). p-values in parentheses; * p<.10, ** p<.05, *** p<.01.  
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Table 5: Triple difference-in-differences 

  (1) (2) (3) 

Variable Unit/type Child is alive HAZ WHZ 

     

Age spline 1 Linear spline -0.016*** -0.080*** -0.100*** 

  (0.000) (0.006) (0.000) 

     

Age spline 2 Linear spline -0.002*** -0.067*** 0.010*** 

  (0.001) (0.000) (0.000) 

     

Age spline 3 Linear spline  -0.009***  

   (0.001)  

     

Short preceding birth interval Binary -0.510*** -0.187*** -0.039 

  (0.000) (0.002) (0.387) 

     

Child is male Binary -0.149*** -0.164*** -0.116*** 

  (0.001) (0.002) (0.003) 

     

Ln(fatalities during birth year) Continuous -0.057*** -0.087*** 0.018 

  (0.000) (0.000) (0.152) 

     

Proximity to town km
-1

 0.744*** 0.369 0.144 

  (0.003) (0.127) (0.418) 

     

Born Jan.-June Binary 0.080 -0.097 -0.022 

  (0.279) (0.281) (0.743) 

     

Absolute value(latitude) Continuous -0.004 0.045*** -0.019 

  (0.783) (0.009) (0.138) 

     

Born Jan.-June*Proximity Interaction 0.104 0.877** 0.232 

  (0.769) (0.013) (0.367) 

     

Born Jan.-June*Abs(lat) Interaction -0.002 0.018 0.007 

  (0.914) (0.464) (0.686) 

     

Abs(lat)*Proximity Interaction -0.053 0.038 -0.014 

  (0.247) (0.480) (0.728) 

     

Born Jan.-June*Proximity*Abs(lat) Interaction -0.021 -0.201*** -0.000 

  (0.730) (0.006) (0.996) 

     

Constant Constant 3.081*** 0.200 0.627*** 

  (0.000) (0.244) (0.000) 

Observations N 18845 3405 3473 

R
2
 R

2
  0.144 0.056 

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions.  

Age splines control for child’s age at observation. Born Jan.-June is actually born July-Dec. in Northern hemisphere 

to account for inversion of seasons at the equator. Age splines control for child’s age at observation. Conflicts are 

the cumulative count in the child’s cluster of residence during the child’s birth year. Errors clustered by DHS survey 

cluster (v001). p-values in parentheses; * p<.10, ** p<.05, *** p<.01.  
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Table 6: Preferred specification, stratifying by the presence of seasons 

  (1) (2) (3) (4) (5) (6) 

Variable Unit/type Alive 

Seasons 

Alive 

No Seasons 

HAZ 

Seasons 

HAZ 

No Seasons 

WHZ 

Seasons 

WHZ 

No Seasons 

        

Age spline 1 Spline -0.021*** -0.022*** -0.051 -0.135*** -0.098*** -0.101*** 

  (0.000) (0.000) (0.220) (0.003) (0.000) (0.000) 

        

Age spline 2 Spline  -0.003*** -0.002*** -0.086*** -0.090*** 0.010*** 0.012*** 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

        

Age spline 3 Spline   -0.005 -0.003   

    (0.110) (0.254)   

        

Short interval Binary -0.284*** -0.302*** -0.385*** -0.449*** -0.172*** -0.062 

  (0.000) (0.000) (0.000) (0.000) (0.001) (0.244) 

        

Male Binary -0.117*** -0.126*** -0.029 -0.293*** -0.104* -0.038 

  (0.001) (0.000) (0.687) (0.000) (0.069) (0.457) 

        

Conflict exposed Binary -0.043 0.036 0.139 0.249** -0.074 -0.062 

  (0.399) (0.547) (0.148) (0.038) (0.274) (0.509) 

        

Jan.-June Binary -0.127** 0.079 -0.097 0.063 0.051 -0.093 

  (0.011) (0.210) (0.210) (0.573) (0.521) (0.355) 

        

Jan.-June*Remote Interaction 0.128* -0.025 -0.329** -0.188 -0.034 0.132 

  (0.092) (0.747) (0.018) (0.177) (0.759) (0.263) 

        

Constant Constant   0.158 0.537** 0.524*** 0.624*** 

    (0.417) (0.020) (0.000) (0.000) 

Observations N 17217 17297 4224 4211 4312 4319 

R
2
 R

2
   0.290 0.299 0.083 0.077 

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions. Born Jan.-June 

is actually born July-Dec. in Northern hemisphere to account for inversion of seasons at the equator. Age splines 

control for child’s age at observation. Conflict exposure is a binary indicator of whether there was civil conflict in a 

1-degree square of the child’s residence during the child’s year of birth. Errors clustered by DHS-cluster (v001). p-

values in parentheses; * p<.10, ** p<.05, *** p<.01 
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Table 7: Variance inflation factors (VIF) 

   

  HAZ WHZ 

Age spline 1 2.17 1.33 

Age spline 2 1.61 1.37 

Age spline 3 1.5 N/A 

Child is male 1.00 1.00 

Number of Conflicts 1.25 1.25 

Wealth Quintile 1.12 1.12 

Remote 1.06 1.06 

Born Jan.-June 1.04 1.01 

Abs(Latitude) 1.19 1.19 

Note: All results are as for Table 6. 

 

Table 8a: Timing of data collection for 2007 survey 

Month Number of surveys Percentage (%) Cumulative Percentage (%) 

January 23 0.08 0.08 

February 1,935 6.98 7.07 

March 128 0.46 7.53 

April 826 2.98 10.51 

May 3,172 11.45 21.96 

June 21,166 76.40 98.35 

July 453 1.64 99.99 

September 3 0.01 100.00 

Note: DHS administrative data for all child health variables. 
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Table 8b: Timing of data collection for 2013 survey 

Month Number of surveys Percentage (%) Cumulative Percentage (%) 

August 2,249 5.38 5.38 

September 1,182 2.83 8.21 

October 39 0.09 8.31 

November 5,481 13.12 21.43 

December 32,823 78.57 100.00 

Note: DHS administrative data for all child health variables. 
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Table 9: Testing for endogeneity of birth timing, for whole sample and within climate zones 

  (1) (2) (3) 

Variable Units/type Born Jan.-June Born Jan.-June 

Seasons 

Born Jan.- June 

No seasons 

     

Child is Male Binary 0.009 0.023 0.005 

  (0.762) (0.632) (0.895) 

     

Wealth index Categorical -0.015 -0.057 0.002 

  (0.384) (0.106) (0.919) 

     

Ln(fatalities) Continuous  0.014 0.003 0.018 

  (0.125) (0.830) (0.152) 

     

Proximity to town km
-1

 0.319* 0.538 -0.047 

  (0.069) (0.227) (0.875) 

     

Abs val (latitude) Continuous 0.021   

  (0.138)   

Observations  18804 7060 11728 
Note:  Dependent variable is a binary indicator of birth during the Jan.-June wet season. Regression estimated using 

fixed-effects logit. All results include fixed effects for survey clusters (N=840), with notation and variable 

definitions as in Table 6. p-values in parentheses ; * p<.10, ** p<.05, *** p<.01.  
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Figure 1: HAZ by child age and household remoteness, with 95% CI
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Figure 2: Child is alive, by month of birth and household remoteness, with 95% CI
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Figure 3: HAZ by month of birth and household remoteness, with 95% CI

 

Note:  To account for inversion of seasons, birth date is shown by calendar month in the 

southern hemisphere, and for the northern hemisphere is shown as 1=July, 2=Aug. etc. 
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Figure 4: Risk of death by month of birth and household remoteness
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Figure 5: Conflict incidents by month

 

 

Figure 6a: Mean age and HAZ at time of survey by calendar month of birth, 2007 DHS 
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Figure 6b: Mean age and HAZ at time of survey by calendar month of birth, 2013 DHS 

 

Note:  These charts reproduce Figure 3 of Cummins (2013), using our DRC data across both DHS survey 

rounds. The line shows average HAZ on the right axis by the child’s month of birth, and the bar shows 

their average age by month of birth on the left axis. As detailed in Tables 7 and 8, over three-quarters of 

the 2007 DRC surveys were implemented in June, and over three quarters of the 2013 DRC surveys were 

implemented in December. So, children born in July (for the 2007 round) and January (for the 2013 

round) are surveyed at the oldest average age and have correspondingly lowest average HAZ scores. This 

‘survey timing artifact’ effect is controlled for in our regressions using a flexible linear age spline, based 

on the time path of HAZ and WHZ scores shown in Figures 1 and 2. 

 

Figure 7: Placebo regression results (* indicates the ATE is significant at 10%, and ** 5%)

 

Note: Data shown are coefficient estimates (in blue) and 95% confidence intervals for “average treatment 
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effects” in our preferred specification (Table 6), for our three dependent variables of interest followed by 

five ‘placebo’ variables for which no effect is expected of our ‘treatment’, due to the absence of any 

plausible mechanism of action. 
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Figure 8: Timing of births by calendar month and season

 

Note: Data shown are the number of children ever born in each month, as recorded across each DHS 

survey for DRC. The solid line refers to calendar months, and the dashed line uses a seasonal adjustment 

by hemisphere, where dates north of the equator are recorded as “January” for births in June, “February” 

for July, etc.  In our regressions, these “rain months” are aggregated into six-month periods, since as 

children in higher latitudes who are born in the January-June period are more exposed to heavy rains and 

subsequently poor health outcomes than those born in the rest of the year. As shown here, more children 

were born in these adverse months than in July-December, as conception was slightly more likely to have 

occurred during the dry winter season.  This pattern suggests that birth timing is either random or 

associated with factors other than variation in the child’s health prospects.  
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Figure 9: Cumulative mortality prior to survey date 

 

Note: Data shown is the cumulative mortality rate for all children ever born to the survey respondents 

across both rounds of the DHS in DRC (2007 and 2013), by the child’s month of birth.  
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