
 

Spatial Effects and House Price 
Dynamics in the U.S.A. 

                                                                              
 
 

Jeffrey Cohen1 
 

Yannis M. Ioannides2 
 

and 
 

Win (Wirathip) Thanapisitikul3 
 
 
                                                                 
 
                                                                February 17, 2015  
           
                                                                     Abstract                                   

This paper examines spatial effects in house price dynamics. Using 
panel data from 363 US Metropolitan Statistical Areas for 1996 to 
2013, we find that there are spatial diffusion patterns in the growth 
rates of urban house prices. Lagged price changes of neighboring 
areas show greater effects after the 2007-08 housing crash than 
over the entire sample period of 1996-2013. In general, the 
findings are robust to controlling for potential endogeneity, and for 
various spatial weights specifications (including contiguity weights 
and migration flows). These results underscore the importance of 
considering spatial spillovers in MSA-level studies of housing 
price growth. 
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Introduction  

Spatial effects in economic processes have recently attracted particular attention 

by economists. For instance, during period of housing booms, house prices in 

metropolitan areas in the Northeast of the U.S. show distinct patterns as they appreciated 

at similarly high rates, while house prices in metropolitan areas in the Midwest did not 

experience comparably high appreciation rates during those same periods. Thus,  house 

price dynamics might have spatial features. Spatial features of the housing bust 

associated with the Great Recession of 2007-2009 are currently receiving particular 

attention. This paper looks empirically at such spatial aspects in house price dynamics in 

more detail and by utilizing data that include several housing market booms and busts 

including the Great Recession.  

Economists have accounted for the role of space in house price dynamics at 

various levels of aggregation. Some studies look at spatial effects at the level of 

submarkets within a particular Metropolitan Statistical Area (MSA for short). The fact 

that different urban neighborhoods are often developed at the same time, and dwellings in 

them may share similar structural characteristics and that neighborhoods may offer 

similar amenities suggest that house prices may react similarly to exogenous shocks. 

Basu and Thibodeau (1998) confirm this intuition by using data from submarkets within 

metropolitan Dallas. Also working at a similar local level, Clapp and Tirtiroglu (1994) 

estimate a spatial diffusion process in house price for towns in the Hartford, CT, MSA. 

They find that lagged house price changes in a submarket affect the current house price 

of a contiguous submarket positively and more strongly than the lagged house price 

changes for noncontiguous submarkets. However, such evidence of spatial effects at the 



submarket level of aggregation may be MSA-specific, and the conclusions for a single 

MSA may not necessarily be valid for other MSAs. Further, there could be spatial effects 

between submarkets that are geographically contiguous and belong to the same economic 

area and housing market, but not in the same MSA. 

A second level of aggregation at which economists have examined spatial effects 

is at the Census division. Pollakowski and Ray (1997) find that although house prices in 

one division are affected by lagged house prices in other divisions, there is no clear 

spatial diffusion pattern that describes such processes. That is, lagged house price 

changes of adjacent Census divisions do not provide greater explanatory power in 

explaining current house prices than those in non-adjacent divisions. However, when 

those authors look at house prices within the greater New York’s primary metropolitan 

statistical areas (PMSAs), they find evidence of spatial pattern consistent with that by 

Clapp and Tirtiroglu (1994).  

Given mixed results from previous research on spatial diffusion patterns in house 

prices at different aggregation levels, this paper has the following aims; one, to examine 

house price interactions at the MSA level of aggregation across the entire continental 

U.S;  two, to bring geographic distances into the analysis in addition to adjacency as 

measures of proximity. The paper employs the consolidated house price index, which has 

been published (since March 1996) by the Office of Federal Housing Enterprise 

Oversight (OFHEO). The data cover almost 400 MSAs across the entire U.S., with data 

for many MSAs going back to as early as 1975 (Calhoun, 1996).  We use these data 

along with appropriate geographic information to study house price dynamics across the 



entire U.S. at the MSA level of aggregation and to compare the results with other levels 

of aggregation.  

The organization of this paper is as follows: section 1 reviews the existing 

literature; section 2 introduces the econometric models used in this study; section 3 

describes the data and methodology; section 4 presents the results, section 5 estimates 

impulse response functions, and section 6 concludes. 

1. Literature Review 

The modern view of housing emphasizes its role as an asset in household 

portfolios [Henderson and Ioannides (1983)]. Economists predict that asset prices in 

informationally efficient markets react rapidly to new information. Over the last twenty 

years, however, empirical studies have established that this might not be the case for 

housing markets (Rayburn et al., 1987, Guntermann and Norrbin, 1991). Economists 

have come to believe that households may be backward-looking in housing markets. 

Therefore, past house price changes can be used to explain future prices changes. Case 

and Shiller (1989) use their own house price indices for four major cities and find that 

one-year house price lag in a city is statistically and economically significant in 

forecasting that city’s current house price.  

Informational inefficiency in housing markets, as exhibited by temporal and 

spatial persistence in house prices, is not surprising when one considers the potential 

frictions affecting real estate markets. For instance, real estate markets do not clear 

immediately after a shock to the economy.  The process of matching buyers with sellers 

of existing houses takes time.  It also takes time for developers to bring new houses to the 

market, after an increase in demand, and to liquidate inventories when demand weakens. 



Speculative inventory holding is very costly. Transaction costs in housing markets are 

also higher than other asset markets. Case et al. (2005) find that selling costs, such as five 

to six percent brokerage fees typically charged in the U.S., are high. In addition, both the 

physical and the psychological costs of moving (e.g. moving across neighborhoods and 

changing schools) are high. Such high transaction costs limit arbitrage opportunities for 

rational investors, and thus lead to pricing inefficiencies.  

Brady (2014) reviews some recent studies on spatial aspects of housing prices that 

have incorporated Vector Autoregressions (VAR) as an approach to model simultaneity.4 

In earlier work, Anselin (2001) and Pace et al. (1998) introduce general methodologies 

for incorporating the time dimension in spatial models.5 These papers followed Clapp 

and Tirtiroglu (1994), which was one of the pioneering works on spatial effects in house 

price dynamics that we referred to earlier, using house price data from Hartford, CT. 

These authors regress excess returns, defined as the difference between the return of a 

submarket within an MSA and the return at the MSA level, on the lagged excess returns 

of a group of neighboring towns and on a “control group” of non-neighboring towns. The 

authors find that estimated coefficients were significant for excess returns in neighboring 

towns, but insignificant for non-neighboring towns. Their results suggest that house price 

diffusion patterns exist within an MSA and are consistent with one form of a positive 

feedback hypothesis, where individuals would be expected to place more weight on past 

4 These include Pesaran and Chudik (2010), Holly et al (2011), Beenstock and Felsenstein (2007), and 
Kuethe and Pede (2011).  
5 One advantage of our approach over the approaches of Pace et al (1998), Anselin (2001), and others that 
utilize a VAR approach is that ours is well-suited for a study where contemporaneous spatial lags are not 
present. Our approach is also parsimonious, which is helpful in estimating versions of the model with time 
lags that contain several types of spatial lags. 

                                                 



price changes in their own and neighboring submarkets and less weight on those further 

away.  

Pollakowski and Ray (1997) also examine house price spatial diffusion patterns, 

but at a much higher aggregation level. Using vector autoregressive models with 

quarterly log house price changes from the nine U.S. Census divisions, these authors are 

unable to identify a clear spatial diffusion pattern. Past growth rates in neighboring 

Census divisions were correlated with a particular division’s current growth rates for 

some divisions. However, upon examining neighboring PMSAs within the greater New 

York CMSA, like Clapp and Tirtiroglu (1994), the authors find evidence in support of a 

positive feedback hypothesis.  Shocks in housing prices in one metropolitan area are 

likely to Granger-cause subsequent shocks in housing prices in other metropolitan areas.  

More recently, Brady (2008), using spatial impulse response function and VAR 

models, finds that spatial autocorrelations in house prices across counties in California 

are highly persistent over time. The average housing price in a Californian county is 

positively affected by bordering counties for up to 30 months. Brady (2011) examines 

how fast and how long a change in housing prices in one region affect its neighbors. 

Using an impulse response function with a panel of California counties, he finds that the 

diffusion of regional housing prices across space lasts up to two and half years. Brady 

(2014) estimates the spatial diffusion of housing prices across U.S. states over 1975- 

2011 using a single equation spatial autoregressive model. He shows that for the 1975 to 

2011 period spatial diffusion of housing prices is statistically significant and persistent 

across US states and so is in the four US Census regions for the United States. He shows 

that the persistence of spatial diffusion may be more pronounced after 1999 than before. 



Holly et al. (2010) also find spatial correlations in both housing prices across the 

eight Bureau of Economic Analysis (BEA) regions and housing prices across the 

contiguous states within the U.S. They find evidence of house price departures from the 

long run growth rates for markets in California, Massachusetts, New York, and 

Washington, even after accounting for spatial effects between states. Holly et al. (2010) 

work with data for the UK, but also allow for spillover from the US economy in order to 

explain the spatial and temporal diffusion of shocks in real house prices within the UK 

economy at the level of regions to illustrate its use. They model shocks that involve a 

region specific and a spatial effect. By focusing on London they allow for lagged effects 

to echo back to London, which in turn is influenced by international economic conditions 

via its link to New York and other financial centers. They show that New York house 

prices have a direct effect on London house prices. Their use of generalized spatio-

temporal impulse responses allows them to highlight the diffusion of shocks both over 

time and over space. 

An interesting recent development in this literature is the utilization of data on 

individual transactions. DeFusco et al. (2013) use micro data on the complete set of 

housing transactions between 1993 and 2009 in 99 US metropolitan areas to investigate 

contagion in the last housing cycle. By defining contagion as the price correlation 

between two different housing markets following a shock to one market that is above and 

beyond that which can be justified by common aggregate trends, their estimations allow 

them to determine the timing of local housing booms in a non-ad hoc way. The evidence 

for contagion is strong during the boom but not the bust phase of the cycle. They show 

that these effects are due to interactions between closest neighboring metropolitan area, 



with the price elasticity ranging from 0.10 to 0.27. The impact of larger markets on 

smaller markets imply greater elasticities. They show local fundamentals and 

expectations of future fundamentals are limited in accounting for their estimated effects, 

suggesting a potential role for non-rational forces.  

Bayer et al. (2014) utilize data from a detailed register of housing transactions in 

the greater Los Angeles metropolitan Area from 1988 to 2012. Properties in their data set 

contain full geographic information, which allows them to readily merge with 2011 

county tax assessor data and obtain information on property attributes, and for some of 

the data, additional information may be obtained from  the Home Mortgage Disclosure 

Act (HMDA) forms on purchaser/borrower income and race. Bayer et al. find evidence 

of strong spillovers within neighborhoods: homeowners were much more likely to 

speculate both after a neighbor had successfully “flipped” a home and when a home had 

been successfully flipped in their neighborhood. Social contagion appears to be at work 

and to involve amateur investors, whose share of the market reached a record high at the 

same time as the market reached its peak, with equity losses following in the ensuing 

crash. 

   

2. Econometric Models 

As should be apparent in the above literature survey, one can postulate that housing 

prices (in our case, at the MSA level) in a given period depend on lagged housing prices, 

and MSA specific effects. By differencing the housing prices, we are left with a 



dependent variable of the annual house price growth rate of MSAi at year t.6 We utilize 

this measure to calculate one-year through four-year lagged house prices growth of MSAi 

in year t. Similarly, we calculate the one-year, two-year, three-year, and four-year time 

lags of the spatial lags of the dependent variable. These spatial lags are obtained using the 

contiguity neighbor weights, the inverse distance weights for several distance intervals, 

and the migration weights. The results presented in the tables are for the growth-rate 

regressions, and the growth-rate regressions with the spatial lags for the adjacent weights, 

due to potential multicollinearity concerns between the inverse distance weighted house 

price lags for various intervals that lead to many insignificant t-statistics. 

 

The growth rate of house prices in MSAi is defined in the standard fashion as the 

difference in logs, Gi,t = log ( HPI i,t )  –  log ( HPI i,t-1 ). We compute the annual growth 

rate, Gi,t, by using values for each year’s first quarter. It is important to note that such 

differencing eliminates unobserved additive heterogeneity at the log house price levels.  

Baseline Model: Own-Lag Effects 

We use a autoregressive model up to order 4, AR(4), for the house price annual 

growth rates as a baseline for comparison against spatial effects. The yearly growth rates 

Gi,t are regressed against their four own lags, 

Gi,t = β 0 + β 1Gi,t-1 + β 2Gi,t-2 + β 3Gi,t-3 + β 4Gi,t-4 + εi,t ,                    (1) 

where εi,t , the error term, may include MSA-specific time-invariant fixed effects. Our 

choice of 4-year lags is based on the literature discussed above where other researchers 

6 The MSA fixed effects would then drop out, although for completeness we present two sets of results – 
one with and one without MSA fixed effects. 

                                                 



have found significant correlation between lagged and current growth-rates. In our 

estimation of model (1), all four lags are statistically significant; our results based on  the 

Akaike Information Criterion (AIC) imply the four lag specification is preferred over 

models with additional lags.7 

Incorporating Geography into the Model by Means of Cross-Lag Effects 

We control for spatial effects in several ways. First, we add as a regressor in the 

r.h.s. of (1) the average annual growth rate in the HPI of all MSAs that border MSAi at 

time period t, Ai,t, and up to four of its lags.8  That is, we estimate dynamic fixed effect 

spatial autoregressive models up to order 4, SAR(4):9 

Gi,t = η  + β φ


i,t + λ δ


i,t + εi,t ,             (2) 

where η  is a constant intercept, φ


i,t is a vector of four own-lag growth rates, δ


i,t is a 

vector of the four lags of the mean annual growth rate of all MSAs that border MSAi, and 

β  and λ are the respective vectors of parameters. 

Second, we introduce physical distances between MSAs in order to examine 

whether spatial dependence in MSA house prices is related to distance among them. For 

each MSAi, we group the remaining 362 MSAs into 5 groups. Group 1 includes all MSAs 

that are less than 100 km away from MSAi, Group 2 includes all MSAs that are between 

100 km and under 200 km from MSAi, and Groups 3, 4, and 5 include MSAs that are 

between [200 km to 350 km), [350 km to 500 km), and [500 km to 1000 km) from MSAi, 

7 One could argue that the lagged dependent variables can give rise to time series autocorrelation. It is for 
this reason that we have utilized the Heteroskedasticity Autocorrelation Consistent (HAC) estimator.  
8 Using adjacency as a measure of geographical proximity has also been used in previous literature. 
Dobkins and Ioannides (2001) use adjacency for comparing MSA population growth rates. Pollakowski 
and Ray (1997) and Holly et al. (2011) use it at the regional and the state level, respectively. 
9 Anselin (2001) and Pace et al (1998) provide overviews of space-time models. 

                                                 



respectively. The inverse distance weighted (IDW) growth rates for each of the 5 

intervals for each MSAi at time period t are calculated. The use of inverse distance 

weights imposes a particular spatial attenuation of interactions. The lagged IDW growth 

rates for each of the 6 intervals are then incorporated into (1), such that we have, 

Gi,t = η  + β φ


 i,t + λ δ


i,t + µ ω


 i,t + εi,t ,         (3) 

where ω


 i,t is a vector of the four lags for the annual inverse distance weighted growth 

rate of all MSAs in each of the 5 distance intervals relative to MSA i. 

 Finally, we add an additional set of spatial weights based on migration data. 

Specifically, we denote the (i,j) element of α i,t  as ψ t Gi,t , where ψ t is a 363 by 363 

matrix in year t of the total migration – the sum of migration inflows and outflows – 

between MSAj and MSAi. We then modify equation (3) to incorporate the time lags of 

the migration weighted housing price growth rates: 

Gi,t = η  + β φ


 i,t + λ δ


i,t + µ ω


 i,t +  γ α i,t + εi,t ,        (4) 

In this specification, the time period of our analysis covers 1996-2011, because these are 

the years covered by the migration data set. 

 Given the potential for multicolinearity among the inverse distance spatial lags 

(since one might speculate greater migration flows occur between larger cities that are far 

away), we estimate an alternative to equation (4). This estimation equation includes 

spatial lags for contiguous neighbors and for migration spatial lags: 

Gi,t = η  + β φ


 i,t + λ δ


i,t  +  γ α i,t + εi,t ,        (5) 



 

MSA-specific effects 

The housing literature suggests that it may be important to consider MSA-specific 

effects in house prices dynamics. We recall the maxim “location-location-location” in 

connection with real estate and apply it at the MSA level. Indeed, intuitively, growth 

rates in house prices in MSA’s in a relatively warm state such as California could have 

different fundamental characteristics than houses in colder MSA’s in New England. In 

addition, Gyourko et al. (2006) identify “superstar cities,” defined as cities with 

extraordinarily high growth in real income and fixed housing supply, whose housing 

prices exhibit greater volatility and faster appreciation rates. There may well be 

unobservable idiosyncratic differences among different MSAs. Further, results reported 

in Thanapisitikul (2008) suggest widely varying patterns in boom and bust periods of the 

housing price cycle across MSAs.  In addition to estimating these models without fixed 

effects, we also adopt fixed effects in the stochastic structure of Equations (2), (3), and 

(4) because such effects could capture MSA-specific patterns that may be correlated with 

other regressors.  

Since the own-lags of the dependent variable are included as regressors, our 

model is susceptible to endogeneity bias. This is in principle quite important, especially 

because we use annual growth rates and not longer time unit of analysis such as five-year 

growth rates in house prices. Such bias may be due to a common component in the 

current period, which may arise from an exogenous shock in the previous period. 

Following Arellano and Bond (1991) and Glaeser and Gyourko (2006), we use the 

Arellano-Bond estimator. Briefly, this procedure utilizes the generalized method of 



moments (GMM) to instrument the dependent variable’s own lag, Gi,t-1, with Gi,t-2. This 

process is repeated for the dependent variable’s own second, third, and fourth lags. That 

is, Gi,t-2 is instrumented by Gi,t-3, Gi,t-3 by Gi,t-4, and Gi,t-4 by Gi,t-5. The same procedure is 

repeated for the possibly endogenous spatial regressors.  

It is important to note that the Arellano-Bond estimator, like all instrumental 

estimation methods, hinges on two assumptions. First, Gi,t-h must be correlated with    

Gi,t-h-1, where h denotes a lag. Second, the instrument, Gi,t-h-1, must be uncorrelated with 

the model’s error term.10 One potential problem that may arise is when the instruments of 

the spatial regressors are correlated with the time lag of the dependent variable, which 

could result in multicollinearity. As discussed in Brady (2008), this issue is less of a 

concern when there is high variability in the dependent variable. Since we use data from 

363 MSAs, in which the variability in house price growth rates is high, this helps mitigate 

the problem of multicollinearity in the instruments and the in time lags of the dependent 

variable. 

3. Data Description11 

House Price Data 

House price data are taken from the Office of Federal Housing Enterprise 

Oversight (OFHEO). We define a panel dataset that is comprised of annual (based on 1st 

quarter) house price indices from 363 MSAs within the continental U.S. The panel data 

run from the first quarter of 1975 until the first quarter of 2013 and they were first 

10 We examined the correlation between the instruments and the error term for the AB estimation of 
equation (1) below. The correlations range from 5.79x10^-19 to 1.07x10^-16. These correlations appear 
sufficiently small that we are confident the errors are uncorrelated with the instruments. 
11 See Table 1 for the complete list of MSAs included in this study, which are based on the U.S. Census 
Bureau’s 2009 MSA definitions; and the summary statistics. 

                                                 



published in March of 1996. However, because OFHEO requires that an MSA must have 

at least 1,000 total transactions before the MSA’s Housing Price Index (HPI) may be 

published, the panel is unbalanced, with only roughly half of the 363 MSAs have HPIs 

that begin in 1975. We are able to obtain a balanced panel beginning in 1995 through 

2013. We use the first quarter data from each year during this period to construct the 

balanced panel. A map of the U.S. and all of the 363 MSA’s is in Figure 1, and a list of 

the 363 MSA’s is in Table 1.12  

Spatial Data 

We use three measures of spatial proximity. The first is a contiguity or adjacency 

matrix, W (363x363), and the second is a matrix of physical distances among metro areas, 

D (363x363).13 The third is a set of migration weights with migration data. Provided by 

the Internal Revenue Service and compiled by Telestrian.  

For the contiguity weights, any pair of MSAs that border one another, the value 

“1” is entered into W, otherwise the default value is “0”. W is normalized such that the 

sum of each row equals one.  

For the distance matrix, the U.S. Census Bureau provides centroids (reference 

points at the center of each polygon) for all of the 363 MSAs. The physical distances, 

measured in kilometers, between any pair of centroids define the entries in D.  

12 Note that since we focus on the continental U.S., Figure 1 includes some MSA’s that we did not include 
in our sample, such as those in Alaska, Hawaii, and Puerto Rico. Also, Figure 1 shows Micropolitan 
Statistical Areas, but we restrict our attention to the MSA’s due to data consistency and availability over 
our entire sample period of 1996-2013.  
13 All spatial distance data are calculated based on 2009 Tiger Line files from the U.S. Census Bureau, 
which include latitude and longitude for the MSA centroids. We use the Haversine distance formula to 
calculate the distances between each pair of MSA’s. For the contiguity matrix, an ArcGIS script is used to 
identify whether any polygons (MSA boundary) pairs border one another. 

                                                 



The migration data are annual, covering the period 1996-2011 (16 years). The 

migration weights that MSA j have on MSA i in a given year are based on the sum of 

migration inflows and outflows between i and j in that year. Since our annual migration 

data cover the period 1996-2011, we construct a separate migration weights matrix for 

each of these years. We then row-normalize this migration weights matrix, and place 

them into a larger, block diagonal matrix that is dimension (16 times 363) by (16 times 

363).  

Consumer Price Index Data: The Consumer Price Index (CPI) data are taken 

from the Bureau of Labor Statistics (BLS). The data are the Urban Consumer CPI for All 

Items from 1995 to 2013, for each of 4 regions in the U.S. Each MSA is classified into 

one of these 4 regions, then the appropriate regional CPI is used to deflate its HPI. Using 

these regional CPI deflators avoids some limitations with the MSA-level CPI data that 

are noteworthy. First, the BLS only publishes CPI data for 27 metropolitan areas.14  

There are only 39 MSAs that fall inside (completely and partially) the boundaries of the 

27 metropolitan areas.  Therefore only 39 MSAs have an associated CPI, while many of 

the 39 MSAs also share common CPI. Second, the frequency of the published CPI varies 

(monthly, bimonthly, and semiannually) for different metropolitan areas. These variations 

do not necessary coincide with the timing of OFHEO’s HPI, which is reported on a 

quarterly basis.  

Descriptive statistics for the housing price growth and spatial lags of housing 

price growth are presented in Table 2.  The typical MSA experienced year-over-year 

mean price growth of approximately 0.4%. Its neighbors’ house price growth ranged 

from an average (mean and median) of between 2% and 3%, depending on the definitions 

14 See www.bls.gov for the list of the 27 metropolitan areas. 
                                                 



of neighbors. The largest year-over-year increase in an MSA over the years 1996-2013 

was 28%, while the largest drop was 45%. This range is somewhat smaller for the 

neighboring MSA’s maximum and minimum year-over-year price growth. 

 

4. Empirical Results 

4.1 Own-Lag Effects: Baseline Results 
 

For our entire sample of 1996-2013, we first report the results of the own-lags 

regression.  

Table 3 reports the baseline results from estimating equation (1) with only own-

lags effects and MSA fixed effects, for the real (i.e., deflated) housing price growth 

regression. Column 1, Table 3, reports the coefficient estimates of the own-lagged model 

with fixed effects. The coefficients on the first 2 lags are positive, less than 1, and 

statistically significant. The coefficients on the 3 year and 4 year lags are negative, less 

than 1 in absolute value, and statistically significant.  The sign of the one-year lag 

coefficient is consistent with previous literature, suggesting that the first own-lag of 

house prices has explanatory power in forecasting the next period’s house prices. Since 

the third, and fourth own-lags are all also highly statistically significant but negative, 

once again this may suggest mean reversion.  

Column 1 of Table 6 reports the results using the Arellano-Bond correction (and 

Table 4 presents results for the corresponding estimation approach including fixed 

effects). The signs for the first and third lag coefficients remain unchanged but the 



magnitudes are somewhat larger than those in column 1.15 The 4-period lagged growth 

rate coefficient is now positive. All four coefficient estimates are highly statistically 

significant once again.  

We introduce four time lags of the spatially lagged growth rates of all MSAs 

adjacent to MSAi as additional regressors, as in equation (2). We perform a likelihood 

ratio test between the restricted model (OLS estimates of own-lags without the presence 

of adjacent spatial regressors) and the unrestricted models (equation (2)).  The LR test 

statistic is approximately equal to 100, while the χ2 statistic (critical value) with 4 degrees 

of freedom is 9.49. Hence, the LR test strongly rejects the null hypothesis at all levels of 

statistical significance that spatial dependence is not present in the residuals. 

Column 3 of Table 3 presents the growth rates with fixed effects regression 

results, for the estimated coefficients of lags of contiguity weights spatial regressors. The 

first 3 of these coefficients are positive, while the second and fourth time lags are 

statistically significant at all significance levels.  

A number of remarks are in order. First, spatial effects from growth rates of 

housing prices in neighboring MSAs are clearly present. Second, in general, lagged house 

price growth rates for adjacent MSAs have a comparable degree of explanatory power 

relative to the own-lags in explaining MSAi’s current growth rates. Third, including fixed 

effects does not substantially affect the estimates.16 And fourth, the own-lag effects and 

15Although the magnitude of the coefficient on the one-year lag is greater than 1.0, it is not statistically 
significantly greater than 1.0. 
16 For completeness, we include the fixed effects estimates in Table 3. Obviously, if the original model is a 
fixed effects specification with the house price index in levels, these fixed effects would drop out when 
obtaining the first differences. 

                                                 



cross-lag effects could be co-determined. Accordingly, we re-estimate these models with 

the Arellano-Bond estimator, which accounts for potential endogeneity of the regressors. 

Column 3 of Table 4 reports the results including both the own-lags and the time 

lags of the spatial variables with the Arellano-Bond estimator. Here the first and third 

year time lags of the own lags are significant, and lag four of the spatial lags is negative 

and significant.17   

We also estimated models where we add time lags of inverse distance weights 

spatial lags, as in equation (3). Once again, all four of the own-price lags are statistically 

significant, but all of the contiguity neighbor spatial lags, and all of the inverse distance 

spatial lags with the exception of the second and fourth year lags of the 500 to 1000 km 

spatial lags, are statistically insignificant. The results for equation (3) with the Arellano-

Bond estimator are much worse, with none of the parameter estimates significant. We 

examined the correlations between the various inverse distance and contiguity spatial lag 

variables, and find that there is likely a high degree of multicollinearity that is leading to 

insignificant parameter estimates. Given the lack of significance of most of the 

parameters when we include inverse distance weighted spatial lags, we omit those results 

from the tables.18 

Finally, we add time lags of spatial lags using migration weights, as in equation 

(5).19  Since our migration data covers the years 1996-2011, we estimate equation (5) for 

this time period. Column 5 of Tables 3 and 4 present the results for equation (5) 

estimated by OLS and using the Arellano-Bond estimator, respectively, both including 

17 The one-period lag on both the own-lag and the spatial lag are greater than 1.0 in magnitude, but not 
statistically significantly greater than 1.0. 
18 These results are available from the authors upon request. 
19 We omit the inverse distance weighted spatial lags from this specification, due to severe multicolinearity 
among the inverse distance spatial lags. 

                                                 



fixed effects. In the OLS case for the time lags of the spatially lagged migration weights, 

the second time lag is positive and significant, while the fourth time lag is negative and 

significant; the other two time lags are insignificant. Given our earlier concerns of 

potential endogeneity, we re-estimated equation (5) using the Arellano-Bond estimator. 

Once again, all parameter estimates are highly insignificant. While one might anticipate 

that there can be persistence over time in MSA-to-MSA migration that leads to time 

series autocorrelation and contributing to the high standard errors (and in turn, low t-

statistics), all of these estimates are based on Heteroskedasticity and Autocorrelation 

Consistent (HAC) standard errors. Thus, it is likely in the full sample that when we 

include time lags of both types of spatial lags and control for potential endogeneity, there 

is little evidence of spatial spillovers. One might conjecture, however, that this result does 

not hold during the period following a “bust”, so we turn our attention to the post-2007 

period. 

4.2.2 Post-2007 Results 

 Since one might expect the results to differ after the bust of 2007-08, we re-

estimated the models described above, for the period 2008-2013 (and for equation (5), for 

the period 2008-2011).  

For the model with both spatial lags and own-lags (equation 2) where we estimate 

using the Arellano-Bond procedure (column 4 of Table 4), 3 out of 4 of the own-lags in 

the post-2007 period are larger in magnitude than for the entire sample. More 

importantly, there is no immediate spatial contagion in this post-2007 model, since the 

one-, two-, and four-period lags of the spatial lag are insignificant, but the three-period 



lag of the spatial lag is significant.20 This implies that contagion was more important after 

the crisis of 2007-08. 

For the time lags of the migration weighted spatial lags estimated with the 

Arellano-Bond approach in equation (5), shown in column 6 of Table 4, the own-price 

lags are insignificant, but the two- and three-period lagged migration weighted prices are 

significant. Since virtually all MSA fixed effects are highly insignificant, we estimated 

equation (5) again without fixed effects, in column 6 of Table 6. In this model, 3 out of 

the 4 migration lags are significant, and the first two own-price lags are significant. 21 

5. Impulse Response Functions 

Given the significance of several of the time lags of the spatial lags, an 

examination of the impulse responses allows us to generate insights on the adjustment 

process to shocks with and without consideration of spatial spillovers. Here we report two 

sets of simulations that utilize the results from the previous section in order to help us 

conceptualize how a unit shock (100 percent) on house prices in one area propagates 

across time and space, ceteris paribus. The first set of simulations examine how house 

prices in one area respond to a shock in the same area, considering the spatial structure of 

the models and based on parameter estimates from the 1996-2013 regressions. The results 

from the first simulation will serve as a benchmark against the results based on parameter 

20 None of the four spatial lags are statistically significant in the full sample, while one of the spatial lags 
are statistically significant in the post-2007 sample. 
21 With the inverse distance weights model in equation (3) for post-2007, only 3 of the time-lagged inverse 
distance spatial lags are significant, and all of the own time lags are statistically significant. This is a slight 
improvement over the results for the entire sample, but still somewhat disappointing, likely due to the 
multicollinearity between the inverse distance-weighted spatial lags. In the version of the model with the 
Arellano-Bond estimator for post-2007, the one-year and two-year own time lags are the only two 
statistically significant variables in the model. These detailed coefficient estimates are available from the 
authors upon request. 

                                                 



estimates from the post-2007 period, which is the focus of the second simulation. Both 

sets of simulations focus on the house price dynamics in a particular MSA. One considers 

the situation where there are no spatial effects and the second simulation is based on 

regression parameter estimates where there are a variety of types of spatial effects. 

Simulation 1: 1996-2013 

We report the impulse response function of house prices in an MSA, to an 

exogenous unit shock that occurred in X, and follow the effect the shock has on house 

prices in X over time.22 These impulse responses are based on several different model 

specifications presented above, using the 1996-2013 data. These impulse response 

functions are presented in Figure 2a (based on the model with only own time-lag effects), 

Figure 2b (based on the model with own time-lag effects and lagged neighbor effects), 

and Figure 2c (based on the model with own time-lag effects, lagged neighbor-effects, 

and lagged migration weighted spillover effects). These impulse response functions 

demonstrate that the adjustment to the unit shock is smaller when based on the model 

without spatial effects (0.79) compared with the model with contiguity neighbor spatial 

effects (0.83) and both contiguity and migration spatial effects (0.84). Also, in all cases, 

home prices overreact positively to an exogenous positive shock on house prices, and 

then the positive reactions turn negative, before becoming positive again and finally 

returning to equilibrium growth rates. But in the simulations based on the parameter 

estimates from the models with spatial effects, this process is slightly faster, with the 

prices becoming negative more quickly, and a more rapid return to equilibrium. 

 

22 We also include confidence intervals, for two standard deviations, in these impulse response figures. 
                                                 



 

Simulation 2: 2008-2013 

In this second simulation, we use the parameter estimates based on estimation covering 

the period 2008-2013, for the model with no spatial effects, and separately, for the model 

with lagged contiguity neighbor spatial effects, and separately with both lagged 

contiguity and lagged migration spatial effects.23 There is a stark difference in the own-

lag effect simulation (Figure 3a), with a very precipitous fall-off in the response in the 

first few periods. When we consider the spatial effects in our estimation, the 

corresponding impulse responses are much smoother. In other words, based on post-2007 

estimations with spatial effects, the impulse responses exhibit greater persistence. This is 

in contrast with the impulse responses from the estimates on the entire 1996-2013 period, 

where the differences in the impulse responses based on the spatial and non-spatial 

models are small but not very pronounced. Clearly, considering spatial effects during 

periods of a bust is more important than when considering all parts of the housing cycle. 

By ignoring spatial effects in examining the impacts of a shock during a “bust”, one 

misses the persistence in this shock (as in Figures 3b and 3c) that otherwise may not be 

apparent.    

6. Conclusions 

We find that studying house price dynamics at low levels of aggregation such as 

the MSA level can be more informative than those at the national and the Census region 

levels. This is because at the large level of aggregation the regional own-lag effects 

23 Since the migration data ends in 2011, the estimation for the spatial model including the migration 
weights for post-2007 covers the period 2008-2011. 

                                                 



obscure the own-lag effects and spatial effects of MSAs within the respective Census 

division.  

Using panel data from 363 MSAs across the U.S. from 1996 to 2013, we find that 

there is a notable spatial diffusion pattern in inter-MSAs house prices. Specifically, 

information on lagged price changes in neighboring (i.e., contiguous) MSAs, in addition 

to an MSA’s own time-lagged price changes, help explain current house price changes. 

Consideration of migration flows can also be a driver for spatial interconnectivity in 

housing prices across MSA’s. Such spatial attenuation is intuitively appealing, but has 

not been documented in earlier research. We use our estimation results to obtain impulse 

response functions for the house price dynamics.  

           Overall, we find that spatial effects play a significant role in explaining house 

prices even after controlling for own-lag effects. These spatial effects are particularly 

pronounced when considering the post-2007 sample period. In other words, our results 

imply greater spatial contagion following the 2007-08 crisis. 

Our finding of very significant spatial effects underscores the need to incorporate 

the spatial dimension into existing house price dynamic equilibrium models, such as 

Glaeser and Gyourko’s (2006). A worthwhile direction for future research is full 

structural form estimations of house price dynamics, with key regressors such as income, 

mortgage rates and interest rates, taxes, and housing supply changes.  

The spatial threshold effects in spatial house price interactions that we identify 

suggest that policy makers and economic agents must take into account spatial 

attenuation and interactions when making economic decisions. For instance, it may be 

important to consider the spatial diffusion pattern in inter-MSAs house prices when 



formulating business development policies as the impact of such policy in some areas 

may spillover into the housing markets of neighboring areas. 

Our results on the richness of the dynamics in house prices are relevant in 

assessing arguments about housing price bubbles. Consider Robert Shiller’s New York 

Times article “How a Bubble Stayed under the Radar,” [Shiller (2008)] on detecting 

housing bubbles. Shiller argues that the fundamental problem in verifying the existence 

of a housing market bubble is that 

“[the] information obtained by any individual — even one as well-placed as 
the chairman of the Federal Reserve — is bound to be incomplete. If people 
could somehow hold a national town meeting and share their independent 
information, they would have the opportunity to see the full weight of the 
evidence. Any individual errors would be averaged out, and the participants 
would collectively reach the correct decision.” 
 

Shiller goes on to state that 

“Of course, such a national town meeting is impossible. Each person makes 
decisions individually, sequentially, and reveals his decisions through 
actions — in this case, by entering the housing market and bidding up home 
prices” [ibid.]  

  

Our paper provides some evidence on Shiller’s argument. Specifically,  information from 

neighboring areas is very important. Naturally, overreactions are smaller when people 

can share information, even if the combined information is still incomplete.  
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Figure 1 – Metropolitan Statistical Areas of the U.S. (2009 definitions), U.S. Census Bureau 

 

 



Figure 2a: Impulse Response, Own Time-lags only, Full Sample Regressions 
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Figure 2b: Impulse Response, Own-Time-lags and Time-lags of Contiguous Neighbors, 
Full Sample Regressions 
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Figure 2c – Impulse Response, Own-Time-lags, Time-lags of Continuous Neighbors and 

Total Migration Flow Weighted Neighbors, Full Sample Regressions 
 

-0.5

0.0

0.5

1.0

1.5

2 4 6 8 10 12 14 16 18 20 22 24

Impulse Response ± 2 S.E.

0.8

1.2

1.6

2.0

2.4

2.8

2 4 6 8 10 12 14 16 18 20 22 24

Accumulated Response ± 2 S.E.

  



Figure 3a: Impulse Response, Own Time-lags only, Post-2007 Regressions 
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Figure 3b: Impulse Response, Own-Time-lags and Time-lags of Contiguous Neighbors, 
Post-2007 Regressions 
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Figure 3c: Impulse Response, Own-Time-lags, Time-lags of Continuous Neighbors and 

Total Migration Flow Weighted Neighbors, Post-2007 Regressions 
 
 
 

-0.5

0.0

0.5

1.0

1.5

2 4 6 8 10 12 14 16 18 20 22 24

Impulse Response ± 2 S.E.

0.5

1.0

1.5

2.0

2.5

2 4 6 8 10 12 14 16 18 20 22 24

Accumulated Response ± 2 S.E.

 
  



Table 1: 363 MSA’s in the continental U.S. (2009 U.S. Census Delineations) 
 

Abilene, TX  Denver-Aurora-Broomfield, CO            Lancaster, PA    
 Akron, OH  

 
Des Moines-West Des Moines, IA  Lansing-East Lansing, MI   Racine, WI  

Albany, GA  
 

Detroit-Warren-Livonia, MI  Laredo, TX  
 

Rapid City, SD  
 Albany-Schenectady-Troy, NY  Dothan, AL  

 
Las Cruces, NM  

 
Reading, PA  

 Albuquerque, NM  
 

Dover, DE  
 

Las Vegas-Paradise, NV  
 

Redding, CA  
 Alexandria, LA  

 
Dubuque, IA  

 
Lawrence, KS  

 
Reno-Sparks, NV  

 Allentown-Bethlehem-Easton, PA-NJ  Duluth, MN-WI  
 

Lawton, OK  
 

Richmond, VA  
 Altoona, PA  

 
Durham-Chapel Hill, NC  

 
Lebanon, PA  

 
Riverside-San Bernardino-Ontario, CA  

Amarillo, TX  
 

Eau Claire, WI  
 

Lewiston, ID-WA  
 

Roanoke, VA  
 Ames, IA  

 
El Centro, CA  

 
Lewiston-Auburn, ME  

 
Rochester, MN  

 Anderson, IN  
 

El Paso, TX  
 

Lexington-Fayette, KY  
 

Rochester, NY  
 Anderson, SC  

 
Elizabethtown, KY  

 
Lima, OH  

 
Rockford, IL  

 Ann Arbor, MI  
 

Elkhart-Goshen, IN  
 

Lincoln, NE  
 

Rocky Mount, NC  
 Anniston-Oxford, AL  

 
Elmira, NY  

 
Little Rock-North Little Rock-Conway, AR  Rome, GA  

 Appleton, WI  
 

Erie, PA  
 

Logan, UT-ID  
 

Sacramento--Arden-Arcade--Roseville, CA  
Asheville, NC  

 
Eugene-Springfield, OR  

 
Longview, TX  

 
Saginaw-Saginaw Township North, MI  

Athens-Clarke County, GA  Evansville, IN-KY  
 

Longview, WA  
 

Salem, OR  
 Atlanta-Sandy Springs-Marietta, GA  Fargo, ND-MN  

 
Los Angeles-Long Beach-Santa Ana, CA  Salinas, CA  

 Atlantic City-Hammonton, NJ  Farmington, NM  
 

Louisville-Jefferson County, KY-IN  Salisbury, MD  
 Auburn-Opelika, AL  

 
Fayetteville, NC  

 
Lubbock, TX  

 
Salt Lake City, UT  

 Augusta-Richmond County, GA-SC  Fayetteville-Springdale-Rogers, AR-MO  Lynchburg, VA  
 

San Angelo, TX  
 Austin-Round Rock, TX  

 
Flagstaff, AZ  

 
Macon, GA  

 
San Antonio, TX  

 Bakersfield, CA  
 

Flint, MI  
 

Madera-Chowchilla, CA  
 

San Diego-Carlsbad-San Marcos, CA  
Baltimore-Towson, MD  

 
Florence, SC  

 
Madison, WI  

 
San Francisco-Oakland-Fremont, CA  

Bangor, ME  
 

Florence-Muscle Shoals, AL  Manchester-Nashua, NH  
 

San Jose-Sunnyvale-Santa Clara, CA  
Barnstable Town, MA  

 
Fond du Lac, WI  

 
Manhattan, KS  

 
San Luis Obispo-Paso Robles, CA  

Baton Rouge, LA  
 

Fort Collins-Loveland, CO  Mankato-North Mankato, MN  Sandusky, OH  
 Battle Creek, MI  

 
Fort Smith, AR-OK  

 
Mansfield, OH  

 
Santa Barbara-Santa Maria-Goleta, CA  

Bay City, MI  
 

Fort Walton Beach-Crestview-Destin, FL  McAllen-Edinburg-Mission, TX  Santa Cruz-Watsonville, CA  
Beaumont-Port Arthur, TX  Fort Wayne, IN  

 
Medford, OR  

 
Santa Fe, NM  

 Bellingham, WA  
 

Fresno, CA  
 

Memphis, TN-MS-AR  
 

Santa Rosa-Petaluma, CA  
 Bend, OR  

 
Gadsden, AL  

 
Merced, CA  

 
Savannah, GA  

 Billings, MT  
 

Gainesville, FL  
 

Miami-Fort Lauderdale-Pompano Beach, FL  Scranton--Wilkes-Barre, PA  
Binghamton, NY  

 
Gainesville, GA  

 
Michigan City-La Porte, IN  Seattle-Tacoma-Bellevue, WA  

Birmingham-Hoover, AL  
 

Glens Falls, NY  
 

Midland, TX  
 

Sebastian-Vero Beach, FL  
 Bismarck, ND  

 
Goldsboro, NC  

 
Milwaukee-Waukesha-West Allis, WI  Sheboygan, WI  

 Blacksburg-Christiansburg-Radford, VA  Grand Forks, ND-MN  
 

Minneapolis-St. Paul-Bloomington, MN-WI  Sherman-Denison, TX  
 Bloomington, IN  

 
Grand Junction, CO  

 
Missoula, MT  

 
Shreveport-Bossier City, LA  

Bloomington-Normal, IL  
 

Grand Rapids-Wyoming, MI  Mobile, AL  
 

Sioux City, IA-NE-SD  
 Boise City-Nampa, ID  

 
Great Falls, MT  

 
Modesto, CA  

 
Sioux Falls, SD  

 Boston-Cambridge-Quincy, MA-NH  Greeley, CO  
 

Monroe, LA  
 

South Bend-Mishawaka, IN-MI  
Boulder, CO  

 
Green Bay, WI  

 
Monroe, MI  

 
Spartanburg, SC  

 Bowling Green, KY  
 

Greensboro-High Point, NC  Montgomery, AL  
 

Spokane, WA  
 Bradenton-Sarasota-Venice, FL  Greenville, NC  

 
Morgantown, WV  

 
Springfield, IL  

 Bremerton-Silverdale, WA  Greenville-Mauldin-Easley, SC  Morristown, TN  
 

Springfield, MA  
 Bridgeport-Stamford-Norwalk, CT  Gulfport-Biloxi, MS  

 
Mount Vernon-Anacortes, WA  Springfield, MO  

 Brownsville-Harlingen, TX  Hagerstown-Martinsburg, MD-WV  Muncie, IN  
 

Springfield, OH  
 Brunswick, GA  

 
Hanford-Corcoran, CA  

 
Muskegon-Norton Shores, MI  St. Cloud, MN  

 Buffalo-Niagara Falls, NY  Harrisburg-Carlisle, PA  
 

Myrtle Beach-North Myrtle Beach-Conway, SC  St. George, UT  
 Burlington, NC  

 
Harrisonburg, VA  

 
Napa, CA  

 
St. Joseph, MO-KS  

 Burlington-South Burlington, VT  Hartford-West Hartford-East Hartford, CT  Naples-Marco Island, FL  
 

St. Louis, MO-IL  
 Canton-Massillon, OH  

 
Hattiesburg, MS  

 
Nashville-Davidson--Murfreesboro--Franklin, TN  State College, PA  

 Cape Coral-Fort Myers, FL  Hickory-Lenoir-Morganton, NC  New Haven-Milford, CT  
 

Stockton, CA  
 Cape Girardeau-Jackson, MO-IL  Hinesville-Fort Stewart, GA  New Orleans-Metairie-Kenner, LA  Sumter, SC  
 Carson City, NV  

 
Holland-Grand Haven, MI  New York-Northern New Jersey-Long Island, NY-NJ-PA  Syracuse, NY  

 Casper, WY  
 

Hot Springs, AR  
 

Niles-Benton Harbor, MI  
 

Tallahassee, FL  
 Cedar Rapids, IA  

 
Houma-Bayou Cane-Thibodaux, LA  Norwich-New London, CT  Tampa-St. Petersburg-Clearwater, FL  

Champaign-Urbana, IL  
 

Houston-Sugar Land-Baytown, TX  Ocala, FL  
 

Terre Haute, IN  
 Charleston, WV  

 
Huntington-Ashland, WV-KY-OH  Ocean City, NJ  

 
Texarkana, TX-Texarkana, AR  

Charleston-North Charleston-Summerville, SC  Huntsville, AL  
 

Odessa, TX  
 

Toledo, OH  
 Charlotte-Gastonia-Concord, NC-SC  Idaho Falls, ID  

 
Ogden-Clearfield, UT  

 
Topeka, KS  

 Charlottesville, VA  
 

Indianapolis-Carmel, IN  
 

Oklahoma City, OK  
 

Trenton-Ewing, NJ  
 Chattanooga, TN-GA  

 
Iowa City, IA  

 
Olympia, WA  

 
Tucson, AZ  

 Cheyenne, WY  
 

Ithaca, NY  
 

Omaha-Council Bluffs, NE-IA  Tulsa, OK  
 Chicago-Naperville-Joliet, IL-IN-WI  Jackson, MI  

 
Orlando-Kissimmee, FL  

 
Tuscaloosa, AL  

 Chico, CA  
 

Jackson, MS  
 

Oshkosh-Neenah, WI  
 

Tyler, TX  
 Cincinnati-Middletown, OH-KY-IN  Jackson, TN  

 
Owensboro, KY  

 
Utica-Rome, NY  

 Clarksville, TN-KY  
 

Jacksonville, FL  
 

Oxnard-Thousand Oaks-Ventura, CA  Valdosta, GA  
 Cleveland, TN  

 
Jacksonville, NC  

 
Palm Bay-Melbourne-Titusville, FL  Vallejo-Fairfield, CA  

 Cleveland-Elyria-Mentor, OH  Janesville, WI  
 

Palm Coast, FL  
 

Victoria, TX  
 Coeur d'Alene, ID  

 
Jefferson City, MO  

 
Panama City-Lynn Haven-Panama City Beach, FL  Vineland-Millville-Bridgeton, NJ  

College Station-Bryan, TX  Johnson City, TN  
 

Parkersburg-Marietta-Vienna, WV-OH  Virginia Beach-Norfolk-Newport News, VA-NC  
Colorado Springs, CO  

 
Johnstown, PA  

 
Pascagoula, MS  

 
Visalia-Porterville, CA  

 Columbia, MO  
 

Jonesboro, AR  
 

Pensacola-Ferry Pass-Brent, FL  Waco, TX  
 Columbia, SC  

 
Joplin, MO  

 
Peoria, IL  

 
Warner Robins, GA  

 Columbus, GA-AL  
 

Kalamazoo-Portage, MI  
 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD  Washington-Arlington-Alexandria, DC-VA-MD-WV  
Columbus, IN  

 
Kankakee-Bradley, IL  

 
Phoenix-Mesa-Scottsdale, AZ  Waterloo-Cedar Falls, IA  

 Columbus, OH  
 

Kansas City, MO-KS  
 

Pine Bluff, AR  
 

Wausau, WI  
 Corpus Christi, TX  

 
Kennewick-Pasco-Richland, WA  Pittsburgh, PA  

 
Weirton-Steubenville, WV-OH  

Corvallis, OR  
 

Killeen-Temple-Fort Hood, TX  Pittsfield, MA  
 

Wenatchee-East Wenatchee, WA  
Cumberland, MD-WV  

 
Kingsport-Bristol-Bristol, TN-VA  Pocatello, ID  

 
Wheeling, WV-OH  

 Dallas-Fort Worth-Arlington, TX  Kingston, NY  
 

Port St. Lucie, FL  
 

Wichita Falls, TX  
 Dalton, GA  

 
Knoxville, TN  

 
Portland-South Portland-Biddeford, ME  Wichita, KS  

 Danville, IL  
 

Kokomo, IN  
 

Portland-Vancouver-Beaverton, OR-WA  Williamsport, PA  
 Danville, VA  

 
La Crosse, WI-MN  

 
Poughkeepsie-Newburgh-Middletown, NY  Wilmington, NC  

 Davenport-Moline-Rock Island, IA-IL  Lafayette, IN  
 

Prescott, AZ  
 

Winchester, VA-WV  
 Dayton, OH  

 
Lafayette, LA  

 
Providence-New Bedford-Fall River, RI-MA  Winston-Salem, NC  

 Decatur, AL  
 

Lake Charles, LA  
 

Provo-Orem, UT  
 

Worcester, MA  
 Decatur, IL  

 
Lake Havasu City-Kingman, AZ  Pueblo, CO  

 
Yakima, WA  

 Deltona-Daytona Beach-Ormond Beach, FL  Lakeland-Winter Haven, FL  Punta Gorda, FL  
 

York-Hanover, PA  
 

      
Youngstown-Warren-Boardman, OH-PA  

      
Yuba City, CA  

 

      
Yuma, AZ  

  



 
Table 2: Descriptive Statistics, Year-Over-Year Housing Price Growth and Spatial Lags, 1996-2013 
 
 
 
 
 
 

 

 
 
 
 



  
 



Table 3 - Full Sample, 1996-2013*, MSA Fixed Effects (FE), HAC consistent std errors

Dependent Variable: House Price Index Growth between year t and t-1, for MSA i

FE FE post-2007 FE FE post-2007 FE FE, post-2007

constant 0.001337 -0.09922 0.001428 -0.102672 0.002258 -0.104176

0.067945 -6.627418 0.141102 -7.085534 0.225425 -6.72806

Lagged Growth (t-1) 0.664548 0.084501 0.654179 0.098031 0.6436 -0.008955

18.075 3.878959 48.45978 4.236311 44.90283 -0.302542

Lagged Growth (t-2) 0.137151 0.134437 0.117916 0.045018 0.088253 -0.06233

3.45083 7.44445 7.437054 2.303653 5.194735 -2.405071

Lagged Growth (t-3) -0.2712 -0.223971 -0.279876 -0.169536 -0.279778 -0.079483

-9.952059 -12.11822 -17.82169 -8.654643 -16.53972 -3.554155

Lagged Growth (t-4) -0.110793 -0.289164 -0.087911 -0.328221 -0.056998 -0.426242

-4.281305 -16.78527 -6.285872 -18.50129 -3.906895 -21.39453

Spatial Lag Growth (t-1) 0.013824 -0.092147 -0.001834 -0.139438

0.80296 -3.224093 -0.081042 -3.364402

Spatial Lag Growth (t-2) 0.077745 0.262061 -0.018413 0.017818

3.725996 10.97481 -0.63989 0.456435

Spatial Lag Growth (t-3) 0.036482 -0.103675 0.023508 0.02102

1.723244 -4.256112 0.788195 0.614495

Spatial Lag Growth (t-4) -0.131844 0.01562 0.011832 -0.045569

-6.753995 0.686782 0.44643 -1.511414

Spatial Migration Growth (t-1) 0.022077 0.245658

0.789402 6.136838

Spatial Migration Growth (t-2) 0.187278 0.591801

5.157995 11.23098

Spatial Migration Growth (t-3) 0.02896 -0.152578

0.784019 -3.296313

Spatial Migration Growth (t-4) -0.303739 0.017718

-8.718272 0.428054

R-squared 0.502698 0.689281 0.509927 0.711546 0.520496 0.735662

Numbers in italics are t-statistics

*regressions using migration data cover the years 1996-2011



Table 4 - Full Sample, 1996-2013*, Arellano-Bond Estimation (A-B) with MSA Fixed Effects (FE), HAC consistent std errors

Dependent Variable: House Price Index Growth between year t and t-1, for MSA i

FE, A-B FE, A-B post-2007 FE, A-B FE, A-B post-2007 FE, A-B FE, A-B post-2007

constant -0.00152 0.099145 0.004858 0.067773 0.021528 0.041663

-0.036152 1.244193 0.070456 0.924616 0.153006 0.697426

Lagged Growth (t-1) 2.576564 2.364041 3.953734 1.990126 7.951231 1.736789

3.523473 3.319094 2.260661 2.991464 0.875746 3.064276

Lagged Growth (t-2) -1.221921 -0.739167 -2.15395 -0.683877 -4.876032 -0.697839

-2.268756 -2.50952 -1.770868 -2.613524 -0.786855 -3.142662

Lagged Growth (t-3) -0.474108 -0.463275 -0.395526 -0.229947 -0.443125 -0.051579

-4.754495 -5.6964 -3.408559 -4.018498 -1.42685 -0.81332

Lagged Growth (t-4) 0.47611 0.506198 0.803613 0.304179 1.816345 0.141076

2.006881 2.129898 1.683968 1.437538 0.781162 0.805641

Spatial Lag Growth (t-1) -2.117542 -0.488302 -0.35422 -0.2989

-1.66994 -0.778034 -0.275332 -0.38956

Spatial Lag Growth (t-2) 1.49605 0.445811 0.213277 0.088614

1.755587 1.794344 0.229249 0.303953

Spatial Lag Growth (t-3) -0.099678 -0.38837 0.203771 0.076521

-0.895266 -4.388573 0.594454 1.19069

Spatial Lag Growth (t-4) -0.603873 -0.005087 -0.26261 -0.13392

-2.078652 -0.025126 -0.674191 -0.540719

Spatial Migration Growth (t-1) -3.796618 -0.272306

-0.702084 -0.737046

Spatial Migration Growth (t-2) 2.545577 0.638457

0.747003 2.925386

Spatial Migration Growth (t-3) -1.070816 -0.785693

-0.699507 -3.003323

Spatial Migration Growth (t-4) -0.791738 0.190893

-0.982235 1.852112

J-Statistic 0.0000000 1.30E-42 0.0000000 0.0000000 0.0000000 0.0000000

Numbers in italics are t-statistics

*regressions using migration data cover the years 1996-2011



Table 5 - Full Sample, 1996-2013*, HAC consistent standard errors

Dependent Variable: House Price Index Growth between year t and t-1, for MSA i

no FE no FE, post-2007 no FE no FE, post-2007 no FE no FE, post-2007

constant 0.00382 -0.021939 0.004607 -0.023936 0.0060640 -0.02122

3.487911 -11.64791 4.37067 -13.48862 6.010982 -12.93094512

Lagged Growth (t-1) 0.672533 0.478725 0.664584 0.540908 0.655723 0.602968

18.70821 10.82139 17.67518 11.85372 16.12177 11.51922068

Lagged Growth (t-2) 0.136279 0.122189 0.117397 0.034178 0.089001 -0.05131

3.556629 2.747557 3.059331 0.717341 2.131005 -0.927563456

Lagged Growth (t-3) -0.270765 -0.307033 -0.278418 -0.231338 -0.277587 -0.1602

-10.26015 -10.63542 -9.8116 -6.937455 -8.964133 -4.201234687

Lagged Growth (t-4) -0.100301 -0.133555 0.076787 -0.145981 -0.044938 -0.158747

-4.012427 -4.768795 3.090475 -5.590306 -1.746022 -6.021921589

Spatial Lag Growth (t-1) 0.008156 -0.242515 -0.004862 -0.121056

0.376996 -7.707917 -0.196076 -3.972923108

Spatial Lag Growth (t-2) 0.07703 0.259168 -0.015511 0.062557

2.703624 7.022555 -0.486195 1.640124166

Spatial Lag Growth (t-3) 0.034513 -0.131958 0.023463 0.035289

1.295186 -3.702765 0.842933 0.979088223

Spatial Lag Growth (t-4) -0.134064 -0.049341 0.009566 -0.058565

-5.431445 -1.879395 0.365081 -2.187505119

Spatial Migration Growth (t-1) 0.01637 -0.22429

0.430273 -3.929054637

Spatial Migration Growth (t-2) 0.180927 0.386892

3.393715 5.811981821

Spatial Migration Growth (t-3) 0.025417 -0.327535

0.564772 -4.980840253

Spatial Migration Growth (t-4) -0.306861 -0.021957

-6.189478 -0.437442712

R-squared 0.497454 0.516028 0.504427 0.542619 0.514814 0.558572

Numbers in italics are t-statistics

*regressions using migration data cover the years 1996-2011



Table 6 - Full Sample, 1996-2013*, Arellano-Bond Estimation (A-B), HAC consistent standard errors

Dependent Variable: House Price Index Growth between year t and t-1, for MSA i

A-B A-B post-2007 A-B A-B post-2007 A-B

constant 0.00024 0.008734 0.003049 0.0004 0.029 -0.002939

0.070567 0.954072 0.764525 0.064379 0.369412 -0.429715

Lagged Growth (t-1) 2.598048 1.824262 4.764851 -1.537327 16.97576 1.416775

3.173747 5.053834 1.584543 -5.636287 0.322928 5.253978

Lagged Growth (t-2) -1.240891 -0.646951 -2.737545 0.579006 -11.14589 -0.611359

-2.060268 -2.891036 -1.3034 3.155907 -0.3076 -3.27412

Lagged Growth (t-3) -0.477511 -0.367637 -0.411837 -0.209845 -0.671581 -0.053373

-4.423051 -6.631461 -2.717719 -3.821309 -0.499997 -0.867599

Lagged Growth (t-4) 0.478403 0.311552 0.979804 0.149638 3.973364 0.036901

1.855441 2.834265 1.263967 1.956955 0.3074 0.546102

Spatial Lag Growth (t-1) -2.913751 -0.160447 -0.24491 -0.115934

-1.237608 -0.605338 -0.061662 -0.415584

Spatial Lag Growth (t-2) 2.080433 0.357042 0.102184 0.048445

1.28362 1.9821 0.034427 0.251413

Spatial Lag Growth (t-3) -0.11955 -0.366757 0.46828 0.057297

-0.792144 -5.180469 0.283708 1.025973

Spatial Lag Growth (t-4) -0.746629 0.099668 -0.519224 -0.071217

-1.477288 1.02911 -0.335458 -0.779476

Spatial Migration Growth (t-1) -9.305953 -0.218052

-0.289968 -1.242968

Spatial Migration Growth (t-2) 6.208285 0.611582

0.297063 2.965999

Spatial Migration Growth (t-3) -2.481894 -0.713281

-0.292627 -4.204313

Spatial Migration Growth (t-4) -1.436646 0.191768

-0.350727 2.384653

J-statistic 0.0000000 0.0000000 5.38E-43 0.0000000 0.0000000 0.0000

Numbers in italics are t-statistics

*regressions using migration data cover the years 1996-2011

A-B post-2007
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