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Abstract

Endogenous Social Networks and Inequality in an Intergenerational Setting

Yannis M. Ioannides

In a world where individuals interact in myriads of ways, one wonders how the benefits

of one’s connections with others compare with those conferred by individual characteristics

when it comes to acquisition of human capital. It is particularly interesting to be able to dis-

tinguish between connections that are the outcome of deliberate decisions by individuals and

connections being given exogenously and beyond an individual’s control. The paper explores

the consequences of the joint evolution of social connections and human capital investments.

It thus allows one to study a broad range of possibilities in which social connections may

influence inequality in consumption, human capital investment and welfare across the mem-

bers of the economy, cross-sectionally and intertemporally. It embeds inequality analysis in

models of endogenous social network formation. The novelty of the model lies in its joint

treatment of human capital investment and social network formation in intergenerational

settings, while distinguishing between the case of impact on human capital from endogenous

as opposed to exogenous social networking. Among several results in the case of exogenous

connections, we demonstrate conditions under which the limit distribution of human capital

has a Pareto upper tail.

One of the dynamic models we develop allow for intergenerational transfers in a dynas-

tic version of the infinite horizon Ramsey-Cass-Koopmans model. The models share the

property that human capital accumulation, transfers and social connections, when all are

optimized, are, along steady states, proportional to cognitive skills. Thus, intergenerational

transfers of both human capital endowments and social networking endowments are jointly

determined. Interestingly, the consequences for inequality of the endogeneity of social con-

nections are underscored by examining the models when they are assumed to be exogenous.

When social connections are not optimized, individuals’ human capital reflect a much more

general dependence on social connections. The dependence does not reduce to aggregate

statistics of social connections. We show that the dynamics of demographically increasingly

2



complex models, as expressed by a sequence of models with increasing number of overlapping-

generations, depend on the product of the adjacency matrices associated with each of the

overlapping generations.
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1 Introduction

In a world where individuals interact in myriads of ways, one wonders how the benefits of

one’s connections with others compare with those conferred by individual characteristics

when it comes to acquisition of human capital. It is particularly interesting to be able to

distinguish between connections that are the outcome of deliberate decisions by individuals

and connections being given exogenously and beyond individuals’ control. Such a distinction

matters macroeconomically as well, if individuals stand to benefit from social connections in

ways that affect consumption and investment. Individuals may seek to form social links with

others, as an objective in its own right, in order to enrich their social lives and avoid social

isolation. Social links provide conduits through which benefits from interpersonal exchange

can be realized. Social isolation excludes them. The paper explores the consequences of

the joint evolution of social connections and human capital investments. It thus allows one

to study the full extent in which social connections may influence inequality in consump-

tion, human capital investment and welfare across the members of the economy. It embeds

inequality analysis in models of endogenous social networks formation. The novelty of the

model lies in its joint treatment of human capital investment and social network forma-

tion, while distinguishing between the case of impact on human capital from endogenous as

opposed to exogenous social networking.

The last few years have generated new research on social networks at a torrential rate,

including books, most recently Goyal (2007), Jackson (2008), and Vega-Redondo (2007), and

hundreds of papers. While social networks research was booming within econophysics for

more than twenty years while being hardly noticed by economists, such research is increas-

ingly spreading to virtually all economics fields, including notably experimental economics,

too. Yet, As Jackson (2014), p. 14, points out, studying endogenous network formation

continues to be an important priority.1 The present paper aims at a deeper understanding

of the consequences of social network formation for inequality. Such an emphasis has an

intuitive appeal, that is whether social networking increases or decrease inequality, and how

the process might be influenced by suitable policy.
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It is straightforward to assess the difficulty of modeling social networking. For a given

number of individuals I, there are 2
I(I−1)

2 different possible networks connecting them. Thus,

to a typical social group of I = 100 there correspond 250×49 ≈ 101500 network configurations,

some of which might not be topologically distinct. To be able to conduct specific analyses

that link differences in individual characteristics to differences in outcomes after individuals

have formed social networks and have been influenced by those they end up being in social

contact with one needs to be specific. It is for this reason that we start with a fairly tractable

model of social network formation, which is due to Cabrales, Calvó-Armengol and Zenou

(2011), which we extend into a dynamic model.2

The Cabrales, Calvó-Armengol, and Zenou framework originally starts from a familiar

linear-quadratic model of individual decision making, about connecting with others, in a

multi-person group context, with social links seen as outcomes of individual decisions, which

are associated with a noncooperative Nash equilibrium.3 A connection between any two

individuals is associated with a connection weight, whose magnitude depends on inputs of

effort by the two respective individuals, which can be either exogenous or functions of inputs

decided upon by the respective parties. In a number of alternative simple settings, the

model separates out the contribution of individual characteristics from the aggregate effects

of population groups. Furthermore, because of equilibrium multiplicity that results entirely

from social link formation, rich dynamic effects are possible whose consequences bear upon

long-run income and wealth inequality. The results are obtained in a framework where links

are symmetric (i.e., the underlying graph is undirected but weighted) and thus the benefits

are mutual. The formation of symmetric links, as modelled here, presumes a certain degree of

social coordination. That is, individuals recognize that even though their decisions are made

in a non-cooperative context, they nonetheless result in creating social group formation.

Asymmetric links, as where my being influenced by others (as by looking up to others) does

not presume that those other individuals I am linked to are in turn influenced by me, provide

avenues of social influence but do not connote social relations as such.

The paper is extended by means of a number of dynamic models of human capital in-

vestment and social network formation in order to allow for intergenerational transfers of
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wealth and of social connections. First, we interpret the dynamic model as one with the

representative individual being infinitely lived. A variation of that model is to take social

connections as given exogenously and not subject to optimization. This variation allows us to

highlight the importance of endogenous setting of social connections for the cross-sectional

distribution of human capital and explore conditions under which the social connections

help magnify or reduce the impact of the dispersion in cognitive skills. When social connec-

tions are endogenous, the distribution of human capital mirrors that of the cognitive skills.

Next, we follow a long tradition in economics that links life cycle savings, human capital

investment and intergenerational transfers. Starting from Loury (1981), but also Becker and

Tomes (1979; 1986) [see also Goldberger (1989), Ioannides (1986) and Ioannides and Sato

(1987)], a number of papers have linked intergenerational transfers and the cross-section

distributions of income and of wealth. In a recent paper, Lee and Seshadri (2014) model

human capital accumulation in the presence of intergenerational transfers, while allowing

for multiple stages of investment over the life cycle, such as investment during childhood,

college decision and on-the-job human capital accumulation. It is one of very few papers

that take Heckman’s forceful suggestion [see Cunha and Heckman (2007); Heckman and

Mosso (2014)] seriously, namely to allow for complementarity between early and later child

investments, inter alia, by means of a model of 78-overlapping generations (and thus many

more than the commonly used two overlapping generations) with infinitely lived altruistic

dynasties. Their model shows, using numerical simulation methods, that investment in chil-

dren and parents’ human capital have a large impact on the equilibrium intergenerational

elasticities of lifetime earnings, education, poverty and wealth, while staying consistent with

cross-sectional inequality. They also show that education subsidies and progressive taxation

can significantly reduce the persistence in economic status across generations. But they do

not model social connections.

This paper presents a sequence of models, with parents making decisions about how

much wealth to transfers to the children and about social connections along with investment

in human capital. Parents recognize that due to the timing of implementing their social

networking decisions their children stand to benefit from them, as they themselves have
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benefited from the decisions of their own parents. By moving to a model with two overlap-

ping generations, we can determine how the pattern of dynamics reflects the demographic

structure of the economy. Specifically, as the number of overlapping generations increases,

the matrix characterizing the dynamic evolution of the state variable has a multiplicative

factorial structure: each additional overlapping generation included contributes a factor to

the product. Finally, the paper develops a variation of the two overlapping generations

model with two subperiods which makes it possible for individuals to invest in augmenting

the cognitive skills of their children. The impact of availability of such investments on the

dynamics of evolution of human capital investments and social connections is considerably

more complicated, but a factorial structure is still evident.

The remainder of this document is organized as follows. Section 2 introduces the basic

model in a static setting, which takes off from the Cabrales, Calvó-Armengol and Zenou

Model [Cabrales, Calvó-Armengol and Zenou (2011)]. This model allows us to explore the

empirical implications of endogeneity of social connections by allowing for different assump-

tions about the effects of interactions. While the value of interactions and their consequences

for income inequality have been explored before, notably by Benabou (1996) and Durlauf

(1996), those earlier analyses were not conducted so as to allow for social network formation.

Next we use the model to explore a number of alternative assumptions about the impact

of interactions of each individual with her social contacts, such as allowing for individual

characteristics to influence weights in a great variety of ways, for homogeneity of degree

other than in interactions weights, and for CES-type of interactions. Section 3 introduces

cognitive and socialization shocks to individuals’ cognitive parameters and to their propen-

sity to network, respectively. Section 4 presents an infinite-horizon model of an evolving

economy consisting of many agents who build connections among each other. Section 5

assesses some consequences for cross-sectional inequality. Section 6 interprets the model in

an infinite-horizon dynastic life cycle context, and section 6.1 extends the model first to an

overlapping generations context, ultimately with two-overlapping generations. Subsection

6.1.2 examines, in particular, the effects of social networking on intertemporal wealth trans-

fer elasticities. The solution allows one to conjecture about the properties of models with
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more than two overlapping generations. These extensions allow for parents’ circumstances

to influences their children’s wealth endowments via transfers, social networking, as well as

possibly persistent cognitive skills.

2 Endogenous Social Structure: The Cabrales, Calvó-

Armengol and Zenou Model

In commonly employed formulations of models of individuals’ actions subject to social inter-

actions and in the definition of the group choice problem each individual is typically assumed

to be affected by group averages of contextual effects and of decisions [Ioannides 2013, Ch.

2]. It is easy to contemplate that individuals may deliberately seek social interactions that

are not necessarily uniform across their social contacts and to examine their determinants.

I use Cabrales, Calvó-Armengol and Zenou (2011) as a starting point and briefly develop

their key results, with individuals’ engaging in networking efforts (socialization, in their ter-

minology) that determine the probabilities of contacting others simultaneously with deciding

on their own actions. Further below, I will interpret individuals’ actions as human capital

investments.

Individual i chooses action ki and socialization effort si, taking as given actions and

socialization efforts by all other individuals, i, j ∈ I, so as to maximize:

Ui,τ(i)(s,k) ≡ bτ(i)ki + a
I∑

j=1,j ̸=i
gij(s)kikj − c

1

2
k2i −

1

2
s2i , (1)

where τ(i) denotes the individual type4 individual i belongs to. I will simplify this no-

tation for clarity, when it is not necessary, by using i instead of τ(i). The terms s =

(s1, . . . , si, . . . , sI) denote the full vector of networking efforts, and k = (k1, . . . , ki, . . . , kI),

those of actions. The weights of social interaction gij may be defined in terms of socialization

efforts in a number of alternative ways. In the simplest possible case, let the weights, which

are obtained axiomatically by Cabrales et al., be defined as:

gij(s) =
1∑I
j=1 sj

sisj, if ∀si ̸= 0; gij(s) = 0, otherwise. (2)

8



The coefficient of the interactive term in definition (1) is a key parameter in the determination

of s, the vector of connection intensities. Individual i chooses (si, ki) so as to maximize (1).

I follow Cabrales et al. (2011) and define, for later use, an auxiliary variable

ã(b) = a

∑
τ∈T b

2
τ∑

τ∈T bτ
, (3)

where T denotes the set of agent types, with generic element τ, as distinct from the set of

individuals, I, I = |I|, and the functions x̄(x), x2(x) are defined as follows:

x̄(x) ≡
∑
τ∈T xτ
|T |

, x2(x) ≡
∑
τ∈T x

2
τ

|T |
. (4)

The normalized sums in this definition reflect relative frequencies of individual types.

The first-order conditions are, with respect to ki, si, as follows:

bτ(i) + a
I∑

j=1,j ̸=i
gij(s)kj − cki = 0; (5)

a
I∑

j=1,j ̸=i
kikj

∂gij(s)

∂si
− si = 0. (6)

With gij(s) given by (2),

∂gij(s)

∂si
=

1∑I
j=1 sj

sj −
1

(
∑I
j=1 sj)

2
sisj.

Following Ballester et al. (2006) and Cabrales et al. (2011), it is convenient to rewrite the

first-order conditions, respectively, as follows:[
I− a

c
G(s)

]
· ck+ a diag (G(s)) · k = b. (7)

As they note, the matrix [I− a
c
G(s)] is invertible and has a particularly simple form, using

which (7) becomes:

ck+ a[I+ λa/c(s)G(s)] · diag (G(s)) · k = [I+ λa/c(s)G(s)] · b, (8)

where λa/c ≡ a
c

x̄(s)

x̄(s)−a
c
x2(s)

. Rewriting (6), the first-order conditions for the si’s, yields:

si = aki
s · k
Ix̄(s)

− asiki
s · k

(Ix2(s))
− a

siki
Ix̄(s)

+ a
(siki)

2

Ix2(s)
, (9)

where s · k =
∑I
i=1 sjkj.
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2.1 Solving with a Large Number of Agents

As I → ∞, the last three terms on the RHS of (9) vanish, yielding:

si = aki
s · k
Ix̄(s)

. (10)

Similarly, since gii(s) =
s2i∑I

j=1
sj
, diag (G(s)) vanishes at the limit, as I becomes large, and

the respective first-order conditions become:

ck = [I+ λa/c(s)G(s)] · b. (11)

It readily follows from (10) that the necessary conditions imply that si
ki

is independent of i.

Let the common ratio be
si
ki

= ϖ. (12)

With the notation introduced in (4) above, the auxiliary term λa/c in (11) becomes, using

(10):

λa/c =
a

c

x̄(s)

x̄(s)− a
c
x2(s)

=
a

c−ϖ2
.

In view of these results, (11) is simplified as follows:

cki = bi +
a

c−ϖ2
si

∑I
j=1 bjsj

I s̄
. (13)

Using the previous results with the equation, it follows that ki/bi is constant,

ki
bi

= ϑ. (14)

Thus,

cϑ = 1 + ϑ
a

c−ϖ2

x2(b)

x(b)
,

Recalling the definition of ã in (3) above, (10) becomes:

ϖ = ãϑ. (15)

This allows us to write the above condition as:

ϑ =
1

c−ϖ2
. (16)
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The system of equations (15–16) define the solution (ϖ∗, ϑ∗), to the multi-person game.

The solutions for (ki, si) follow:

k∗i = ϑ∗bτ(i), si = ϖ∗ϑ∗bτ(i). (17)

If agents do not value connections, a = 0, and from (3) and (15), ϖ = 0. In that case, we refer

to the respective values as autarkic: ki,aut =
1
c
bτ(i). If agents are connected, ϖ = 0 > 0, and

ϑ∗ > 1
c
, and the ki’s exceed their autarkic values. The feasibility condition for a non-autarkic

solution, which Cabrales et al. obtain,5 readily follows:

2
(
c

3

) 3
2

≥ ã. (18)

For at least one solution to exist, the magnitude of the social interactions coefficient adjusted

by the excess dispersion of the individual productivities, measured by ã, must not exceed a

function of the marginal cost of action coefficient. If the above condition is satisfied with

inequality, then two solutions exist.

Numerous alternative formulations for the interaction structure are possible. In view of

the applications emphasized by this paper, it would be interesting to allow for more general

formulations of the social interaction structure. Next, I start by examining a number of

alternative formulations which are proposed in an unpublished earlier version of Cabrales et

al. (2011) and proceed with a CES-type structure for the social interactions effects which,

in a computable sense, nest a number of other specifications.

2.2 Generalizing the value of interactions

The above solution clearly depends on the specific assumptions made about the interaction

terms. But in view of the applications emphasized by this paper, it would be interesting to

allow for more general formulations of the social interaction weights. They may be general-

ized in two directions. One is about the interaction weights, i.e. the terms gij(s), which may

easily be generalized to allow for dependence on the b’s that is, gij(s;b). I turn to this imme-

diately below, where I explore in turn some alternative formulations proposed in an earlier

unpublished version of Cabrales et al. (2011). A second involves the ki’s. Although the
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ki’s and the si’s enter in the original formulation in part symmetrically, they have distinctly

different interpretations. For example, it is helpful to interpret the term kikj in i′s utility

function as learning. In fact, the underlying assumption of complementarity between human

capitals of different individuals may be set in more general terms, for which the assumption

of a CES social interactions structure is particularly useful. I take that up further below.6

2.2.1 Homogeneity of degree greater or less than one in connection weights

Combining connection intensities as in the original definition (1) but in a homogeneous of

degree greater than one fashion,

gij(s;b) = sisj, if s ̸= 0; gij(s;b) = 0, if s = 0, (19)

yields the following first-order conditions:

si
ki

= a
I∑

j=1,j ̸=i
sjkj,

cki = bi +
a
c

∑I
j=1 sisjbj

1− a
c
I
∑I
j=1 s

2
j

,

provided that 1−a
c
I
∑I
j=1 s

2
j . This particular case demonstrates the consequences of increasing

returns to scale in the interactions structure. The feasibility condition is unlikely to be

satisfied in the asymptotic case. There is no congestion in the synergies, and when I is large,

the quantity 1− a
c
I
∑I
j=1 s

2
j becomes negative, and the steps necessary to obtain asymptotic

results are violated. There are in effect too many synergies. Therefore, homogeneity greater

than one, at least in this formulation, is associated with infeasibility.7

Combining connection intensities as in the original definition (??) but in a homogeneous

of degree less than one fashion,

gij(s;b) =
(sisj)

α∑I
j=1 s

α
j

, if s ̸= 0; gij(s;b) = 0, if s = 0, (20)

and slightly modifying the individual’s objective

Ui,τ(i)(s,k) ≡ bτ(i)ki + a
I∑

j=1,j ̸=i
gij(s)(kikj)

2−α − c
1

2
k2i −

1

2
s2i , 0 < α < 2, (21)

12



leads to first-order conditions as follows:

(
si
ki

)2−α
= αa

∑I
j=1 k

2
j

(
sj
kj

)α
∑I
j=1 s

α
j

;

c
ki
bi

= 1 +
(
si
ki

)α (ki
bi

) a
c

∑I
j=1 s

α
j∑I

j=1 s
α
j − a

c

∑I
j=1 k

2
j

(
sj
kj

)2α
∑I
j=1 bjkj

(
sj
kj

)α
∑I
j=1 s

α
j

.

Rewriting these conditions, we have:

ϖ2 = αãϖαϑ2−α b̄

b̄α
; (22)

cϑ = 1 +
ϖαϑ2−αãb̄

cb̄α −ϖαϑ2−αãb̄
, (23)

where b̄α ≡ ∑I
j=1 s

α
j /|T |. This can be solved in the same fashion as with the simple weights

of section ??, that is, we may solve for values for ϖ = si
ki
, ϑ = ki

bi
. The equilibrium values

depend on aggregates of the primitive parameters.

2.2.2 Individualized interaction weights

In order to go beyond networking intensities that depend only on functions of networking

efforts, we may assume connection weights that are weighted by individual “productivities,”

the bi’s, in a homogeneous of degree one fashion as follows:

gij(s;b) =
(bibj)

1−α(sisj)
α∑I

j=1 b
1−α
j sαj

, if ∀s ̸= 0; gij(s;b) = 0, if s = 0. (24)

The respective first-order conditions become:

(
si
ki

)2−α
= αa

(
bi
ki

)1−α ∑I
j=1 kjb

1−α
j sαj∑I

j=1 b
1−α
j sαj

;

c
ki
bi

= 1 +
(
si
bi

)α a
c

∑I
j=1 b

1−α
j sαj∑I

j=1 b
1−α
j sαj − a

c

∑I
j=1

(
b1−αj sαj

)2
∑I
j=1 bjb

1−α
j sαj∑I

j=1 b
1−α
j sαj

They may be rewritten so as to make it clearer that at the steady state, they imply values

for si
ki
, bi
ki
, which are independent across i’s.

(
si
ki

)2−α
= αa

(
bi
ki

)1−α ∑I
j=1 kjbj

(
sj
bj

)α
∑I
j=1 bj

(
sj
bj

)α ;
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c
ki
bi

= 1 +
(
si
bi

)α a
c

∑I
j=1 bj

(
sj
bj

)α
∑I
j=1 bj

(
sj
bj

)α
− a

c

∑I
j=1 b

2
j

(
sj
bj

)2α
∑I
j=1 b

2
j

(
sj
bj

)α
∑I
j=1 bj

(
sj
bj

)α
Rewriting these conditions, we have:

ϖ2−α = αϑã; (25)

cϑ = 1 +
(ϖϑ)α

cb̄− a(ϖϑ)αx2(b)
ã. (26)

All these examples, which were proposed in an earlier version of Cabrales et al. (2011),

share the property that social networking efforts are proportional to the respective b’s,

si = ϖϑbi. Differences across models in the factors of proportionality demonstrate the rich

set of possibilities afforded by the model.

2.3 CES Interactions Structure

The previous specifications of the interactions weights characterize qualitatively similar com-

plementarity effects. They simply involve auxiliary variables that are more complicated func-

tions of b than ã(b). For example, the terms gij(s;b)kikj, express synergy weights between

agents i and j. The marginal utility of human capital ki depends positively on those of other

agents via a convex structure. It is straightforward to generalize this assumption, such as by

means of a CES structure,8 which may be convex or concave in the inputs. It is well known

that in the limit, such a structure allows for an individual to benefit from the maximum or

the minimum, respectively, among all other individuals he interacts with [Benabou (1996);

Polya et al. (1952), p. 15, Theorem 4].

That is, if the interaction term in (2) may be assumed to be instead of the form:

kisi

∑
j ̸=i

sj∑
i si

k
1− 1

ξ

j


ξ
ξ−1

, (27)

then it admits as a special case the original assumption (2), as well as a number of commonly

used assumptions as additional special cases. That is, special cases of (27) are notable:

1. ξ → ∞ : ki si
sj∑
i
si
kj;

14



2. ξ → 1 : kisi
∏
j ̸=i k

(
sj∑
i
si

)
j ;

3. 1
ξ
→ ∞ : minj {kj} : one bad apple spoils the bunch.

4. 1
ξ
→ −∞ : maxj {kj} : the best individual is the role model.

Case 1 above coincides with the original specification in Section 1 above. Case 2 is the classic

Cobb-Douglas function as special case of the CES structure; case 3 is the Leontieff case; case

4 is the extreme case of a convex interaction structure.9 These new set of possibilities will be

particularly helpful when we introduce uncertainty into the model. As it will be seen below,

the nature of the solutions are qualitatively similar to the original model.

2.3.1 “One Bad Apple Spoils the Bunch.”

For this case, the first-order conditions are:

bi + asi min
j ̸=i

{kj} − cki = 0; (28)

aki min
j ̸=i

{kj} − si = 0. (29)

By dividing both sides of the above equations by ki we obtain a system of two equations in

the same auxiliary variables as above:

ϑ−1 + aϖ min
j ̸=i

{kj} = c; (30)

amin
j ̸=i

{kj} = ϖ. (31)

Eliminating minj ̸=i{kj} between these two equations yields (16), from which and one of the

equations can solve for the equilibrium values of (ϖ,ϑ). Disregarding the imprecision that

minj ̸=i{kj} = minj∈I{kj} we have that minj∈I{kj} = ϑminj∈I{bj} = bmin. Thus,

ϖ = abmin, ϑ =
1

c− (abmin)2
,

and kj = bj
1

c−(abmin)2
, sj = bj

abmin

c−(abmin)2
. Therefore, human capital and socialization effort are

still proportional to the respective cognitive skill, but the social multiplier reflects the impact

of the “one bad apple.”
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2.3.2 The Best Individual is the Role Model”

For this case, the first-order conditions are:

bi + asimax
j ̸=i

{kj} − cki = 0; (32)

akimax
j ̸=i

{kj} − si = 0; (33)

Since maxj ̸=i{kj} is a convex function of k, the system of equations (28–29) has enough

structure to allows us to characterize its solutions.10 By substituting for si from (33) into

(32), the resulting equations are defined solely in terms of k as fixed points of:

ki =
bi
ci

1

c− a2 (maxj ̸=i{kj})2
, i ∈ I.

By working in like manner as above, we have that:

ϖ = abmax, ϑ =
1

c− (abmax)2
,

and kj = bj
1

c−(abmax)2
, sj = bj

abmin

c−(abmax)2
. Therefore, even though human capital investment and

socialization effort are still proportional to the respective cognitive skill, the social multiplier

is now larger than in the previous example of “one bad apple spoils the bunch.” It reflects

the fact that the social effects is associated with “best individual” as the role model.

3 Social Portfolio Analysis

I pursue further the role of interactions between individuals’ actions and networking efforts

by assuming that stochastic shocks affect the individuals’ parameters. I consider first an

additive shock, ψi, to bi, which I refer to as a cognitive shock, which is known to individual

i when she sets her own human capital decision and networking effort. Thus, both those

decisions are function of one’s own cognitive shock: ki(bi + ψi), si(bi + ψi). Another possible

shock could be to affect the social competence parameter a, which weights the contribution

to individual i’s welfare from social interactions. I work first with cognitive shocks’ being

extreme-valued distributed, which allows me to utilize two of the limit results discussed

16



above, that is, the extreme cases of 1
ξ
→ ∞, and 1

ξ
→ −∞, which usher in the ”one bad

apple spoils the bunch,” and the best individual is the role model” metaphors, respectively.

Alternatively, shocks to social networking outcomes may be interpreted as non-cognitive

shocks. Here below I develop a number of examples of cognitive shocks, and leave the case

of non-cognitive shocks to future research.

3.1 Cognitive Shocks

I model cognitive shocks as additive shocks to the bi’s. Individual i observes bi+ψi and sets

(ki, si), which as a result do depend on ψi, under the assumption that all other individuals do

likewise under uncertainty about the cognitive shocks of others. It readily follows that the

cognitive shocks are transmitted to the networking decisions. If the shocks are independent

across individuals, then we can easily characterize the nature of the solution.

3.1.1 “One Bad Apple Spoils the Bunch.”

For this case, the first-order conditions are:

bi + ψi + asi Eψj|ψi min
j ̸=i

{kj(bj + ψj)} − cki = 0; (34)

aki Eψj|ψi min
j ̸=i

{kj(bj + ψj)} − si = 0; (35)

By substituting for si from (35) into (34), we get:

ki(bi + ψi)

bi + ψi
=

1

c− a2
[
Eψj|ψi minj ̸=i{kj(bj + ψj)}

]2 . (36)

Under our assumption that the ψi’s are independent, the RHS of (36) does not depend on ψi

and therefore, so should the LHS. This suggests that ki(bi+ψi)
bi+ψi

= νi, where νi is independent

of ψi but does depend on all parameters of the problem. That is, ki(bi + ψi) = (bi + ψi)νi.

Since this holds for all i’s, the previous condition may be rewritten as:

νi =
1

c− a2
[
Eψj|ψi minj ̸=i{νj(bj + ψj)}

]2 , i ∈ {I}. (37)
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To get a sense of the properties of the solution let us assume that the random variables

ψj are Fréchet-distributed and conditionally independent. Let the cumulative distribution

distribution of ψi be given by: exp
[
−
(
ψ
σi

)−χ]
. It follows that the cumulative distribution

function of (bi + ψi)νi is given by:

exp

−(κ− biνi
νiσi

)−χ
 .

The corresponding cumulative distribution function of minj ̸=i{(bj+ψj)νj} is written in terms

of

1− Πj ̸=i (1− Prob {(bj + ψj)νj ≤ κ}) .

It follows that the expectation of minj ̸=i{(bj+ψj)νj} is monotonically increasing in νj, j ̸= i.

It thus follows that the RHS of Eq. (37) is monotonically increasing in νj, j ̸= i. The νi’s

follow as solutions to the system of equations (37), but in general the solution is not unique.

Finally, the solutions for the networking efforts, the si’s, follow from (35).

3.1.2 “The Best Individual is the Role Model”

For this case, the first-order conditions are:

bi + ψi + asi Eψj|ψi max
j ̸=i

{kj(bj + ψj)} − cki = 0; (38)

aki Eψj|ψi max
j ̸=i

{kj} − si = 0; (39)

By working in like manner as in the previous section, we have:

ki(bi + ψi) =
bi + ψi

c− a2
[
Eψj|ψi maxj ̸=i{kj(bj + ψj)}

]2 . (40)

Under our assumptions, the RHS does not depend on ψi and therefore, so should the LHS.

This suggests that ki(bi+ψi)
bi+ψi

= νi, where νi is independent of ψi but does depend on all

parameters of the problem. That is, ki(bi + ψi) = (bi + ψi)νi. Since this holds for all i’s, the

previous condition may be rewritten as:

νi =
1

c− a2
[
Eψj|ψi maxj ̸=i{νj(bj + ψj)}

]2 , i ∈ {I}. (41)

18



To get a sense of the properties of the solution let us again assume that the random

variables ψj are Fréchet-distributed and conditionally independent. Let the cumulative dis-

tribution distribution of ψi be given by: exp
[
−
(
ψ
σi

)−χ]
. It follows that the cumulative

distribution function of (bi + ψi)νi is given by:

exp

−(κ− biνi
νiσi

)−χ
 .

The corresponding cumulative distribution function of maxj ̸=i{(bj+ψj)νj} is written in terms

of

Πj ̸=i (Prob {(bj + ψj)νj ≤ κ}) .

It follows that the expectation of maxj ̸=i{(bj+ψj)νj} is monotonically decreasing in νj, j ̸= i.

It thus follows that the RHS of Eq. (37) is monotonically decreasing in νj, j ̸= i. The νi’s

follow as a unique, in general, solution to the system of equations (41). The solutions for

the networking efforts, the si’s, follow from (39).

Contrasting “One Bad Apple Spoils the Bunch” versus “The Best Individual is the Role

Model” can explain the possible multiplicity against uniqueness of solution. They recall

the multiplicity properties of steady states in economic growth models with overlapping

generations preferences or production functions.11

4 Dynamics

A conventional12 dynamic analysis of such a model follows from defining an intertemporal

objective function for agents, and allowing for the first-order conditions to yield equations

exhibiting dynamic adjustment. Let us rewrite the definition of the utility per period (1) as:

Ui,t(st−1; sit;kt−1, kit) ≡ bτ(i)kit + a
I∑

j=1,j ̸=i
gij(st−1)kitkjt−1 − c

1

2
k2it −

1

2
s2it, (42)

According to definition (42), it is networking efforts, that is interaction weights at time

t− 1, st−1, that affect spillovers at time t resulting from actions at time t− 1. Accordingly,

in deciding on her networking efforts and thus interaction weights, agent i anticipates the
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impact on her utility in the next period. Specifically, agent i seeks to maximize

∞∑
t=0

ρtUi,τ(i),t(st−1; sit;kt−1, kit),

by choosing sequences of human capital investment and networking efforts {kit}∞0 , {sit}∞0 ,

taking as given all other agents’ contemporaneous decisions {k−it}∞0 , {s−it}∞0 , where ρ, 0 <

ρ < 1, denotes the discount rate. This optimization problem may be modified to allow for

depreciation of human capital and of links.

4.1 Joint Evolution of Human Capital and Social Connections

The first-order condition for kit ignores, in the sense of Nash equilibrium, the effect that

agent i’s setting of kit has on the spillovers to all agents in period t, taking them as given.

That is, given (k0, s0), we have:

kit =
1

c
bτ(i) +

a

c

I∑
j=1,j ̸=i

gij(st−1)kj,t−1. (43)

Similarly for sit, we have:

sit = aρ
I∑

j=1,j ̸=i
kit+1kjt

∂gij(st)

∂sit
, (44)

with gij(s) defined by (2). The steady state values of the system (43–44) (k∗i , s
∗
i ) coincide

with those of the static case (10–11), provided that one adjusts for the fact that to a in (11)

there corresponds aρ in (44).

It is thus straightforward to study the dynamics near a steady state. By linearizing in

the standard fashion and by denoting by ∆xit = xit−x∗i deviations from steady-state values,

we have:

∆kit =
a

c

I∑
j=1,j ̸=i

gij(s
∗)∆kj,t−1 +

a

c

I∑
j=1,j ̸=i

k∗j

I∑
h=1

∂gij
∂sh

|s∗∆sh,t−1. (45)

∆sit = aρk∗i

I∑
j=1,j ̸=i

k∗j

I∑
h=1

∂2gij
∂si∂sh

|s∗∆sht+aρk∗i
I∑

j=1,j ̸=i

∂gij
∂si

|s∗∆kjt+

aρ I∑
j=1,j ̸=i

k∗j
∂gij
∂si

|s∗
∆kit+1,

(46)

where except for the time-subscripted variables, all others assume their steady-state values.

The asymptotic results invoked earlier allow us to simplify these conditions.13
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System (45–46) may now be written as follows, where we advance the time subscript for

t in the first equation:

∆kt+1 =
a

c
G(s∗)∆kt, (47)

∆st = ãϑ∆kt+1. (48)

By using (47) in (48) we see that the changes in networking efforts, ∆st, are determined

by the contemporaneous values of the changes in human capitals, the ∆kt’s. That is:

∆st =
aã(b)ρϑ

c
G(s∗)∆kt. (49)

The dynamic evolution of the human capitals is determined by (47), and therefore of the

networking efforts as well through (49). The properties of the matrix a
c
G(s∗) fully determines

the dynamics, and its properties are in turn determined by those of the steady state solutions.

We know from Cabrales et al. (2011) that the largest eigenvalue of G(s∗) is equal to x2(s∗)

x(s∗)

and corresponds to s as an eigenvector. Therefore, the condition

a

c

x2(s)

x(s)
=

1

c
ϖϑã < 1

is sufficient for the stability of the solution of (47). In view of (15), this condition becomes:

ϖ2 < c,

which is satisfied, in view of (16) for both non-zero solutions of (15–16). Further below, I

show that the basic dynamic model here also underlies models which allow for individuals to

make intergenerational transfers to their children. I note that stability of the human capital

process implies that of the networking efforts as well.

4.2 Evolution of Human Capital with Exogenous Social Connec-

tions

It also of interest to examine the evolution of human capital, given social connections. Assum-

ing that {st}∞t=1 is exogenous and taking {k−i,t}∞t=1 , as given, individual i chooses {ki,t}
∞
t=1 ,
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so as to maximize lifetime utility according to (42). Under the assumptions of Nash equi-

librium, human capitals satisfy the sequence of difference equations (43), now rewritten in

matrix form as:

kt =
1

c
bt +

a

c
G−diag(st−1)kt−1. (50)

To see the properties of this process, let us assume that both st and bt are constant, s,b.

Then, (50) admits a steady state, given by:[
I− a

c
G(s)

]
ck+ adiagG(s)k = b. (51)

As we argued above, for a large number of agents, the diagonal elements vanish, and the

second term on the lhs of (50) is approximately equal to zero.

The special properties of G(s) allow deriving conditions under which
[
I− a

c
G(s)

]−1
ex-

ists. Specifically, since G(s) is symmetric and positive, all of its eigenvalues are real. It has a

maximal simple eigenvalue, r, which is positive, and larger from the absolute values of all its

other eigenvalues. Then, by Theorem III, Debreu and Herstein (1953),
[
I− a

c
G(s)

]−1
exists

is positive, if and only if
1

r
>
a

c
. (52)

As Cabrales et al. (2011), show, the maximal root is given by x2(s)
x(s)

and corresponds to s as

an eigenvector. Furthermore, by Lemma 3, Cabrales et al. (2011), p. 353,[
I− a

c
G(s)

]−1

= I+
a

c

1

1− a
c
x2(s)
x(s)

G(s).

Thus, condition (52) that the maximal eigenvalue must satisfy suffices for the positivity of

x(s) − a
c
x2(s2), and thus of the second term of the expression for the inverse above. The

steady state value for k∗ becomes:

k∗ =
1

c
b+

a

c

1

1− a
c
x2(s)
x(s)

G(s)
1

c
b. (53)

For the linear dynamical system (50), the unique steady state is stable, provided its maximal

eigenvalue is less than 1, which is equivalent with condition (52).

Human capitals at the steady state, given by (53), consist of two terms of which the

second only reflects the effects of social interactions. Inspection of the second term in the
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rhs of (53) suggests that it consists of a vector whose term i is

a

c

si∑
i si

1

c

1

1− a
c
x2(s)
x(s)

s · b.

Therefore, when the social connections are not optimized, it is, of course, not surprising

that the arbitrary social connections do matter. Nonetheless, the richness of what follows is

interesting. The better relatively connected an individuals is, the greater the amplification

of her basic human capital that she experiences. Additional richness is made possible by the

different specifications explored in sections 2.2 and 2.3 above.

4.2.1 A Stochastic Extension and the Upper Tail of the Distribution of Human

Capitals

We take Eq. (50) as given, that is, as an ad hoc rule for the evolution of human capital

in relation to social connections. In addition, we allow for stochastic shocks to cognitive as

well as non-cognitive skills. We recall the specification of cognitive shocks in section 3 above

and assume that the (column) vectors Ψt = (ψ1,t, . . . , ψI,t) are defined to represent the full

cognitive effect, where ψ1,t =
1
c
bi,t, with bt being fully stochastic, and to be independently

and identically distributed over time. The sequence of {Ψ0, . . . ,Ψt} is assumed to be a

stationary stochastic process. In addition, we assume that social connections are exogenous

but random. That is, the social networking efforts are denoted by Φt = (ϕ1,t, . . . , ϕI,t) , so

that instead of (50) we now have:

k̃t = Ψt + G̃(Φt)k̃t−1, t = 1, . . . , (54)

with a given k̃0.

For the purpose of analytical convenience and without loss of generality, we assume that

the social interactions matrix G̃t = G̃(Φt) is defined to include the diagonal terms too. We

assume that the pairs
{
G̃t,Ψt

}
are independently and identically distributed elements of

a stationary stochastic process have positive entries. We assume the additional and rather

mild conditions of Theorems A and B, Kesten (1973; 1974). Adopting as matrix norm || · ||

for I × I matrices the function ||m|| = max|y|=1 |ym|, where y denotes an I row vector, and
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m denotes an I × I matrix.14 If

E ln+ ||G̃(Φ1)|| < 0,

then

Lim1 = lim
(
ln ||G̃(Φ1) · · · G̃(Φt)||

1
t

)
(55)

exists, is constant and finite w.p. 1. If we assume that the G̃’s are such that Lim1 < 0, then

||G̃(Φ1) · · · G̃(Φt)|| converges to 0 exponentially fast. If |Ψ1|κ <∞ for some κ > 0, with the

norm | · | being defined as the Euclidian norm, then the series

K ≡
∞∑
t=1

G̃(Φ1) · · · G̃(Φt−1)Ψt

converges w. p. 1, and the distribution of the solution k̃t of (54) converges to that of K,

independently of k̃0.

In particular, from (55), if Lim1 < 0, then the norm of the product of t successive social

interactions matrices, raised to the power of t−1, is positive but less than 1. In that case,

Kesten (1973) shows that the distribution ofK can have a thick upper tail. That is, according

to Kesten (1973), Theorem A, if in addition to the above conditions there exists a κ0 > 0,

for which

E

 1

I
1
2

min
i

 I∑
j=1

G̃(1)i,j


κ0

≥ 1, and E
{
||G̃(1)||κ0 ln+ ||G̃(1)||

}
<∞, (56)

then there exists a κ1 ∈ (0, κ0] such that

lim
v→∞

Prob
{
max
n≥0

|xG̃(1) · · · G̃(n)| > v
}
∼ X(x)v−κ1 , (57)

where 0 ≤ X(x) < ∞, with X(x) > 0, where the (row) vector x belongs to the positive

orthant of the unit sphere of IRI , exists and is strictly positive. If, in addition, the components

of Ψ(1) satisfy:

Prob {Ψ(1) = 0} < 1, Prob {Ψ(1) ≥ 0} = 1, E|Ψ(1)|κ1 <∞,

then for all elements x on the unit sphere in IRI ,

lim
v→∞

vκ1Prob {xK ≥ v} (58)
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exists, is finite and for all elements x on the positive orthant of the unit sphere in IRI is

strictly positive.

This result establishes a Pareto (power) law for the upper tail, summarized by (57) and

(58). Its intuition is straightforward.15 Given a non-trivial initial value for the cognitive

shocks, Ψ(1), and an arbitrary initial value for human capitals, k̃0, the dynamic evolution

of human capital according to (54) keeps positive the realizations of human capital, with

the impact of spillovers also having an overall contracting effect that pushes the realizations

and thus the distributions of human capital, too, towards 0. The distribution is prevented

from collapsing at 0 by the properties of the contemporaneous cognitive shocks, Ψt, and from

drifting to infinity by the contracting effect of the spillovers. The contracting effect results

from the combination of two key requirements: First, condition (56), which requires that

the minimum row sum of the social interactions matrix grows with I faster than
√
I; and

second, the geometric mean of the norms of the social interactions matrix does not exceed

1. Thus, the upper tail is thickened by the combined effect of the contracting spillovers and

tends to a power law, ∼ vκ1 , with a coefficient which is constant. This result is sufficient

for the distribution of human capital in the entire economy to also have a Pareto upper tail.

Let fki denote the limit distribution of ki, i = 1, . . . , I. Then, the economy-wide distribution

of human capital is given by
∑
i#{i}fki(k), where #{i} denotes the relative proportion of

types i agents.

4.2.2 A Planner’s Problem

It is straightforward to develop a full model for an economy composed of I individuals,

as we have been working with, where the social structure is given. However, it is also

interesting to pose a planner’s problem, where the planner takes as given that individuals

set their human capitals according to (50), t = 0, . . . ,∞, and seeks to maximize a utilitarian

objective function according to the same objective, where the planner’s maximization is

defined in terms of the social networking efforts, {st}:

max
{st}∞t=0

∞∑
t=0

I∑
i=1

ρtUi,t(s−i,t, si,t;k−i,t, ki,t).
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Since the planner’s weights for individuals’ utilities are arbitrary, they may be set equal to

1. The point of such an exercise involving the planner’s setting of social connections, a kind

of “social engineering,” would be to identify the inefficiencies associated with individuals’

setting of social interactions weights. The advantage of this specification is that it lends

itself to comparisons with the results of the model with individualized decision making.

There is no consensus in the literature on the specification of the social interactions

component. Therefore, a more general aim would be to consider how one could bring about

a desired redistributional objective in a world where whom you know matters, defined in

terms of a given planner’s objective that is directly stated as a function of individuals’

human capitals. The planner’s problem could be stated in terms of determining for the

functional specification of the social interactions component H(·),

H (st−1; ki,t,k−i,t−1) ,

that would be bringing about the planner’s objective.

In view of the examples explored earlier, the function H(·) could be assumed to be

homogeneous, but of different degrees, depending upon which specific intuition we would

like to be expressed by the model. In such a case, the dynamical system (50) would be

adapted as follows:

ki,t =
1

c
bi,t +

a

c

∂H

∂ki,t
(st−1; ki,t,k−i,t−1) . (59)

Steady states must satisfy the above equation, when bt and the social network are time in-

variant. Stability properties of this dynamical system depend on the steady states associated

with (59). We note that not only the full vector b, but also the parameters a, c and the

values of the social network s enter the steady state. Alternatively, the stability properties of

this system may be sought, given the time evolution of bt, st. This specification is sufficiently

general to allow derivation of conditions under which the different possibilities explored by

Bramoullé, Kranton and D’Amours (2014) may be obtained as special cases.

Ioannides and Soetevent (2007) study individually optimized continuous outcomes in

a dynamic environment in the presence of social interactions, and where the interaction

topology is exogenous and time varying. The model accommodates more general social

26



effects than those allowed for here as well as for Gaussian stochastic shocks to the cognitive

vector, the bt’s. Since the social interactions structure is given, the approach may rely on

the well established tools of dynamic programming when the utility per period is quadratic

in the individual decisions. When a conformist global effect is present, that is, when each

individual suffers disutility from the gap between her own human capital and the lagged

average human capital in the economy, the system involves expectations of individuals’

future actions, which complicated considerably the analytics, because it involves a system

of second-order difference equations with expectations. Nonetheless, the solution to such a

system of equations is well understood and its properties involve conditions on the parameters

of the problem. See Ioannides and Soetevent (2007), Proposition 4.16 That approach is very

much along the linear of dynamic programming problems with linear quadratic objectives

and additive shocks. Alternative specifications of the planner’s problem could be aimed at

exploring the consequences of non-cognitive shocks. These are left for future versions of the

paper.

5 Consequences for Inequality: a first pass

Sticking to an interpretation of actions as human capital investments, the variation across

individual types, as expressed in the bi’s, can then be seen as a primitive determinant of the

distribution of human capital across a population, that is about “what you know.” Here, we

see that individual human capitals are proportional to the individuals’ productivities, with

the factors of proportionality being functions of the distribution of the bi’s across individuals

of varying complexity, as implied by different assumptions about the interaction weights.

Nonetheless, individuals’ utilities do depend on the distribution of the bi’s across individuals

in more complicated ways. In the simplest formulation, they depend on the first and second

moments of the distribution of the bi’s across types only. Individualizing the connection

weights by including functions of the bi’s lead to more complicated moments of the bi’s.

Fully individualizing the interaction weights, as by (24, 20, 19), or allowing for homogeneity

of degree less than, or greater than, one do not change the basic conclusion, namely that the
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outcomes are proportional to b’s, albeit with different interaction weights.

Specifically, in view of the optimal solution above for either the static or the dynamic

case, we may compute the corresponding value of the individuals’ objectives. That is, by

using (15) and (16), the value becomes:

Ui,τ(i)(s
∗,k∗) =

1

2
ϑb2τ(i). (60)

In the case of autarky, Ui,τ(i),aut = 1
c
b2τ(i). Since from (16), if ϑ exists, which is ensured by

the condition that (15)–(16) have at least one solution, then

ϑ >
1

c
.

While networking dominates autarky, it is interesting that the optimum value of the

quantity ϑ summarizes the impact of social networking on an individual’s welfare. The

larger is ϑ, the greater the contribution of social networking to individual welfare. If (15)–

(16) have two solutions, then the smaller of the two, ϑmin , is stable and the larger is unstable.

Then, the greater is ã, the greater is ϑmin. Holding a constant, this occurs if x
2(b)
x(b)

is greater.

But the feasibility condition (18) provides an upward bound on ã.

Another attractive feature of this formulation is that the solution summarizes an indi-

vidual’s social competence. This is helpful when we examine further below the model in the

presence of intergenerational transfers. The question then is how the option to let weights

of influence be determined endogenously affect outcomes about human capital at the steady

state, that is, “how whom you know” affects outcomes. In the models examined above, at

the steady state, all outcomes are proportional to the respective b′s, when social connections

are optimized. So, the variation of optimal actions and optimum utility across individuals

separates naturally into the impact of networking opportunities and of skill, being propor-

tional, to the bi, respectively b
2
i , with ϑ, the factor of proportionality, reflecting the effect of

the entire distribution of the bi’s. Thus, in a model where proxies for ability are inherited

[ Ioannides (1986); Durlauf (2013)], this feature may be relied on, in an overlapping- or

infinite-horizon model, to express inheritability. The question then becomes to what extent

“what you inherit” influences “whom you know.”
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5.1 Unstable Social Structures

When social connections are exogenous, a great number of possibilities arises. The devel-

opment in section 4.2 shows that the stability of the dynamic evolution of human capital

depends on the properties of the social network, relative to the parameters of the utility

function. Thus, when the social network does not satisfy conditions for stability, that is

when
x(s)

x2(s)
<
a

c
, (61)

and depending on initial conditions, one may think of whether it might be possible to have

sets of socially networked individuals whose human capitals converge over time, and while

for others they diverge. Given any given set of social networking efforts, it is straightforward

to obtain conditions under which such groupings of individuals are feasible. Specifically, it

is straightforward to show that given that there is a grouping of h− 1 individuals for whom

xh−1(s)

x2h−1(s)
<
a

c
, (62)

then the lhs above increases, that is,

xh−1(s)

x2h−1(s)
<

xh(s)

x2h(s)
,

if individual h is added for whom we have that:

si >
x2h−1(s)

xh−1(s)
.

That is, a prospective new member of the group must have sufficiently high networking

effort in order to improve social networking for the entire group she stands to join. Thus,

by successive addition of such individuals the inequality sign in the infeasibility condition

(62) would be reversed and the condition for stability established. Recall that the spirit of

the model is that there exist may different individuals of each type. Therefore, this ought

to be understood as how different types of individuals with given social networking efforts

may self-organize into different social networks.

Applying these models to dynamic settings, where one may compare between given

weights, perhaps representing a given social structure, and optimized weights, one may thus
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distinguish between given relationships, like familial ones, versus social networking across

familial relationships.

5.2 Moving in Search of Desirable Interactions

Suppose that individuals may move over time in search of desirable interactions. Such

interactions differ across communities, ℓ = 1, . . . , L, and are denoted by the respective social

interactions matrix, Gℓ [Neal (2013)]. We may assume either that social networking efforts

are given, in which case the value from joining a community may be expressed as the optimum

value of

Ui(ki,k−i; ℓ) ≡ (bi − pi,ℓ)ki + a
I∑

j=1,j ̸=i
gℓ,ijkikj − c

1

2
k2i .

Individual i incurs a cost of living in community ℓ, pi,ℓ. We assume that this is set per unit

of human capital, so that the cost modifies bi, bi − pi,ℓ.

Think of ki as schooling,

Assume Gℓ, given, exogenous: Ui(ki,k−i; ℓ) ≡ (bi − pi,ℓ)ki + a
∑I
j=1,j ̸=i gℓ,ijkikj − c1

2
k2i ,

Individual optimum may be written as q quadratic function of bi− pi,ℓ and Gℓ,i (ith row

of Gℓ. A ranking of communities follows accordingly. The consequences of this formulation

can be explored systematically and would likely rely on spectral properties of Gℓ. They will

be pursed further in future work.

6 Introducing Intergenerational Transfers

I consider next dynamic versions of the model that allows for intergenerational transfers. I

consider first transfers of wealth, whereby individuals start their lives with a given level of

wealth in the form of human capital, denoted by ki,t, which they receive from their parents.

They give birth to a child, to whom they transfer wealth equal to ki,t+1. We let the utility

function, given in (1), Ui,t(st,kt), denote the period t payoff for individual i, let dynastic

utility be identified with the value function associated with the dynamic process for each
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dynasty be denoted by Ui,t(ki,t). That is, dynastic utility is defined in the standard fashion

for dynamic programming problems:

Ui,t(ki,t) = max
si,t,ki,t+1

: {Ui,t(st,kt) + ρUi,t(ki,t+1)} , (63)

where utility per period, Ui,t(st,ki,t), is given by (1):

Ui,τ(i)(s,k) ≡ bτ(i)ki,t + a
I∑

j=1,j ̸=i
gij(st)ki,tkj,t − c

1

2
k2i,t −

1

2
s2i,t − ki,t+1.

In this formulation each parent at t decides on a transfer to her child, ki,t+1, and on the

networking effort, si,t, that she avails herself from, given the transfer which she herself

received from her own parent, ki,t, so as to maximize her lifetime utility. Note that whereas

the parent incurs the resource cost, ki,t+1, of the transfer to the child, the child incurs the

adjustment cost, that is the quantity 1
2
k2i,t for the individuals who are the parents at t.

Dynastic utility is defined as the sum of her own period t utility plus the discounted sum of

the maximum utilities of her descendants. It is perfectly feasible to develop this model, but I

note that by making the transfer to the child and her own networking efforts as simultaneous

decisions, the child does not benefit from the parent’s networking. In such a model, there

is no human capital accumulation, since each individual lives for one period, nor growth

(although exogenous growth to the productivity of human capital could be introduced).

This otherwise standard model exhibits the property of the life cycle theory, in its being

isomorphic to a model of a single decision maker who maximizes an infinite sum of utilities

with respect to a sequence of decisions, {ki,t+1, si,t}∞t=0. I do not pursue this model further,

but the details may be found in Appendix A.

6.1 Overlapping Generations Models of Social Networks and In-

tergenerational Transfers

A richer model and analytically more tractable one may be obtained if we assume that

individuals have finite lifetimes and enter the economy in overlapping generations. I start

with two overlapping generations, but do note however that a minimum of three overlapping

generations will be necessary to express Heckman’s concern about allowing for at least two
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periods of investment in a child’s cognitive and non-cognitive skills. That is, it is critical

[see Cunha and Heckman (2007)] for the acquisition of cognitive and non-cognitive skills to

interact — there is dynamic complementarity among them — and investment in certain ages

are more critical and then in other ages. Moreover, these come earlier for cognitive capa-

bilities, later for non-cognitive capabilities, and vary depending on the particular biological

capability. Three-overlapping generations is the minimum number that allows for direct

effects between grandparents and grandchildren. Heckman and Mosso (2014) emphasize,

however, there have to be at least four periods in individuals’ lifetimes, with two periods for

a passive child who makes no economic decisions but who benefits from parental investment

in the form of goods, and two periods as a parent. This requires, of course, going beyond

the standard two-overlapping generations models used by many life cycle models.

As Durlauf (2013) stresses, “the new economics of skills [see Heckman et al.] has two

critical features. First, it employs a broad definition of skills. In particular, it differenti-

ates between cognitive and non-cognitive skills. In this respect, the economics of skills has

followed the psychology literature, in which intelligence and personality studied as distinct

aspects of the mind. Many psychologists dislike the term ‘non-cognitive’ skills since these

skills are also part of the mind, and so in their view are cognitive.” Still, here I, too, follow the

language of economists. Second, the literature focuses on development across the childhood

and adolescence. This is obviously hard to represent within the popular two-generations

paradigm widely used by economists.

The fact that parents are assumed to coexist with their children naturally allows me to

model that children may avail themselves of the social connections of their parents. Such

a natural “transfer in kind” can coexist with a wealth transfer. Both types of transfers are

central features of the models that follow.

6.1.1 A Two-Overlapping Generations Model of Intergenerational Transfers

Let subscripts y, o refer to individuals when they are young, old, respectively, and let time

subscripts refer to when the respective magnitude is operative. A member of the generation
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born at t receives a transfer ky,i,t from her parent when young; she herself takes advan-

tage at time t of social connections made by her parent’s generation: sy,t−1. Her cognitive

skills are given: by,i,t, bo,i,t+1. She chooses human capital investment and networking effort

(ko,i,t+1, sy,i,t); she benefits in period t + 1 from ko,i,t+1; her generation benefits from sy,t in

time t+1. She chooses an endowment to her child in the form of human capital, ky,i,t+1, and

networking effort, so,i,t+1, from which her child benefits in the first period of her own life at

time t+ 1.

We assume that the resource cost of investment ko,i,t+1 is incurred in period t, but the

adjustment costs is incurred in t+1 (when the benefits are also realized); consistently, ky,i,t+1

is incurred in period t+1, but the parent anticipates that the adjustment costs are incurred

by the child in t+1. This model leads to a generalization of the system of dynamic equations

as the one examined earlier. It coincides with that system in the special case of cognitive

skills which are equal across young and old and invariant over time: bi = by,i,t = bo,i,t+1.

It is important to clarify the relevant peer groups. With two overlapping generations, we

may define the peer groups for young generation t at time t as the members of generation

who were born at t − 1 when they are old at time t. That is, the members of generation t

benefit in period t from the human capitals ko,t and the social networking of their parents’

generation, so,t. When they are old in period t + 1 they benefit by the human capitals

and social contacts the members of their own generation themselves decided on, ky,t, sy,t.

In other words, in their first-period decisions about social connections, they are conscious

of the fact that they themselves would benefit from their own social connections when they

are old; in their second-period decisions about social connections, they are conscious of the

fact that their children would benefit from their own second-period social connections when

their children are young. Therefore, all second-period decisions are in effect intergenerational

transfers of capital and social connections. In the absence of uncertainty, all decisions are of

course made simultaneously, but being explicit about “timing” of networking efforts would

be crucial with sequential resolution of uncertainty, if such uncertainty were to be introduced.

That is, the decision problem for a member of generation t, born at time t, is to choose

{ko,i,t+1, ky,i,t+1; sy,i,t,, so,i,t+1},
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given {ky,i,t, so,t}. We express the first-order conditions by first defining the value functions

V [t]
i (ky,i,t, so,t),V [t+1]

i (ky,i,t+1, so,t+1), associated with an individual’s lifetime utility when he

is young at t and when he is old at t+ 1, we have:

V [t](ky,i,t, so,t)

= max
{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}

by,i,tky,i,t + a
∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

+ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

+ ρV [t+1]
i (ky,i,t+1, so,t+1)

 .
Correspondingly,

V [t+1]
i (ky,i,t+1, so,t+1)

= max
{ko,i,t+2,ky,i,t+2;sy,i,t+1,,so,i,t+2}

by,i,t+1ky,i,t+1 + a
∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1 − ko,i,t+2

+ρ

bo,i,t+2ko,i,t+2 + a
∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2

+ ρV [t+2]
i (ky,i,t+2, so,t+2)

 .
The first-order conditions with respect to (ko,i,t+1, sy,i,t,; ky,i,t+1, so,i,t+1) are, respectively:

ko,i,t+1 =
1

c
bo,i,t+1 +

a

c

∑
j ̸=i

gij(sy,t)ky,j,t −
1

cρ
; (64)

sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij
∂sy,i,t

(sy,t)ky,j,t; (65)

−ρ+ ρ
∂V [t+1]

i

∂ky,i,t+1

(ky,i,t+1, so,t+1) = 0;

−ρso,i,t+1 + ρ
∂V [t+1]

i

∂so,i,t+1

(ky,i,t+1, so,t+1) = 0.

Using the envelope property, the partial derivatives of the value function above,

∂V [t+1]
i

∂ky,i,t+1

(ky,i,t+1, so,t+1),
∂V [t+1]

∂so,i,t+1

(ky,i,t+1, so,t+1)

are equal to the partial derivatives of the respective utility per period. That is, using the

envelope property, the last two equations become:

ky,i,t+1 =
1

c
by,i,t+1 +

a

c

∑
j ̸=i

gij(so,t+1)ko,j,t+1 −
1

cρ
; (66)
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so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1; (67)

We can summarize the first-order conditions for the k’s in matrix form as follows.

ko,t+1 =
1

c
bo,t+1 +

a

c
G(sy,t)ky,t −

1

cρ
1; (68)

ky,t+1 =
1

c
by,t+1 +

a

c
G(so,t+1)ko,t+1 −

1

cρ
1, (69)

where 1 is a vector of 1s. From these we may obtain two single first-order difference equations:

first in ky,t, by substituting for ko,t+1 from (68) in the rhs of (69), and then in ky,t, by

substituting for ky,t from (69) in the rhs of (68). That is:

ky,t+1 =
a2

c2
G(sy,t)G(so,t+1)ky,t +

1

c
by,t+1 +

a

c2
G(so,t+1)bo,t+1 −

1

cρ

[
I+

a

c
G(so,t+1)

]
1. (70)

ko,t+1 =
a2

c2
G(so,t)G(sy,t)ko,t +

1

c
bo,t+1 +

a

c2
G(sy,t)by,t −

1

cρ

[
I+

a

c
G(sy,t)

]
1. (71)

These are two well-defined uncoupled first-order linear systems for (ko,t,ko,t), given

(sy,t, so,t, so,t+1). Their steady state solutions are easily characterized, in terms of the in-

verse of I − a2

c2
G(so)G(sy). Since the largest eigenvalue of G(so)G(sy) is bounded upwards

by the product of the largest eigenvalues of G(so) and G(sy) [Debreu and Herrstein (1953);

Merikoski and Kumar (2006), Thm. 7, 154–155], the inverse exists, provided that the product

of a
2

c2
with the largest eigenvalues of G(so) and of G(sy) is less than 1. A sufficient condition

for this is that the products of a
c
and each of the largest eigenvalues of G(so),G(sy) are less

than 1. The characterization of the steady state solution in more detail below allows us to

examine these sufficient conditions further.

Again, assuming that social networking efforts are given and using tools from the theory of

stochastic linear systems in the style of Ioannides and Soetevent (2007), we can characterize

the joint evolution of human capitals.

In the case of three-overlapping generations, that is when children coexist with their

parents and their grandparents, we will have an additional set of equations for the respective

magnitudes associated with youth, adulthood and old-age,

(ky,i,t, ka,i,t+1, ko,i,t+2; sy,i,t, sa,i,t+1, so,i,t+2).
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An individual born at t, will take as given (ky,i,t, sy,i,t) and choose

(ka,i,t+1, ko,i,t+2, ky,i,t+3; sa,i,t+1, so,i,t+2, sy,i,t+3).

Intuitively, one would expect that the additional first-order conditions would introduce addi-

tional multiplicative terms to the matrix defining the dynamical system and additional terms

multiplying the respective cognitive skills vectors. That is, the endowment of cognitive skills

in each period of the life cycle introduce life cycle effects into the model, being weighted by

the respective social interactions matrix, as in 1
c
a
c
G(sy,t)by,t in Eq. (71) above. Given the

pattern of recurrence, we can guess what the counterpart of (71) should look like. Since

the respective endowments are not equal across time, steady state values for human capitals

differ at different stages of the life cycle.

It is known from research on models with more than two overlapping generations [ see

Azariadis et al. (2004) and references there in ] that more than two overlapping generations

models usher in considerably more complicated properties in general equilibrium contexts.17

It is therefore an interesting result that complicating the demographic structure of the model

leaves tractable the structure that determines the dynamics of the model. Working through

the derivations formally in order to derive the counterpart of (71) confirms, in fact, this

intuition.

6.1.2 Social Effects in Intergenerational Wealth Transfer Elasticities

Interpreting human capital ky,i,t as initial wealth for a member of the generation born at t

allows us to compute intergenerational wealth elasticities. We work from (70) and define the

elasticity of ky,i,t+1 with respect to ky,i,t and account only for direct effects,

EL
ky,i,t+1

ky,i,t
=
dky,i,t+1

dky,i,t

ky,i,t
ky,i,t+1

,

that is effects on i’s decisions as opposed to the impact of i’s decisions on decisions of

other agents, which feed back to agent i’s decisions. It is easiest to see the effect under the

assumption that social networking is given. Then, from (68) and (69) we have a direct effect,

∂ky,t+1

∂ky,i,t
=
a2

c2
[G(sy,t)G(so,t+1)]col i .
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This effect is simply the increase in the transfer to the child, ky,i,t+1, from an increase in

first period wealth received by a member of the tth generation. This is determined from

trading off the resource cost of the transfer, which is incurred by the parent in period t+ 1,

with the utility increase to him from the benefit to the child when the transfer is received

in period t+ 1. This is why both adjacency matrices, G(sy,t) and G(so,t+1), are involved in

the expression for ∂ky,i,t+1

∂ky,i,t
.

However, because the transfer to the child, ky,i,t+1, and the parent’s social networking

effort when old, so,i,t+1, are jointly determined, the full benefit to the child also reflects how

the change in the parent’s social networking effort influences the human capital spillovers,

which are associated with the parents’ human capitals in period t + 1, the second period

of their lives. We see from (71) that ko,i,t+1 is determined, given (ko,i,t, sy,i,t, so,i,t). Thus,

in using the interdependence of (ky,i,t+1, so,i,t+1), as in (67), to express the effect of ky,i,t on

ky,i,t+1 via so,i,t+1, we have:

∂so,i,t+1

∂ky,i,t+1

= ρa
I∑

j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1, (72)

given ko,t+1, so,−i,t+1. Therefore, an effect is generated on ky,i,t+1 due to its dependence on

so,i,t+1, which is obtained by partially differentiating the rhs of (70) with respect to so,i,t+1.

In sum, for the total effect of an increase in first period wealth on the transfer to the

child, we have from (70) and (67):

d ky,i,t+1

d ky,i,t
=
∂ky,i,t+1

∂ky,i,t

1 + ρa
I∑

j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1
∂so,i,t+1

∂ky,i,t+1

 ,
where the partial derivative of ky,t+1 with respect to so,i,t+1 is given by:

a2

c2
G(sy,t)

∂

∂so,i,t+1

G(so,t+1)ky,t +
∂

∂so,i,t+1

G(so,t+1)

[
a

c2
bo,t+1 −

a

ρc2
1

]
,

with

∂

∂so,i,t+1

G(so,t+1) =


0 0 . . . so,1,t+1∑

j ̸=1
so,1,t+1

. . . 0

so,1,t+1∑
j ̸=i so,j,t+1

so,2,t+1∑
j ̸=i so,j,t+1

. . . 0 . . .
so,I,t+1∑
j ̸=i so,j,t+1

0 0 . . .
so,I,t+1∑
j ̸=I so,j,t+1

. . . 0

 ,
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where we have utilized the large number of agents approximation for the derivatives of the

entries of G(so,t+1).

This analysis comes in handy when we examine the impact of differences in the parent’s

or in the child’s own cognitive skills on the transfer to the child. From (69) applied for time

t we have that an individual with higher first-period cognitive skills by,i,t receives a larger

transfers from his parent, ky,i,t
by,i,t

= 1
c
. This in turns induces a change in his own transfer to

his child, along the lines of the effects we just computed. Working in like manner we have

that an increase in the parent’s own second period cognitive skills bo,i,t+1 leads from (70) to

ky,t+1

bo,i,t+1
= a

c2
G(so,t+1)coli, which leads in turn from (????)) to a change in so,1,t+1, exactly as

we analyzed earlier.

Therefore, we have clarified how social effects affect the elasticities of intergenerational

wealth transfers. Naturally, they are present when social networking is endogenous, but also

when they are exogenous. In the latter case, the intergenerational wealth elasticity becomes:

EL
ky,i,t+1

ky,i,t
=
a2

c2
[G(sy,t)G(so,t+1)]ii

× ky,i,t
a2

c2
[G(sy,t)G(so,t+1)]row i ky,t +

1
c
by,i,t+1 +

a
c2
[G(so,t+1)]row i bo,t+1 − 1

cρ

[
1 + a

c
G(so,t+1)row i1

] ,

6.1.3 Steady States

Although the above single difference equation could be a starting point for the stability

analysis, it is analytically more convenient to work with the full system of equations. Let us

assume that the by,i,t, bo,i,t are time-invariant, and let

b∗y,i ≡ by,i −
1

ρ
, b∗o,i ≡ bo,i −

1

ρ
.

By applying equations (68), (65), (69), and (67) we have:

cko,i = b∗o,i + asy,i
∑
j ̸=i

sy,jky,j∑
i sy,i

; (73)

sy,i = ρako,i
I∑

j=1,j ̸=i

sy,jky,j∑
i sy,i

; (74)
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cky,i = b∗y,i + aso,i
∑
j ̸=i

so,jko,j∑
i so,i

; (75)

so,i = ρaky,i
I∑

j=1,j ̸=i

so,jko,j∑
i so,i

. (76)

We define the auxiliary variables, ψy =
∑
j ̸=i

sy,jky,j∑
i
sy,i
, ψo =

∑
j ̸=i

so,jko,j∑
i
so,i
. Note that they do not

depend on i. From (73) and (74), and (76) and (76), we have:

ρko,i(cko,i − b∗o,i) = s2y,i = ρ2a2ψ2
yk

2
o,i;

ρky,i(cky,i − b∗y,i) = s2o,i = ρ2a2ψ2
ok

2
y,i.

We may thus solve for ky,i, ko,i, and then by using the definitions of ψy, ψo, for sy,i, so,i, as

follows:

ky,i =
b∗y,i

c− ρa2ψ2
o

, ko,i =
b∗o,i

c− ρa2ψ2
y

; (77)

sy,i = ρaψy
b∗o,i

c− ρa2ψ2
y

, so,i = ρaψo
b∗y,i

c− ρa2ψ2
o

. (78)

Thus, human capitals and networking efforts by young and old, (ky,i, ko,i; sy,i, so,i), are

uniquely defined in terms of the auxiliary variables (ψy, ψo) and parameters. Human capitals

(ky,i, ko,i) are proportional to their respective cognitive skills, (by,i, bo,i), though with different

factors of proportionality. In contrast, networking efforts, (sy,i, so,i), are proportional to the

cognitive skills corresponding to the life cycle period when individuals avail of them. That is,

when individuals are old, and when their children are young, (bo,i, by,i), again with different

factors of proportionality.

Finally, by substituting back into the definitions of ψy, ψo, we obtain obtain third-degree

equations in ψy, ψo :

ψy =
1

c− ρa2ψ2
o

b∗
y · b∗

o

Ix(b∗
o)
; (79)

ψo =
1

c− ρa2ψ2
y

b∗
y · b∗

o

Ix(b∗
y)
, (80)

where b∗
y · b∗

o =
∑
b∗y,ib

∗
o,i.

Equations (79–80) have at most two solutions in (ψy, ψo), which can be characterized

easily but not solved for explicitly. The steady state values of all endogenous variables
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then follow from (77–78). Note that the life cycle model is crucial for the result. ψy and

ψo would be equal to one another, were it not for the fact that, by,i ̸= bo,i, first-period and

second-period cognitive skills are in general different from one another. Similarly, interesting

complications follow if cognitive skills may be influenced by means of investment, which the

section that follows explores.

If we were to assume, as in section 4.2, that the social networks are given exogenously,

in this case those of young and of old agents, with values not necessarily coinciding with

the steady state ones, then a number of additional results are possible. First, under the

assumption that the social networking efforts are constant over time, (sy, so), the system

of equations (70–71) implies that a single equation for aggregate capital kt = ky,t + ko,t,

may be obtained. The dynamics are exactly the same as in each of the two systems and no

further discussion is necessary. Second, we may reformulate the evolution of human capitals

in stochastic terms, as in the analysis of section 4.2.1 but now in terms of (ky,t,ko,t). Similar

results regarding stochastic limits in the form of a power law are likely to be obtained.

Such results may be strengthened in the following way. Intuitively, as the number of

overlapping generations increases, the matrix for human capitals in the laws of motion (70),

(71), becomes the product of increasing number of factors. In the limit, as the number of

overlapping generations tends to infinity, the product of stochastic matrices may be handled

by techniques similar to those of section 4.2.1, leading to power laws in every period.

6.2 Stochastic Shocks to Cognitive Skills

A natural extension of the model is to allow for the vector of cognitive skills to be stochastic.

For simplicity in demonstrating the basic issues that this extension entails, we assume that

the distribution of Bi,t = (by,i,t, bo,i,t+1; by,i,t+1) is multivariate normal, whose means bm =

(bm,y,bm,o;bm,y+), with (my,i,mo,i,my+,i) as the components of the respective vectors, and

variance-covariance matrix Σ depend on i. That is, put concisely, the variance-covariance
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matrix for Bi = (by,i,t, bo,i,t+1; by,i,t+1) looks as follows:
σ2
b ρoσbσo ρbσbσb+

ρoσbσo σ2
o 0

ρoσbσb+ 0 σ2
b+

 .

The realizations Bi are independent across individuals. The covariance COV(by,i,t, by,i,t+1)

expresses the inheritability of first-period cognitive skills from parents to children; the covari-

ance COV(by,i,t, bo,i,t+1) expresses the dependence between first- and second-period cognitive

skills for the same individual.

The economy evolves as follows: at time t, individual i is born and her cognitive skills,

by,i,t, and wealth transfer from her parent ky,i,t are realized. Individual i avails herself of

social interactions in exactly the same way as in the deterministic model above. I simplify

the model by assuming that socialization efforts remain constant over time, (s)o by the old,

and (s)y by the young.

Modifying the individual’s decision problem in the obvious way allows us to derive first

order conditions, the stochastic counterpart of (66)–64). They are as follows:

ky,i,t+1 =
1

c
E [by,i,t+1|by,i,t; t] +

a

c

∑
j ̸=i

gij(so)E [ko,j,t+1|i, t]−
1

cρ
; (81)

ko,i,t+1 =
1

c
E [bo,i,t+1|by,i,t; t] +

a

c

∑
j ̸=i

gij(sy)E [ky,j,t|i, t]−
1

cρ
. (82)

We rewrite (82) in terms of j. Under the assumption that all agents observe the realization

of by,t and that each individual i’s conditional expectations of (bo,j,t+1; by,j,t+1), j ̸= i, are

independent of i,

E [bo,j,t+1|i, t] = E [bo,j,t+1|j, t], ∀i, j,

and by using (82) to substitute into the rhs of (81) we have:

ky,t+1 =
a2

c2
G(sy)G(so)ky,t +

1

c
E [by,t+1|t] +

a

c2
G(so)E [bo,t+1|t]−

1

cρ

[
I+

a

c
G(so)

]
1, (83)

where each component of the vectors of conditional expectations is given by:

E [by,i,t+1|t] = E [by,i,t+1|by,i,t], E [bo,i,t+1|t] = E [bo,i,t+1|by,i,t].
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These conditional expectations may be written in terms of the parameters (bm,Σ) of the Bt,

the vector form of Bi,t. This is a stochastic linear system that may be solved in closed form

in a standard fashion, as we see further below. The conditional expectations are written, in

the standard fashion, as:

E [by,i,t+1|by,i,t] = my+,i+ρb
σb+
σb

(by,i,t−my,i), E [bo,i,t+1|by,i,t] = mo,i+ρo
σo
σb

(by,i,t−my,i). (84)

We can therefore use (84) in (83) to rewrite the system equations (83) as follows:

ky,t+1 =
a2

c2
G(sy)G(so)ky,t +Gadj(so)by,t +C, (85)

where

Gadj(so,Σ) = ρb
σb+
cσb

I++ρo
σo
σb

a

c2
G(so);

C(so,bm,Σ) =
1

c
bm,y+ +

a

c2
G(so)bm,o − ρb

σb+
cσb

bm,y −
a

c2
ρo
σo
σb

G(so)bm,y −
1

cρ

[
I+

a

c
G(so)

]
1

The version of the system equations (85) is in the standard form for stochastic dynamical

systems. The state has two components, (ky,t,by,t), the first of which is predetermined and

the second is random and realized at time t. By relying on the tools of linear stochastic

systems we can express the steady state distribution of human capitals (and of all other

endogenous variables of interest) in terms of the parameters of the stochastic process of

shocks By,t. These results are microfounded within a model of intergenerational transfers.

Specifically, we may transform system (85) in terms of deviations of human capitals from

their deterministic steady state values, given by:

k∗
y =

a2

c2
G(sy)G(so)k

∗
y +C(so,bm,Σ). (86)

By Proposition 4.1 of Bertsekas (1995), ∆ky,t = ky,t − k∗
y has a multivariate normal limit

distribution with mean 0 and variance covariance matrix Σ∞ that satisfies:

Σ∞ =
a4

c4
G(sy)G(so)Σ∞G(so)G(sy) +Gadj(so)ΣG

T
adj(so). (87)

The properties ofG(sy),G(so) are crucial determinants of the properties of the mean, k∗
y, and

of the variance covariance of the limit distribution, Σ∞. It is thus clear that social networking

has a profound effect on the steady state distribution of human capitals. Both their limit

mean and variance display complex dependence on the properties of social networking and

of the parameters (bm,Σ) of the process of cognitive shocks By,t.
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6.3 Investment in Cognitive Skills in a Model of Two Overlapping

Generations with Two Subperiods Each

We allow for the possibility that individuals may use resources to influence the cognitive

skills of their children, while we retain the feature that their social networking decisions also

influence their children’s social networks, via the social structure which influences the child

but results from parents’ decision, which we interpret as influence via non-cognitive skills.

We retain the overlapping generations structure and assume that youth and adulthood lasts

for two subperiods each, early youth and youth, and adulthood and old age. So, each adult

at time t, who was born at time t− 2, gives birth to a child at time t, in her third subperiod

of her life who in turn lives for four subperiods, t, t + 1, t + 2, t + 3, during two of which

she overlaps with the parent who is still alive, for two more subperiods. She then in turn

gives birth to her own children at time t+ 2, when she herself is an adult. Individuals make

decisions affecting the household only in adulthood and old age. For a child born at time t,

her cognitive skills when she become an adult at time t+2 are determined by a given input

at birth, by,i,t, which may be constant, and investments (ιc1,t, ιc2,t+1), and given by:

by,i,t+2 = bo,i,t+3 = β0by,i,t + β1ιc1,t + β2ιc2,t+1,

where β0, β1, β2 are parameters, and (ιc1,t, ιc2,t+1) are resource costs, which are incurred,

contemporaneously with the respective adjustment costs, in time periods t, and t + 1, the

first and second subperiods in a child’s life time, 1
2
γ1ι

2
c1,t,

1
2
γ1ι

2
c2,t+1, respectively. Thus,

in addition to the first order conditions as above, we need to obtain conditions for the

optimization of (ιc1,t, ιc2,t+1).
18

An individual born at t takes cognitive skills and human capital as given, (by,i,t, ky,i,t),

and benefits from the networking efforts of the parents’ generation, so,t−1, who are in the

third subperiod of their lives when she is born. She chooses at time t the second subperiod

human capital and the first subperiod transfer received by the child at time t+2, respectively

{ko,i,t+1, ky,i,t+2}; and the first and second subperiod networking efforts, {sy,i,t,, so,i,t+1}, re-

spectively. These benefit herself in the second subperiod of her life, and benefit her child

too, when the child is in her first subperiod of her life and she herself in her third subperiod

43



of her life. For analytical convenience, I assume that the adjustment costs for decisions

{sy,i,t,, ko,i,t+1}, are both incurred in period t. The optimization problem implies that the

cognitive skills, by,i,t+2, of the individual’s child and the transfer she receives when she be-

comes an adult, ky,i,t+2, are determined simultaneously. The definition of the problem now

changes to:

V [t](ky,i,t, so,t−1) = max
{ko,i,t+1,ky,i,t+2;ιc1,t,ιc2,t+1;sy,i,t,,so,i,t+1}

{
ρ2V [t+2](ky,i,t+2, so,t+1)

+by,i,tky,i,t + a
∑
j ̸=i

gij(so,t−1)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1 − ιc1,t −

1

2
γ1ι

2
c1,t+

ρ

bo,i,t+1ko,i,t+1 + a
∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+2 − ιc1,t+1 −

1

2
γ1ι

2
c1,t+1

 .
The first order conditions for ι1,t, ι2,t+1 are:

−1− γ1ιc1,t + ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

[
∂by,i,t+2

∂ιc1,t
+
∂bo,i,t+3

∂ιc1,t

]
= 0.

−ρ[1− γ2ιc2,t+1] + ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

[
∂by,i,t+2

∂ιc2,t+1

+
∂bo,i,t+3

∂ιc2,t+1

]
= 0.

Using the envelope property we rewrite the partial derivation of the value function above

and get:

−1− γ1ι1,t + ρ2β1 [ky,i,t+2 + ρko,i,t+3] = 0.

−1− γ2ι2,t+1 + ρβ2 [ky,i,t+2 + ρko,i,t+3] = 0.

Solving for ι1,t, ι2,t+1 yields:

ι1,t =
1

γ1
(ρ2β1[ky,i,t+2 + ρko,i,t+3]− 1); ι2,t+1 =

1

γ2
(ρβ2[ky,i,t+2 + ρko,i,t+3]− 1).

This in turn yields:

by,i,t+2 = bo,i,t+3 = β0by,i,t + ρρβ[ky,i,t+2 + ρko,i,t+3]− ρβ, (88)

where the auxiliary parameter ρβ is defined as ρβ ≡
(
ρβ1
γ1

+ β2
γ2

)
. For some of the analysis

below we assume that by,i,t is constant, so that cognitive skills do not necessarily steadily

increase. Of course, such a figure could be incorporated.
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It follows that the first-order condition for ky,i,t+2 must reflect the influence that decision

has, as implied by the optimization problem, on by,i,t+2. Since by,i,t+2 = bo,i,t+3 the utility

per period from the last two subperiods of the child’s lifetime contribute to the first-order

conditions. The first order conditions are:

−ρ+ ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂ky,i,t+2

+ ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

∂by,i,t+2

∂ky,i,t+2

= 0.

After using the envelope property and (88), this yields the following:

−1 + ρ

by,i,t+2 + a
∑
j ̸=i

gij(so,t+1)ko,j,t+2 − cky,i,t+2

+ ρ2ρβky,i,t+2 + ρ3ρβko,i,t+3 = 0.

This condition is rewritten as:

ky,i,t+2 =
1

ccs
by,i,t+2 +

a

ccs

∑
j ̸=i

gij(so,t+1)ko,j,t+2 +
ρ2

ccs
ρβko,i,t+3 −

1

ρccs
, (89)

where the auxiliary variable ccs is defined as: ccs ≡ c− ρρβ. This condition may be rewritten

by using (88) to eliminate by,i,t+2 by expressing it in terms of (ky,i,t+2, ko,i,t+3).

In addition, the first-order conditions for ko,i,t+1, sy,i,t,, so,i,t+1, Eq. (??) are as follows:

ko,i,t+1 =
1

c
bo,i,t+1 +

a

c

∑
j ̸=i

gij(sy,t)ky,j,t −
1

cρ
. (90)

sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij(sy,t)

∂sy,i,t
ky,j,t; (91)

so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij(so,t+1)

∂so,i,t+1

ko,j,t+1. (92)

Conditions (91) and (92) are similar, respectively, to (65) and 67) and thus may be manip-

ulated at the steady state in like manner to the steady state analysis in section 6.1.3 above.

It is more convenient to write Eq. (90) by advancing the time subscript as follows:

ko,i,t+3 =
1

c
bo,i,t+3 +

a

c

∑
j ̸=i

gij(sy,t+2)ky,j,t+2 −
1

cρ
. (93)

By using (88) to write for bo,i,t+3 in terms of its solution in terms of (ky,i,t+2, ko,i,t+3) and

rewriting the conditions for (ky,i,t+2, ko,i,t+3) in matrix form, we have:

ko,t+3 =
β0
ρ∗c

b− ρβ
ρ∗

i+

[
ρρβ
ρ∗c

I+
a

ρ∗c
G(sy,t+2)

]
ky,t+2, (94)
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where ρ∗ ≡ 1− ρ2ρβ
c
.

ky,t+2 =
β0
ρ̃ccs

b− 1

ρ̃ρccs
i+

a

ρ̃ccs
G(so,t+2)ko,t+2 +

ρ2ρβ
ccs

ko,t+3, (95)

where ρ̃ ≡ 1− ρρβ
ccs
. However, by substituting from (94) for ko,t+3 in the rhs of (95), we have:[(

1−
ρ3ρ2β
ρ∗ρ̃cccs

)
I− aρ2ρβ

ρ∗ρ̃cccs
G(sy,t+2)

]
ky,t+2

= β0

[
ρ2ρβ
ρ̃ρ∗cccs

+
1

ρ̃ccs

]
b−

[
1

ρ̃ρccs
+

ρ2ρ2β
ρ̃ρ∗ccs

]
i+

a

ρ̃ccs
G(so,t+2)ko,t+2.

By dividing through by 1− ρ3ρ2β
ρ∗ρ̃cccs

and denoting

â ≡ aρ2ρβ
ρ∗ρ̃ccs

(
1−

ρ3ρ2β
ρ∗ρ̃cccs

)−1

,

we may solve the previous equation with respect to ky,t+2 as follows:

ky,t+2 =

[
I− â

c
G(sy,t+2)

]−1 [
b′
eff +

a

ρ̃ccs
G(so,t+2)ko,t+2

]
,

where b′
eff is the resulting new constant. By substituting into the rhs of (94), we obtain a

single first-order linear difference system in ko,t+2:

ko,t+3 = beff +
a

ρ∗c
G(sy,t+2)

[
I− â

c
G(sy,t+2)

]−1
a

ρ̃ccs
G(so,t+2)ko,t+2, (96)

where beff denotes the resulting constant. Thus, this equation depends on both networking

efforts by the young and the old in two successive periods, G(sy,t+2),G(so,t+2).

In a notable difference from the previous model, we now see a key new role for the social

networking that individuals avail of when young. The product G(sy,t+2)G(so,t+2) is adjusted

by
[
I− â

c
G(sy,t+2)

]−1
. Intuitively, this effect acts to reinforce the effects of social networking

when young. This readily follows from (94) and (94) above. Feedbacks are generated due

to the investment in cognitive skills. Mathematical results invoked upon earlier can still be

used to determine the stability of (96). That is,
[
I− â

c
G(sy,2)

]−1
admits a simple expression,

following steps similar to (8) above, provided that

â

c

x2(sy,2)

x(sy,2)
< 1.
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Thus: [
I− â

c
G(sy,2)

]−1

= I+
â

c

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2).

Thus, the stability of (96) rests on the spectral properties of

a

ρ∗c

a

ρ̃ccs
G(sy,2)G(so,2) +

a

ρ∗c

â

c

a

ρ̃ccs

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2)
2G(so,2).

By Theorem 1, Merikoski and Kumar (2004), 151–152, the maximal eigenvalue of the sum

of two real symmetric (Hermitian) matrices is bounded upwards by the sum of the maximal

eigenvalues of the respective matrices. Thus, a condition for the stability of (96) readily

follows and involves (sy,2, so,2) along with the other parameters of the model.

7 Conclusions

The dynamic models analyzed by this paper offer a novel view of the joint evolution of hu-

man capital investment and social networking. Those of our models that are embedded in

overlapping generations frameworks display all strengths and weaknesses of that workhorse

of modern growth theory and macroeconomics. Our analysis first takes advantage of formal

similarities between infinite horizon dynastic life cycle modeling and overlapping generations

models with intergenerational transfers. The dynamic models of the paper share the impor-

tant feature namely that individuals’ lifetime capital accumulation plans are distinguished

from intergenerational transfers, while allowing for an endogenous social structure. The

model where endogenous investment influence the cognitive skills of one’s child is analyti-

cally considerably more complicated than when cognitive skills are given, however, because

of additional dynamic complexity. In our basic model with overlapping generations, individ-

uals receive a transfer from their parents in the first period of their lives and avail themselves

of the social connections that their parents chose at that same period. They in turn choose

their own second-period human capital, own second-period social connections, and transfer

to their children. Even so, the dynamical system involving the vectors of life cycle accumula-

tion and transfers, given the social network, is still linear in those magnitudes and tractable.

The endogeneity of the social structure makes that analysis quite complicated but consid-
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erably richer, but the tools of the paper allows us to study the underlying steady states for

individuals’ life cycle accumulation, intergenerational transfers, and social connections for

themselves and for their children in great detail.

All these models share the property that human capital accumulation, transfers and so-

cial connections, when all are optimized, are proportional to cognitive skills. However, the

model with intergenerational transfers yields that human capital accumulation is propor-

tional to ones’s cognitive skills in the second period and intergenerational transfers, in effect

human capital endowment of their children, is proportional to their children’s cognitive skills

in the first period of the children’s lives, consistent with the logic of the model. In contrast,

social connections for one’s second period are proportional to the respective own cognitive

skills, and social connections for the first period of one’s children are proportional to their

children’s first period cognitive skills. Thus, intergenerational transfers of both human cap-

ital endowments and social networking endowments are jointly determined. Interestingly,

the consequences for inequality of the endogeneity of social connections are underscored by

examining the models when it is assumed that they are exogenous. When social connec-

tions are not optimized, individuals’ human capital reflect a much more general dependence

on social connections across individuals. Social effects are also shown to be present in in-

tergenerational wealth transfer elasticities. The dependence does not reduce to aggregate

statistics and highlights both “whom you know” and “what you know” in the determination

of individual incomes.
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Notes

1A partial list of papers that emphasize empirical aspects of network formation is as follows. Goldsmith-

Pinkham and Imbens (2013), which also contains a dynamic network formation model, where the utility

for i of forming a link with j depends on the distance between the two of them in the covariate space,

|Xi − Xj |, on whether the two were friends in th previous period, and on whether they had friends in

common in the previous period; the discussion that follows the paper is particular interesting, including

contributions by Bramoullé (2013), Graham (2013), Jackson (2014), Kline and Tamer (2013), and Sacerdote

(2013). Additional contributions by Baetz (2013), Blume, Brock, Durlauf and Jayaraman (2014) (section 6),

Boucher and Fortin (2014), Christakis, Fowler, Imbens and Kalyanaram (2010), Hiller (2014), and Tarbush

and Teytelboym (2015). The last of these papers emphasizes online social network formation, where a fixed

number of agents interact in overlapping social groups.

2Albornoz, Cabrales, and Hauk (2014) develop a conceptually similar use of the Cabrales et al. model,

but in a static context.

3 This basic model may be augmented to account for a variety of motivations, such as altruism, conformism

and habit formation. See Ioannides (2013), Ch. 2.

4Cabrales et al. follow standard practice in this literature and define a finite number of types of players

and work with an m−replica game, for which the total number of individuals is a large multiple of the

number of types. In this fashion, as we see further below, it is possible to increase the number of individuals

in order to reduce the influence of any single one of them and be able to characterize outcomes in a large

economy. Ibid., p. 341.

5In (ϖ,ϑ)− space, the tangent from the origin to the graph of (16) must have slope less than ã−1.

6Formulations of determinants of interactions with rich demographics may be helpful in accommodating

the range of empirical issues broached by Ioannides and Loury (2004).

7This recalls the controversy in the literature regarding the returns to scale properties of the matching

function. See Blanchard and Diamond (1990) and Petrongolo and Pissarides (2001).

8The so-called CES structure is in turn a special case of a mean value with an arbitrary function [Hardy

et al. (1952), p. 65]. That is, let y(k) be a function, which is assumed to be continuous and strictly

monotonic, in which case so is its inverse, y−1(k). The CES structure defined here is simply y−1 (
∑

gy(k)) ,

for y(k) = k1−
1
ξ .

9In fact, a feature such as the last one is relied upon by Lucas and Moll (2014), where individuals divide

their time between producing goods using their existing knowledge and interacting with others in search of

new productivity-enhancing ideas. Such interactions take the form of pairwise meetings, which is simply
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an opportunity for each individual to observe the productivity of someone else. If that is higher than his

own, he adopts it in place of the one he came in with. To ensure that the growth generated by the process

is sustained, Lucas and Moll assume that the stock of good ideas to be discovered is inexhaustible. It is

possible to introduce this set of possibilities once we have allowed for shocks that in effect renew the set of

productive ideas. More on this, later.

10This is similar to the feature in Lucas and Moll (2014), where agents retain the best lessons from their

contacts.

11See Tao and Lee (2014) for the econometrics of a social interactions model based on extreme-order

statistics.

12Cabrales et al. apply a dynamic analysis due to Corchón and Mas-Colell (1996), according to which

agents adjust their strategies along directions which they know will cause their utilities will grow. This

amounts to equating the time derivatives of agents’ decisions to the partial derivatives of the payoff with

respect to the same variable. That is:

∂si(t)

∂t
=

∂ui(s(t),k(t))

∂si(t)
,

∂ki(t)

∂t
=

∂ui(s(t),k(t))

∂ki(t)
. (97)

Linearizing around the individual optimum exploits the fact that the first partial derivatives are equal to zero

at the optimum. The resulting system of equations are comprised of terms that are linear in (sj(t)− s∗j ) and

(kj(t)−k∗j ) with coefficients the respective second partial derivatives ∂2ui

∂si∂sj
. In the limit for large I, the own

cross-partial derivatives vanish, except for the one with respect to si, ki. So, the only non-zero derivatives

are
∂2ui

∂s2i
= −1,

∂2ui

∂si∂ki
= a(b)k,

∂2ui

∂k2i
= −c.

Cabrales et al. show that with this kind of stability, these equations “imply that there is no feedback from

the changes in one individuals’ strategies to any of the others’ when close to either equilibria. Then, the local

dynamics are entirely driven by one individual’s strategy and thus local stability is the same as local maxima,

which is why the condition for stability is the same as the condition that guarantees that the second-order

conditions are satisfied” [ibid., p. 346]. According to this analysis, both non-autarkic solutions are stable

equilibria with respect to the feasible perturbations postulated.

13First, we note that:
∂gij
∂sh

= − sisj(∑I
h=1 sh

)2 , h ̸= i, j;

∂gij
∂si

=
sj
∑

h̸=i sh(∑I
h=1 sh

)2 ;
∂gij
∂sj

=
si
∑

h̸=i sh(∑I
h=1 sh

)2 ;
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The terms sj
∑

h ̸=i sh tend to Iϖ2ϑ2b̄, and the terms
(∑I

h=1 sh

)2
tend to ϖϑI2(b̄)2. Therefore, as I → ∞,

the derivatives above tend to zero and the second term in the rhs of (45) and of (46) vanish. Similarly, the

first term in the rhs of (46) also vanishes.

14 The notation ln+, defined as follows: ln+ x = min{lnx, 0.}

15This argument is reminiscent of arguments explaining the emergence of power laws elsewhere in the

economics literature. See for the city size distribution case Ioannides (2013), Ch. 8.

16That paper also examines endogenous social connections, but does not specify them in sufficient detail

in order to obtain specific results.

17In fact, Samuelson (1958) itself is cast in three-overlapping generations. Azariadis, Bullard and Ohanian

(2004) find additional properties in economies with many overlapping generations, in particular with respect

to monotonicity (or non-monotonicity) of the equilibrium price when consumptions in different periods are

weak gross substitutes.

18This very special case of infinite substitutability of investments in cognitive skills is in contrast to

Heckman and Mosso (2014), but is made for analytical convenience.
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APPENDIX

A Model with Intergenerational Transfers

Using intuition gained earlier, it is straightforward to see that one can obtain a simple

rule for si,t the networking efforts, as functions of the respective ki,t’s in the same period,

which is the same as the one obtained earlier, (10):

ϖt =
si,t
ki,t

= a

∑
j sjtkjt∑
j sjt

. (98)

Then, using this result we may express utility in period t as follows:

bτ(i)ki,t + aϖtki,t
I∑

j=1,j ̸=i

kj,t
Kt

−
(
1

2
c+

1

2
ϖ2
t

)
k2i,t − ki,t+1

= (bτ(i) + aϖt)ki,t −
(
1

2
c+

1

2
ϖ2
t + aϖt

1

Kt

)
k2i,t − ki,t+1,

where Kt =
∑I
j=1 ki,t. Note that for simplicity, the resource cost of the transfer ki,t+1 is

accounted for when the transfer is made, but the adjustment cost 1
2
ck2i,t+1 is incurred when

the investment takes place in period t+1. In this interpretation, utility per period at time t is

output from investing ki,t net of the cost networking effort and adjustment cost of investment,

whose resource cost was incurred in the previous period.

By utilizing the envelope property, we can write the first-order conditions for the ki,t+1’s

as follows:

(bi,t+1 + aϖt+1)−
(
c+ϖ2

t+1 + 2aϖt+1
1

Kt+1

)
ki,t+1 =

1

ρ
.

These equations may be solved in terms of each of the ki,t’s as follows. By summing up

the above equation over all i’s, we can solve the resulting linear equation for the sum of all

human capitals, Kt+1 =
∑I
j=1 ki,t+1, in terms of ϖt+1 and Bt+1 =

∑
i bi,t+1. Then returning to

the above equation allows us solve for each of the ki,t+1’s. We also need to impose a positivity

constraint on the utility per period. We then return to the the first-order conditions for the

si,t+1’s in order to determine ϖt+1.

That is, we have:

Kt+1 =
Bt+1 + I

(
aϖt+1 − 1

ρ
− 2aϖt+1

)
c+ϖ2

t+1

, (99)
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ki,t+1 =
bi,t+1 + aϖt+1 − 1

ρ

c+ϖ2
t+1

Bt+1 + I
(
aϖt+1 − 1

ρ

)
− 2aϖt+1

Bt+1 + I
(
aϖt+1 − 1

ρ

) . (100)

Finally, by substituting back into (98), the necessary condition for si,t+1 we have:

ϖt+1 = a
Bt+1 + I

(
aϖt+1 − 1

ρ

)
− 2aϖt+1

c+ϖ2
t+1

∑
i b

2
i,t+1 + 2a

(
ϖt+1 − 1

ρ

)
Bt+1 + I

(
ϖt+1 − 1

ρ

)2
Bt+1 + I

(
aϖt+1 − 1

ρ

) .

This is a quartic (fourth-degree) equation in ϖt+1 that involves parameters a, c, ρ, and Bt+1

the aggregate of the cognitive skills. It is known since the time of Evariste Galois that such

equations may be solved in closed form. Unfortunately, it is also known that the solutions

are too complicated algebraically.

However simplistic, this model does account for intergenerational transfers, which be-

comes the human capital with which the next generation works. Networking efforts and thus

connection intensities are determined given human capitals in the respective period. Note

that the model is solved completely in the deterministic case, however unwieldy the solution

is. Individual human capitals depend on individual cognitive skills (bi,t, bi,t+1), as well as

aggregate cognitive skills, Bt, both directly and via the factor of proportionality between

networking efforts and human capitals. As I show next, the culprit for the algebraic com-

plication here is the assumptions about the timing of the individuals’ decisions. These are

relaxed in the exposition that follows and yield an economically more interesting model.
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