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Abstract

This eclectic review of current research on networks emphasizes three strands of the lit-

erature on social networks. The first strand is composed of models of endogenous network

formation from both the economics and the computer science literature. The review high-

lights the sensitive dependence of the topology of endogenous networks on parameters of the

behavioral models employed.

The second strand draws from the recent econophysics literature in order to review the

recent revival of interest in the random graph theory. This mathematical tool allows one to

study social networks that result from uncoordinated random action of individuals in setting

up connections with others. The review explores a number of examples to assess the potential

of recent research on random graphs with arbitrary degree distributions in accommodating

more general behavioral motivations for social network formation.

The third strand focuses on a specific model of social networks, Markov random graphs,

that is quite central in the mathematical sociology and spatial statistics literatures but little

known outside those literatures. These are random graphs where the events that different

edges are present are dependent, if edges are incident to the same node, and independent,

otherwise. The paper assesses the potential for economic applications with this particular

tool. The paper concludes with an assessment of observable consequences of optimizing

behavior in networks for the purpose of estimation.
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1 Introduction

This paper1 examines stochastic social networks by means of models that allow us to make

the state of entire networks, rather that of individual agents, the subject of analysis. It

explores the recent econophysics, computer science and sociology literatures in addition to

that in economics and emphasizes views of social networks as outcomes of economic decisions

of individuals.

The literature on social network analysis that aims at description and analysis of prop-

erties of social structures is an established one in sociology. Although the stochastic version

of that literature has borrowed tools from spatial statistics and random graph theory, it is

fair to say that the patterns of borrowing suggests occasional and decisive influence rather

than continuous interplay. Random graph theory, of course, while it has been perceived from

its inception as a purely mathematical subject [ Erdös and Renyi (1959; 1960) ], has con-

tinuously lent itself to use by mathematical sociologists, electrical engineers and computer

scientists.

The use that economists have made of these theories is rather limited. This is quite sur-

prising for a number of reasons and not so surprising for other reasons. For example, many

economic applications do not emphasize the individual and simply aggregate over a number

of people, or work with a “representative individual.” As Kirman (1992; 2002) argues, the

notion of a representative individual can be quite deceptive, when the aggregate behaves

qualitatively different from the sum of individuals’ behavior. Some of the tools developed

by the literature that is discussed in this paper lend themselves well to such a task, as

aggregation with a large number of agents may lead to phase transition. Other economic ap-

plications, as in models of strategic interactions and with few exceptions, essentially assume

small groups of actors, within which every one interacts with every one else, and thus no

issues of aggregation and phase transitions arise. Still others, such as search and matching,

do emphasize economic applications with inherent discreteness and do lead to aggregation.

Yet, at the end, that literature typically appeals to large numbers and summation.

There is another aspect of the search literature that is worth pondering. That literature
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has analyzed successfully how agents find one another in order to carry out transactions.

Individuals looking for work know that jobs may be available at various firms but they

need to find out which ones may be acceptable to them. Firms looking for employees need

to make their openings known to all those who are potentially interested in them. Job

search by individuals and firms’ efforts to fill vacancies have been studied extensively by a

large body of literature that amounts to an important part of modern macroeconomics; see

Pissarides (2001). Interactions between such discrete entities as individuals and firms are

an interesting instance of social interactions. Yet, the search literature has not emphasized

the web of relationships between firms and workers and among workers who have shared

experiences in dealing with the same firms, and firms in dealing with the same workers,

that may develop out of shared employment experiences. The fact that such experiences

may lead to employment referrals in the future has been recognized, but the role of webs of

relationships may not be easy to analyze by means of representative individual models or by

models that involve summation and large numbers.

The paper starts in section 2 with a review of models of networks formation. I am not

attempting to duplicate two recent papers, Goyal (2003) and Jackson (2003), nor Jackson’s

magisterial review of the literature [Jackson (2005)], that have eloquently reviewed substan-

tial portions of the same literature as the one discussed here. Instead, I aim here at exploring

methodological trends in the interface between the economics and the computer science lit-

erature and how they have been influenced by (often different) stylized facts that both those

literatures have focused on. I eschew an in-depth analysis of labor market applications, be-

cause I have discussed them elsewhere [Ioannides and Loury (2004)]. The particular strand

of the computer science literature that I discuss here has a natural economic motivation,

in that it is considering the emergence of the world wide web as an endogenous object [

Papadimitriou (2003) ]. The web’s various properties, including alleged power laws for the

number of nodes that are incident to each edge, topological properties of the entire network

and others such searchability properties [ Kleinberg (2000); Newman (2003) ] follow from

endogenous interactions between individuals and technological systems much more than any

previously designed system. The very simple economic model of network creation with which
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that section starts complements the economics research on network formation. The fact that

most recent applications of economic tools to studying network formation are generally cast

in terms of deterministic models suggests that network formation in stochastic environments

also deserves attention.

Next I turn in section 3 to a review of random graph theory which while originating in

Erdös and Renyi, op. cit., has recently been developing as a source of models of networks

of social contacts, or social networks, for short. The presentation traces the applications of

the theory by a small number of economic applications and then discusses the shortcomings

of the early random graph models. It is an essential part of that theory that the events

that there exist contacts between different individuals are independent. It is critical to be

able to allow for dependence in the presence of contacts between different individuals, since

such dependence may be an outcome of individual responses to correlated random factors

or to selection and sorting. It may also be a key outcome in deterministic models of social

networks.

The remainder of that section of the paper turns to a recent revival of interest in random

graph theory. Recent developments have generalized the original Erdös – Renyi model, and

thus should allow newer applications in understanding social networks and social interactions

more generally. To do so, I draw from the recent econophysics literature on random graphs

and social networks, which offers the most direct generalization of the classic random graph

model ala Erdös and Renyi. This includes notable developments that have recently summa-

rized very eloquently by Newman (2002) and Newman (2003d) and by others. As we shall see

in more detail, some of the strands of this newer literature, which is also linked with related

computer science literature, has been motivated by a desire to explain observable features

of real life networks, like the WWW. These properties generalize the restrictive assumptions

of the original random graph model ala Erdös and Renyi. In fact, much research within the

econophysics community has been aimed at explaining a number of stylized facts regarding

measures of man-made networks, including the WWW, coauthorship and citation networks,

and others because of the failure of the Erdös and Renyi random graph model to explain

them satisfactorily. Still, the econophysics literature on random graphs and networks gener-
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ally lacks clear behavioral motivations of the sort that economists are typically accustomed

to.

Section 4 discusses a class of models that address a key weakness of the modern approach

to modelling real world networks, namely the modelling of transitivity. This important prop-

erty of endogenous social networks may be handled by Markov random graphs, which treat

entire social networks as stochastic objects. This model is well known in mathematical so-

ciology and spatial statistics. It originates in Frank and Strauss (1986) and Strauss (1986)

and has ever since received continuous attention by the mathematical sociology literature

[Hagsberg (2002); Wasserman et al. (2004)]. That section provide links of Markov random

graphs in the Frank–Strauss style with random graph theory in the Erdös–Renyi style by

means of a particular application of random graph theory, and its implications for the dy-

namics of adjustment in social interaction and other related models. The paper concludes

by pondering on the scope of the broadly interdisciplinary research on endogenous network

formation.

2 Models of Endogenous Network Formation

A series of innovative recent papers model the endogeneity of links among originally isolated

agents. Goyal (2003) and Jackson (2003), provide eloquent reviews of various aspects of the

literature on endogenous network formation. Within this recent literature, especially note-

worthy are papers by Bala and Goyal (2000a), Jackson and Watts (2002a; 2002b), Jackson

and Wolinsky (1996), and Watts (2001). These authors embed endogenous network forma-

tion in the tradeoff between the value to different agents from existence of interconnections

with other agents and the costs agents themselves incur from initiating connections. We

review here some key findings that have been established by this literature. I start from the

simplest possible model in the literature, Fabrikant et al. (2003), which highlights essential

issues and tradeoffs in endogenous network formation. The fact that this particular paper,

which is closely related to Jackson and Wolinsky (1996), originates in the computer sci-

ence literature underscores a significant interplay between that field and economics. This is

7



quite natural in view of the recent interest by computer scientists in studying game-theoretic

formulations of network-based resource allocation problems.

I introduce some basic terminology and notation regarding graphs and networks. To

start with, the terms graphs and networks are really synonyms for our purposes, although

the term graph appears to be used exclusively by mathematicians and of course by others as

well, but the terms graphs and networks are used almost interchangeably by all other fields.

Let the elements of a set I = {1, . . . , I} represent individuals. It is individuals who are

the decision makers and thus objects of analysis in most of the applications in the present

paper. Established communication, social relations, or social interactions between any two

individual members of I are defined by an undirected graph G(V ,E), where: V is the set of

vertices, V = {v1, v2, . . . , vI}, an one-to-one map of the set of individuals I onto itself (the

graph is labelled), and I = |V | is the number of vertices (nodes), also known as the order of

the graph; E is a proper subset of the collection of unordered pairs of vertices, q = |E| is the

number of edges, and is also known as the size of the graph. We say that agent i interacts

with agent j if there is an edge between nodes i and j. Let ν(i) define the local neighborhood

of agent i : ν(i) = {j ∈ I|j ̸= i, {i, j} ∈ E}. The number of i’s neighbors is the degree of

node i : di = |ν(i)|.

Graph G(V ,E) may be represented equivalently by its adjacency matrix, Γ, an I × I

matrix whose (i, j) element,γij, is equal to 1, if there exists an edge connecting agents i and

j, and to 0, otherwise. For undirected graphs (and most of the graphs I consider here are

undirected), matrix Γ is symmetric and positive, and thus its spectral properties which are

important in the study of social interactions, are well understood. When appropriate in

the present paper, the adjacency matrix Γ will be defined as a random matrix with generic

realization Γ̃. The entries of the adjacency matrix γ̃ij would be binary random variables in

that case, with the most interesting case being when different γ̃ij’s may be considered as

dependent random variables, as in the case of the Markov random graph model.
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2.1 A Simple Model of Network Formation

Fabrikant et al. (1003) consider a model with agents I who build connections with each

other. Their decisions create a undirected graph, G(V ,E), which is to be treated as an

endogenous outcome. Once a connection between two agents has been established, it may

be used by all other agents via the two agents at its two ends. The strategy space of agent

i is the set Si = 2I−{i}. We denote by G(s) the graph resulting from all agents’ employing

strategies s = (s1, . . . , sI) ∈ S1 × . . . × SI . The cost incurred by agent i when all agents

employ strategy s is assumed to be additive in the cost of the number of connections, |si|,

that agent i herself builds with other agents, and in the sum of the costs each agent i must

incur in order to reach all other agents through G(s):

ci(s) = α · |si|+
I∑
j=1

dG(s)(i, j), (1)

where dG(s)(i, j) denotes the distance between agents i and j within the graph G(s). Note

that parameter α, the relative importance of agent i’s direct links with other agents, is the

only parameter in the model.

Agents seek to minimize their objective functions, given by (1). It is easy to characterize

Nash equilibria and the social optimum for this simple model. They depend critically on

the magnitude of α, the cost of a link. If α < 1, then the complete graph (the maximal

clique) is the only Nash equilibrium. The intuition is straightforward: any Nash equilibrium

cannot miss an edge whose inclusion would reduce the second term in the objective by

more than it would add to the cost. It is also the social optimum, in that it minimizes

α · |E|+∑I
i,j dG(s)(i, j). For 1 ≤ α < 2, the graphs that are Nash equilibria have diameter at

most 2. The social optimum is still the complete graph, and the star is a Nash equilibrium.

For α ≥ 2, the star is a Nash equilibrium, but there may others, too. The social optimum

continues to be the star. Generally, intuition suggests that for sufficiently high values of

α, Nash equilibria would be trees, because they offer a lower value for the second term in

the definition of an agent’s cost according to (1). Yet, there does not appear to be a proof

of this, and in fact Fabrikant et al., op. cit., offer it as a conjecture. It is clear that the

presence of graph distance in the objective function (1) is quite critical for the properties of
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the equilibrium outcomes in this formulation.

A number of remarks are in order. First, we note that while all equilibrium outcomes are

actually connected graphs, it is not obvious that in a decentralized setting there would be a

priori agreement as to where the star would be centered. The simplicity of the solution to this

problem provides an important benchmark for endogenous network formation. Second, for

both the computer science and the economics literatures, it is of critical importance whether

Nash equilibria may be arrived at through the sort of perturbation of best responses that

economists are familiar with and at a reasonable cost. It is of particular consequence to

computer scientists that such a perturbation analysis, whereby one starts with a strategy

and then replaces it by a player’s best response, turns out to be NP − hard; see ibid., p.

348. Third, the prominence of the star as an equilibrium outcome prompts us to consider its

robustness in more general settings. Several concerns immediately arise: one, it is vulnerable

in a stochastic setting where connections may fail; two, it is prone to congestion; and three,

a more general economic model should express benefits associated with different graphs and

not just costs.

Fabrikant et al. (2002) work with a related model which, however, emphasizes degree

distributions and other topological properties of resulting graphs at the limit when the

number of agents is large. Their model produces a power law distribution in certain graph

measures, which are of interest in the context of the Internet topology, precisely when new

nodes that randomly appear choose optimally their connections with an existing network.

2 Entering nodes seek to minimize their distance to the “center” of the existing network

topology plus the weighted Euclidean distance to an existing node. If distances from the

existing node, which a new node chooses to connect with, to other nodes in an existing

network, are given a larger relative weight in the objective of the optimization problem,

then the resulting network is a star. If, on the other hand, the weight grows at least as fast

as the square root of the size of the entire graph, then the resulting degree distribution is

exponential. For the in-between values, the resulting degree distribution tends to a power

law. In this model, the graph is defined in a two dimensional continuous space and is bounded

within a unit square within it.
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Specifically, Fabrikant et al. (2002) study the evolution of the network as agents i =

1, 2, . . . , arrive uniformly at random and choose one of the existing other agents, j, j =

1, . . . , i− 1, to connect with. Each entering agent i chooses agent j to link with to so as to

minimize

fi(j) = a · dij + hj, (2)

where dij denotes the Euclidean distance between i and j, and hj a measure of the “centrality”

of the agent j within the final graph formed by the decision of agent i. This measure could be

the average graph distance from all other agents, the maximum such distance or the graph

distance to the center of the tree, the number of hops from i to 1 in Ti, which is actually

the measure they use to prove their results. The evolving endogenous networks are trees,

T0, T1, . . . , and Ti consists of Ti−1, with the agent i and the connection [i, j] added. Here the

parameter a denotes the cost of connecting to agent j relative to the importance of centrality,

which has a coefficient of 1.

The solution depends critically on the magnitude of parameter a, which is actually treated

as a function of I. If it is relatively small, a < 1/
√
2, that is distances to all other nodes

are relatively more important, then the resulting network TI is a star, centered at the node

associated with agent 1. Regarding the associated degree distribution, this solution is the

extreme version of a power law, where all agents are connected with the single original agent.

If a = Ω(
√
I) (that is, it is more than some constant multiple of

√
I), that is the weight

attached to distance to the nearest node grows sufficiently fast with the number of agents,

the degree distribution of TI is exponential. That is, the expected number of agents that

are connected to at least K other agents is bounded above by I2e−cK . Finally, if a ≥ 4, and

a = o(
√
I) (that is, for in-between values as a may vary I but grow slower than

√
I, as I

grows very large), then the degree distribution of TI is a power law : the expected number

of agents who are connected with at least K other agents is greater than c ·
(
K
I

)−β
, where

c, β are constants that may depend on a.

Fabrikant et al. have growth of the Internet in mind in building their model. The

stylized facts, as established by Faloutsos et al. (1999), provide empirical support for a power

law, although much of the power law literature, a.k.a. “scale-free” laws, has taken pain to
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emphasize the universality of power laws. This clearly appears to have been exaggerated.

Therefore, the dependence of the distribution parameters in the above results is obviously a

drawback. We return below in Section 5 to these empirical findings.

An economic interpretation of this result would be in terms of preferential attachment.

Those agents who have arrived early are more likely to have more connections with others and

be near others, reducing the hop cost. A significant feature of this result is that preferential

attachment is derived from more primitive assumptions, relative to other work where it is

just assumed as a realistic feature of real-world networks. Most importantly, Fabrikant et al.

(2002) appear to offer the first purely behavioral model that leads to emergence of a power

law for the degree distribution of nodes in an endogenously formed network. We return to

this issue further below.

2.2 The economics literature on network formation

The models in the economics literature that also make links endogenous by means of strategic

considerations are somewhat more general than their computer science counterparts in a

number of respects, but at the same time focus on slightly different issues. Some of the

papers are often more explicit regarding building of links between two originally isolated

individuals. For example, some of the papers require that those to be directly connected both

consent to it, whereas severance can be done unilaterally. Links may directed (asymmetric,

in Bala and Goyal’s terminology) or undirected. Links between agents are interpreted as

information channels. A directed link (i, j) denotes that agent i has access to agent j’s

information and does not imply that j has access to i’s. For example, i could have access to

j’s web-site or have access to exact URL for a particular document. In fact, directed links

are a key feature of the web graph. Consequently, for every possible directed link that an

individual is contemplating, there is its counterpart in the opposite direction as well as a

multitude of indirect links that accomplish the same informational effect though at a higher

cost. Undirected links may model connections like that provided by telephone.

Most of the papers in the economics literature assume that the utility each agent de-
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rives from participating depends additively on the total number of other agents an agent is

connected with, minus the costs of maintaining the connections that one builds on her own.

Some authors make an allowance for proximity to others by means of a decay factor that

depends on the number of intervening agents.

Bala and Goyal (2000) assume that individual i’s payoff is strictly increasing in the

number of agents “observed” by i, µi(g), that is other agents with whom i has formed direct

links or is linked to indirectly through others, and strictly decreasing in the number of other

agents that i has built direct links with, µdi (g) = |si|. In the special case when each individual

possesses information which is of value V, which may be normalized and set equal to 1, to

each of every other agent and to himself, the benefits from the information possessed by

those whose information she accesses directly or indirectly are proportional to µi(g). If an

agent incurs linear costs of forming direct links, which are denoted by c per link, then the

net benefit to agent i is

Πi(g) = µi(g)− cµdi (g). (3)

If c < 1, then agent i will be willing to form a link with agent j for the sake of that agent’s

information alone. If 1 < c < I − 1, then agent i will want agent j to have access with more

than one other agent in order to be induced to form a link with j. If c > I − 1, then the cost

of a link exceeds the benefit of information to the entire society. In that case, it is dominant

strategy for i not to form a link with any player.

The empty network is a Nash equilibrium. Bala and Goyal show that when agents’

objective is as Πi(g) above, then a strict Nash network is either the wheel, whereby each

agent forms exactly one link, or the empty network. In other words, information is either

shared with everyone with the minimum number of connections per agent that makes this

possible, which implies the wheel, which would be the unique case with linear payoff if c < 1,

or along with the empty network, if 1 < c < I − 1; or there is no sharing when c > I − 1.

We note the difference in equilibrium outcomes from the Fabrikant et al. formulation of the

network formation game. Their formulation assigns weight to centrality as such, which of

course penalizes the wheel. It is connectedness, however, that plays a similar role in the

Bala–Goyal formulation.
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In view of the dramatically restricted set of Nash networks, the following question arises:

will a society of agents thus motivated self-organize into equilibrium outcomes? Bala and

Goyal study the dynamics of link formation by assuming a naive best response rule with

inertia. That is, an agent may choose, with fixed probabilities, either a myopic pure strategy

best response, or the same action as in the previous period. Inertia ensures that agents

will not mis-coordinate perpetually. Bala and Goyal show that irrespective of the number

of agents and by starting from any initial pattern of interconnections, the dynamic process

indeed self-organizes, by converging with probability 1, and in finite time, to the appropriate

(for the respective parameter values) unique limit network. The limit is the set of strict Nash

networks of the one- shot game, which become the set of absorbing states of the dynamic

process. Technically, the rules of individual behavior define a Markov chain on a state space

consisting of all networks, whose absorbing states are the Nash equilibria of the one-shot

game.

These results may be generalized by restricting the information available to agents, that

is by assuming only local information – each agent knows the residual set of all those she is

connected with, that is those her neighbors can access without using links to her – and by

allowing observation of successful agents – there is some chance that she receives information

from a “successful” agent, that is a person who observes the largest subset of people in the

economy without assistance from her own links. The results continue to hold when the payoff

to each agent is assumed to be strictly increasing in the number of other agents she observes,

and strictly decreasing in the number of links that she forms. In that case, the unique efficient

architecture is the wheel, if an agent is better off by observing all others and forming one link,

when she would enjoy utility Π̂(I, 1), than if she is on her own, when she would enjoy utility

Π̂(1, 0); it is the empty network, otherwise, that is, when Π̂(I, 1) < Π̂(1, 0), where I denotes

the number of agents. Again, the dynamic process self-organizes if Π̂(k + 1, k) > Π̂(1, 0),

for some k ∈ {1, 2, . . . , I − 1}, in which case the limit is the wheel, if Π̂(k + 1, k) < Π̂(1, 0),

∀k ∈ {1, 2, . . . , I − 1}, in which case the limit is either the wheel or the empty network.

Although networks with directed links are important — it is a critical feature of the

WWW that is directional — and are attracting considerable attention, the study of undi-
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rected links is also interesting. Bala and Goyal also study undirected links, which as men-

tioned above accommodate two-sided information flows. This case best represented by a

phone call connection, where a person initiates a call to another person and incurs its cost,

but both parties benefit from the exchange. They show that when the typical agent has

a general payoff which is increasing in µi(g), the total number of others an individual

is linked with directly or indirectly, and decreasing in the number of direct links, µdi (g),

Πi(g) = ϕ(µi(g), µ
d
i (g)), then a strict Nash network is either a center-sponsored star (the

agent who initiates it serves as center and pays for the costs of links), or the empty network.

The fact that the star is a prominent architecture here, both as the efficient network and

the limit for self-organization, suggests that network architecture is sensitive to the nature

of information technology. We note that this result is equivalent to Fabrikant et al. (2003),

whose problem involves a cost minimization.

All of these results apply when the payoff is insensitive to the distance between agents in

the sense that direct and indirect connections contribute the same way to an agent’s payoff.

If the value of information possessed by an agent decays the further away others are from

her, then Bala and Goyal find it harder to precisely characterize strict Nash networks. While

the wheel continues, for some parameter values, to be the limit architecture the star also

appears as a limit, for other parameter values. This is, of course, not so surprising in view of

Fabrikant et al., (2003), discussed above, which assigns critical role to each agent’s network

distance from other agents. However, for some parameter values, especially when the decay

parameter is close to 1, other architectures are also associated with strict Nash equilibria,

such as “interlinked stars” and “rose-petals”. Self-organization is harder to characterize with

information decay, where limit results are obtained for parameter values that imply relatively

high costs of link formation.

Jackson and Wolinsky (1996) provide a model for two-sided link formation along with

a solution concept, pairwise stability: a network is pairwise stable, if no individual has an

incentive to delete a link that exists, and no pair of players have an incentive to form a link
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that does not exist. The payoff to player i in network g is assumed to be

Πi(g) = 1 +
∑

j∈N(i;g)

δdi,j(g) − µdi (g)c, (4)

where di,j(g) denotes the geodesic distance between agents i, j in the network, N(i; g) denotes

the set of all other agents whom i may reach via path in the network, µdi (g) the number

of agent i’s direct links in the network, and c the cost per link. With two-sided links (

the symmetric case ) pair-wise stable network outcomes may be, depending upon parameter

values, either the complete graph, where everyone is connected with everyone else, if 0 < c <

δ−δ2, or the Walrasian star, where everyone is connected to a single agent, if δ−δ2 < c < δ,

or no connections at all. We note that this result predates the Fabrikant et al. (2003).

Watts (1998) employs the same framework and extends it to a dynamic setting. She

obtains conditions under which networks with different architectures might form. In par-

ticular, if cost per link is very small, 0 < c < δ − δ2, then the process converges to the

complete network in finite time, with probability 1. If the cost is in an intermediate range,

δ − δ2 < c < δ, then the star network will emerge with positive probability, which decreases

with the number of players .

Jackson and Watts (2002a) study dynamic evolution of networks by means of sequences

of networks, which may come about as a result of myopic decisions of individuals in adding

and deleting links. They show that there always exists a pairwise stable network or a closed

cycle, that is when a number of different networks are repeatedly visited in some sequence.

They also introduce an evolutionary analysis of the dynamic network formation process,

where there exist a small probability of unintended changes ( “mutations” ). Using the same

mathematical tools as the ones employed by Young (1998), Jackson and Watts show that

networks, from those that are pairwise stable or belonging to cycles, that are harder to get

away from and easier to get to, are favored by the evolutionary process. However, they show

that even when the unique efficient graph is pairwise stable, it is not evolutionarily stable.

What sort of methodological arguments does this literature use in deriving results? The

arguments employed by Bala and Goyal in analyzing both asymmetric and symmetric links

involve intuitive steps that exploit the integer nature of the problem. This is also true for
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Fabrikant et al. (2003). For example, in the case of undirected links, they Bala and Goyal

establish that a Nash network is either empty or connected. Then they show that if a player

n has a link with player j then no other player can have a link with j. That is, if two

agents, say i and j, can have a link with k, then one of them would be indifferent between

forming a link with k or with the other agent. Thus, n must be the center of the star.

Such arguments are appropriate for their setting, but make it hard to carry out comparative

statics (or dynamics) exercises, and do not lend themselves readily to handling heterogeneity

and uncertainty. Further research by Goyal and coauthors has enriched the set of outcomes

by appropriately specifying the objectives of agents and allowing for heterogeneity in the

value and the cost of connections, and for dependence on more complex characteristics of

network topology than just geodesic distances and number of direct links. We review next

some of these noteworthy developments.

Goyal and Joshi (2003) show that the interaction of individual incentives narrows down

the range of networks that may emerge at equilibrium. This range includes symmetric

(balanced) graphs with different degrees, exclusive group networks and stars. For a network

g, let g−i denote the network resulting from deleting agent i and all of her direct links,

and L(g−i) denotes the sum total of the degrees (links) of the rest of the agents: L(g−i) =∑
j ̸=i dj(g−i). Various examples discussed by Goyal and Joshi (2003) follow from different

specifications of the marginal benefit of an additional link of an agent, as a function of her

own degree and of the sum total of the degrees of all other agents. If the marginal benefit is

increasing in an agent’s own degree, then a pairwise-stable equilibrium network exists: it may

be empty, complete, or have the dominant group architecture (where one group of agents

forms a complete subgraph and a second group consists of isolated agents). Furthermore, if

the marginal return is increasing in the sum total of all others’ degrees, then the equilibrium

networks are undirected; if it is decreasing, they would be directed. This follows because

any two agents that link with others must also link with each other. If the marginal return

of an additional link is decreasing in an agent’s own degree and in the sum total of all

others’ degrees, then symmetric pairwise-stable equilibrium networks may not exist, and

asymmetric networks with sharp inequality in the number of links may assume the form
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of star-like structures where linked agents have very unequal number of links. If, instead,

the marginal benefit is increasing in the sum total of all others’ degrees, then symmetric

equilibrium networks always exist.

Galeotti, Goyal and Kamphorst (2003) show that in models of strategic network for-

mation, heterogeneity with respect to the value of connections has a different effect from

heterogeneity with respect to the cost of links. The former affects the level of connectedness

of a network, while the latter affects both the level of connectedness of a network as well as

the architecture of the resulting components. When a society may be divided into distinct

groups, within each of which links are cheaper than links across to other groups, then inter-

connected stars are socially efficient and dynamically stable. This suggests that centrality,

star-sponsorship and small diameters are robust features of networks. All these studies show,

not surprisingly, that when agents’ objectives are more complex functions of network char-

acteristics, then the equilibrium network outcomes exhibit more complex structure. From

the perspective of the present paper, of course, this literature has been quite successful, in

that it has delivered analytical descriptions for the evolution of entire networks.

We eschew a discussion of job information networks because they are reviewed in detail

by Ioannides and Loury (2004). Another noteworthy area of applications is patterns in

international trade agreements that facilitate trade among certain countries and discourage

them among others may also lend themselves to similar considerations and have been largely

unexplored. We also pass up such applications, in part because they do not seem to fit the

sort of models involving large numbers of agents, which are essential for some of our results.

In concluding this section, it is important to note that the recent research on communica-

tion networks as models of social structure, which is reviewed here, has opened up important

avenues in hitherto virtually unexplored areas. An important payoff at stake here is linking

economics with the network-based theories of mathematical sociology. At the heart of the

sociology literature is a belief that network-based models are indispensable for modelling

more than just trivial social interactions. As White (1995) emphasizes, further theorizing

is likely to pay off even within sociology, where in spite of technical achievements in social

network measurements, modelling “network constructs have had little impact so far on the
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main lines of sociocultural theorizing ... ” [ ibid., p. 1059 ]. White sees an important role

for studying social interactions through interlinking of different individual-based networks

associated with social discourse. It is also interesting that the literature in this area is de-

veloping fast. Especially noteworthy are a series of papers by Jackson and Rogers (2004;

2005).

Much of the economics literature has dealt with objective functions in individuals’ max-

imization problems that are not necessarily most suitable to the many different applications

network models are finding in the engineering literature. A particularly interesting model of

endogenous network formation is Johari et al. (2003). In their model, agents wish to connect

with others in order to route traffic among themselves. The resulting graph is directed. Each

agent, modelled by a node, wishes to route a given amount of traffic to some of the other

nodes and only cares whether the traffic eventually arrives at a destination. Each node incurs

a handling cost which is proportional to the volume of traffic through the node. Intuitively,

each agent prefers to be connected to all other agents, but also prefers that no other node be

connected with it, so that it not have to incur the costs of handling “transit” traffic through

itself. A bargaining model is developed, that is formalized in terms of the Jackson–Wolinsky

concept of pairwise stability, which is adapted as link stability. For each node i, a strategy

is a vector (pij, qji, ȷ ̸= i), where pij ≥) is a bid from i to j to agree to forming a link (i, j),

and qji > 0 is a minimum acceptance value, that is the minimum payment node i is willing

to accept from j to agree to forming a link (j, i). A directed graph is formed G(I, A(s)),

defined in terms of the strategies of all nodes, s = {(pij, qji, j ̸= i), i, j ∈ I},

A(s) = {(i, j) : i ̸= j, pij ≥ qij}.

Agent i receives a payoff of:

Ri(s) =
∑

j:(j,i)∈A(s)
pij −

∑
j:(i,j)∈A(s)

pij − cifi(A)−
∑

j∈wi(A)

Λij, (5)

where fi(A) is the volume of flow through i, Λ denotes the connectivity matrix, with Λii = 0,

Λij the cost incurred by i if j is unreachable from i, and wi(A) is defined as the set of nodes

which are unreachable from node i, given the links A(s). The paper characterizes solutions

to this problem by means of “contracts,” that allow each node to reach all other nodes for
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which Λij > 0 and thus attain Λ-connectivity. The resulting links are minimal, in the sense

that no link can be removed without losing Λ-connectivity.

2.3 Value of Direct Contacts and The Co-authoring Model

An important aspect of social networks is the extent in which they are created as an outcome

of individuals’ myopic decisions. Two recent studies highlight this aspect. Goyal et al. (2003)

demonstrate that the “world of economics ” has become smaller since the early 1970s, as

measured by average “distance” between economists. Distance is measured in terms of

coauthorship: the distance between two economists who have co-authored at least a paper

is 1. The basic facts invoked by the paper are as follows. First, the number of economists

who published in journals has more than doubled from 1970 till 2000. Second, the largest

group of interconnected (in the above sense) economists, the “giant” component, grew from

15% to 40% of the total number of economists. Third, the average distance within the giant

component has fallen, while the clustering remains high. The 100 most linked (in terms of

co-authorships) economists in the 1990s produced an average of 38 papers of which almost

85% were co-authored. In contrast, the average number of papers per economist were 2.8,

and 40% of these were co-authored. A small number of “stars” are responsible for the giant

component: deleting the 5% most connected economists leaves less than 1% of the nodes in

the giant component. The topology of the network suggests that it is spanned by a hierarchy

of interconnected stars. Several features of the economics world seem to be quite different

from those of other sciences.

These facts pose problems for the standard theory. They reject most emphatically the

Erdös–Renyi random graph model. With 1.672 co-authors per person and 81,217 authors, the

probability of a random link is 0.00025, which is also approximately equal to the clustering

coefficient, in the case of the random graph model where connections are assumed to be

independent. However, the latter is computed to be about 0.157, and thus over 6000 times

larger than the random graph model would predict. The distribution od the number of

co-authorships is not Poisson and instead has a Pareto tail. The authors argue that the
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basic preferential attachment model of Barabasi and associates does not describe well the

economics world. Furthermore, there is greater heterogeneity in the hierarchy levels of agents

with whom the central agent is linked, than in Ravasz and Barabasi (2003).

The authors propose a simple model that incorporates productivity differences across

individuals (with two types of agents being considered), there is a production function for

knowledge which is sensitive to the quality of co-authors and an incentives structure which

reward quality. The model is linear in the quality of research output and quadratic in the

costs of research effort and the number of co-authorships. In a world where there are few

high-productivity types the distribution of links and of the number of co-authors would be

very unequal. Links will arise between people who have many co-authors and who have

few co-authors. The authors interpret their results qualitatively as implying that stars arise,

that link well connected and poorly connected agents, and thus short distances are generated.

Only pairs of co-authors are examined in this study.

A different aspect of co-authoring is examined by Rosenblat and Mobius (2004), who

consider the impact of improvements in communication and transportation technologies on

self-selection in group formation. Lower communication costs decrease separation between

individuals but group separation may increase. So individuals’ being connected with others

facilitates spread of information about new technologies and job opportunities. At the same

time, heterogeneous agents may segregate by type. Data on economics co-authorships be-

tween US and foreign-based authors before and after the Internet revolution provide support

for this theory. Co-authoring has generally increased among economists. At the same time,

the Internet has enabled economists to be more selective and co-author with individuals who

may be located far from them geographically.

Marmaros and Sacerdote (2003) explore social interactions as measured by the volume of

emails among students and recent graduates of Dartmouth College. This study is significant

because roommates at Dartmouth are randomly assigned, and therefore the patterns of

interactions do not reflect any endogenous selection in terms of physical proximity. The

authors explain the volume of email between any two individuals in terms of racial, gender,

athletic and fraternity/sorority attributes, whether or not the respective individuals were
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in the same class, had the same major or lived in the same dormitory, and interactions

among those variables. Their results suggest that same race is a very important explanatory

variable for the volume of email and so is to have lived in the same dorm. These results

underscore the importance of explaining the motivations for social interactions, which result

here in the presence of assortative mixing, that is based on personal characteristics as well

as past shocks in common.

3 Random Graph Theory: Old and New

Studying probabilistic aspects of social interactions would seem to lend itself to random

graph theory as a natural mathematical tool. Ever since economists became aware of the

existence of random graph theory ala Erdös and Renyi (1960; 1961) [but see Solomonoff

and Rapoport (1951) for an antecedent], it has been tempting to think of the emergence of

economic networks in terms of random graph theory. See Durlauf (1996), Kirman (1983),

Kirman et al. (1986), Ioannides (1990; 1997) for several examples of this approach. However,

all these works found it hard to motivate why it is that agents behave in the precise way that

is necessary to generate patterns of social connections that are associated graph features that

may be described by random graph theory, at least as originally developed. Still, economists

have yet to explore individuals’ motivation is seeking social contacts with others, at least as

far as this is understood by the psychology and social psychology literature.

3.1 The Erdös and Renyi Model

We first demonstrate how the key features of the Erdös–Renyi model are responsible for

some of its predictions. However, the Erdös–Renyi model does not seem to be supported by

the facts. Specifically, let GERI,p denote the ensemble of graphs with I vertices in which each

possible edge is present independently of any other edge and with probability p, and absent

with probability 1 − p. The probability that an agent has exactly k connections with other
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agents in an Erdös–Renyi random graph is given by the binomial distribution:

pk =

 I − 1

k

 pk(1− p)I−1−k. (6)

Here the random quantity is the entire graph, and probability (6) corresponds to a typical

node. In the limit, when the number of agents is much greater than the average number of

connections each agent has, I ≫ (I − 1)p ≈ Ip ≡ z1, then the binomial probability function

implies the Poisson distribution, for large I:

pk =

 I − 1

k

[ z1
I − 1− z1

]k [
1− z1

I − 1

]I−1

=
(z1)

ke−z1

k!
. (7)

An alternative way of stating the Erdös–Renyi graph is that number of connections (edges),

which is proportional to the number of agents, is randomly distributed over all possible

1
2
I(I − 1), connections among agents. Let GERI,m be the ensemble of graphs, in which all

graphs with m edges out of the possible 1
2
I(I − 1) occurs with equal probability.3

In the limit of large I, the phase transition occurs when the factor of proportionality

of the number of edges relative to nodes becomes equal to 1
2
. This corresponds to a mean

degree size in the Poisson model of z1 = 1, for which p = 1
I
. Below this value, there are few

edges and the components of the random graph are small; above that value, a proportion of

the entire graph belongs to a single, giant component. This value is associated with a phase

transition in the topology of the graph.

A small literature has considered random graph models with edge probabilities that differ

across the graph. Kovalenko (1975) provides a rare example of a random graph model where

the edge probabilities are not equal. Specifically, Kovalenko considers random graphs where

an edge between nodes i and j may occur with the probability pij independently of whatever

other edges exist. He assumes that the probability tends to 0 as I → ∞ that there are no

edges leading out of every node and that there are no edges leading into every node. Under

some additional limiting assumptions about the probability structure, he shows that in the

limit the random graph behaves as follows: there is a subgraph A1 of in-isolated nodes whose

order follows asymptotically a Poisson law; there is a subgraphA2 of out-isolated nodes whose
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order follows asymptotically a Poisson law; all remaining nodes form a connected subgraph.

The orders of A1 and A2 are asymptotically independent and their parameters are given in

terms of the limit of the probability structure. While Kovalenko emphasizes the limiting

results one could obtain for large graphs, the notion that edges may appear with different

probabilities between different kinds of nodes may be applied more generally. We return

to this issue further below in section 4.1 after the Frank–Strauss model of Markov random

graphs is introduced.

Why should the number of connections, that have been created by uncoordinated action,

or the probability for each connection, be so that a phase transition occurs? This simple

condition for phase transition is hard to justify in the absence of a fully specified behavioral

model. The Poisson distribution peaks near the mean and then has a rather thin upper tail

that decays rapidly according to 1/k!. The degree distributions for many real life networks

have fat tails that are better described by means of power laws. See, in particular, Faloutsos

et al. (1999) who find that the autonomous systems of the Internet obeyed a power law,

pk ∼ k−β, k > 0, with exponent between−2 and−3, and pages on the WWWhave (directed)

hyperlinks between them whose distribution is heavily right-skewed and is well approximated

by a power law with similar exponent as the Internet. As a number of authors, but in

particular Dorogovtsev and Mendes (2003), 80–81, document in detail, different social (but

also biological, physical and engineering networks) differ considerably in terms of their degree

distributions and their clustering properties. Also, connections among agents are typically

dependent. Still, the original Erdös–Renyi and its failure to explain real-life networks have

motivated considerable research, as we see next.

3.2 The Revival of Random Graph Theory

Recent results by the combinatorics literature [ Molloy and Reed (1995; 1998) ] have been

used by Mark Newman and a number of collaborators to reconsider random graph-based

models for the purpose of studying emergence of social networks. That is, these works

provide the mathematical foundations for working with random graphs that are characterized
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by arbitrary distributions for the number of connections each agent has with others in a

social or economic setting. In particular, one no longer needs to assume that the probability

distribution of the number of connections each person has with others obeys the Poisson Law.

This has removed an important impediment to working with general behavioral models for

studying the evolution of social networks with random connections.

Newman et al. (2001b) provide motivation by means of data on degree distributions

from some actual real-life social networks. The data suggest important differences among

different types of networks, ranging from scientific collaboration networks to networks of

movie actors who have co-starred, and of directors of Fortune 1000 companies. The latter

has a peak and is much less skewed; the former resemble Power laws with exponential cutoffs.

The authors attribute this to the following difference, namely the fact that it is costly to

maintain one’s membership on company boards, while even after a co-authorship has ended,

the tie gained remains present indefinitely. The fact that social relationships require active

maintenance appears to be an important property of social networks. Therefore, at least

intuitively, optimizing over connections may imply sharply different distributions of social

connections from those of other, passive, relationships.

Jin et al. (2001) use this observation as a starting point for a reduced-form theory of

how social networks grow. Specifically, their theory emphasizes the following four features.

First, connections among individuals are made and unmade at a timescale which is much

shorter than that of individuals’ joining and leaving a social network. In other words, edges

are added or subtracted much more frequently than nodes, which allows for an analyst

to work by holding constant the number of nodes and by varying the number of edges.

Second, even when studying social networks, one would expect that the more important

are repeated costs of maintaining social ties relative to one-time costs, the less right-skewed

the degree distribution is.4 Third, since most people have similar numbers of friends, the

preferential attachment mechanism, that has played an important role in explaining the

degree distribution of the Web, is not as strong. Fourth, social networks exhibit transitivity,

that is one’s friends are likely to be friends also of each other, which ultimately leads to

clustering. The probability that two acquaintances of a person are also acquaintances of one
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another is several times larger than what is implied by the baseline random graph model,

for the Web, and several orders of magnitude larger in social networks.

These authors perform a simulation study which incorporates these features. In partic-

ular, if the number of nodes (network size) is fixed and the number of acquaintances grows

very slowly once a certain level has been reached, clustering is ensured by making the proba-

bility of two people becoming acquainted increase in the number of acquaintances they have

in common, and also by allowing friendships to decay. The authors claim that the role of

acquaintances in common is an important factor in the growth of social networks, roughly

corresponding to the role that preferential attachment plays in the growth of the Web. Their

simulation results confirm that their simulated social networks exhibit important features of

real-life ones, and thus differ from those of the Web and other systems. Most importantly,

communities appear, that is, groups of vertices with many connections among their members

and few ones with those outside.

Newman et al. (2001a) take off from Molloy and Reed, op. cit. and work out the

basic mathematics of random graph theory with arbitrary degree distributions. They apply

this theory also to directed graphs, to clustering and to bipartite graphs. Newman (2002)

works with the same models as those in ibid. but pursues them in more detail, including

a number of models that may be defined on random graphs, such as aspects of network

resilience and the dynamics of epidemiological models. Newman (2001b) emphasizes that

even when the numbers of individuals’ acquaintances vary randomly across the population

and are probabilistically independent, the set of an individual’s acquaintances are not a

random sample of the population. That is, given a randomly chosen acquaintance from the

set of an individual’s acquaintances, that individual’s total number of acquaintances will

be distributed in proportion to kpk. That is, there exists selection bias — neighbor bias?

connection bias?: there exist k times as many links for an individual of of degree pk than for

an individual with only a single link, where pk is the distribution of number of acquaintances

that a randomly chosen person in the population has. Since the degree distribution for any

given neighbor is proportional to the number of acquaintances that the other person already
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has, it is given by:

p̃k =
kpk
E[k]

. (8)

We will refer to as the induced distribution of neighbors’ degrees. Exploring this notion in the

context of these new analytical tools, which have been developed by Newman and co-authors,

turns out to be particularly fruitful in understanding the number of the acquaintances of

one’s acquaintances of one’s acquaintances and so on, that is, of one’s neighbors’s neighbors

in the acquaintance network. It is interesting that this bias is conceptually similar to the

length-biased sampling associated with sampling employment or unemployment spells by

means of data collected from employed, or respectively, unemployed individuals. This also

suggests that it may be important to know how data on social networks are actually collected.

The link that this literature has made between emergence of power laws and attributes of

deliberately optimized systems points to an important puzzle in the context of the literature.

Carlson and Doyle (1999) (but see also Newman et al. (2002b) who obtain a closed-form

solution for one of their key models with risk aversion) introduce the concept of “highly

optimized tolerance.” This is proposed as a feature of either natural selection or deliberate

engineering design that provides robust performance in uncertain environments. They at-

tribute the “ubiquitous,” at least in the view of certain scholars, presence of power laws to

this feature.

In a number of papers, Newman and coauthors have emphasized properties that are par-

ticularly prevalent in social networks. These are high degrees of clustering — the friends

of my friends are typically my friends, too — and positive correlations (assortative mix-

ing) between the degrees of adjacent vertices. Such high clustering has been attributed to

community structure of networks. Newman and Park (2003) demonstrate that community

structure can also account for assortative mixing. Newman (2002b) examines in particular

assortative mixing by degree in different types of networks. He notes that social networks

are assortatively mixed but technological and biological networks tend to be disassortative.

Newman (2003a) considers a number of measures of assortative mixing appropriate for the

various mixing types, and applies them to a variety of world phenomena. Newman (2003b)

develops a model of networks with high clustering which is exactly solvable in terms of its
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component sizes, percolation threshold and clustering coefficient.

3.3 Random Graphs with Arbitrary Degree Distribution

The recent developments in the theory of random graphs with arbitrary degree distribu-

tions, as articulated by Newman et al. (2001a; 2001b) and Newman (2002), are based on

analyzing the probability distributions for a number of graph-related random variables that

are interesting in their own right. Specifically, let the degree distribution for a randomly

selected node be pk, k = 0, 1, . . . , where the random variable K indicates the number of

other agents a randomly selected agent is connected with. These will be referred to as an

agent’s (first) neighbors. Consider now the total number of other agents an agent may reach

by following a randomly selected contact. These will be referred to as an agent’s second

neighbors. The number of other agents whom are contacted in this fashion is not distributed

according to the distribution function pk. The reason for that is simply that the fact that

another agent is selected not randomly from the population of agents, but conditionally on

having a contact, which of course biases the selection. Consider next the distribution of the

size of the component that a randomly selected agent belongs to. The theory of random

graphs with arbitrary degree distributions depends critically on deriving statistics for these

two distributions. These derivations are quite illuminating, as we see next.

We now examine the properties of the probability distribution of an agent’s second neigh-

bors, that is, the number of other agents reached by following a contact to another agent

and then considering that other agent’s other contacts. Following Newman (2002), p. 7,

the distribution function of an agent’s second neighbors that are associated with a randomly

chosen (first) neighbor is given by qk = (k+1)pk+1∑
j
jpj

. Note that this is related to the neighbor

degree distribution derived above and applies only if degrees are independent. The average

number of second neighbors may be computed by using first principles or probability gen-

erating functions (PGF) techniques. For the latter, see the appendix. Working from first

principles yields:
∞∑
k=0

kqk =

∑∞
k=0 k(k + 1)pk+1∑

j jpj
=
E[k2]− E[k]

E[k]
.
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The total number of second neighbors of an agent are thus given by

z2 = E[k2]− E[k]. (9)

Working in a like manner we have that the average number of neighbors at distance m is

zm = z2
z1
zm−1, with z1 = E[k], which by iterating yields

zm =
(
z2
z1

)m−1

z1. (10)

If the number of neighbors at distance m converges, then there cannot be a giant component

in the graph. If it diverges, which would happen when z2
z1

≥ 1, then there must be a giant

component. So, at the point where z2 = z1,

E[k2]− 2E[k] ≥ 0, (11)

the graph undergoes a phase transition.5 This condition may be rewritten as:

Var[k] ≥ 2E[k]− (E[k])2. (12)

It is straightforward to demonstrate the significance of this condition by starting from

the case of the Erdös-Renyi graph. In that case, the degree distribution is Poisson. For

the Poisson distribution, the mean and the variance are equal and therefore condition (11)

implies that at the phase transition E[k] = 1, which is the condition also obtained by the

original Erdös-Renyi graph.

How about the general properties of possible degree distributions whose graphs admit

phase transitions? In effect, condition (12) requires that the variance of the degree dis-

tribution be sufficiently large. To see this more clearly, let us consider a tractable degree

distribution. Particularly good candidates are mixtures of Poisson distributions that allow

for the Poisson parameter to be distributed in the relevant population.

A particularly convenient mixing distribution for the Poisson parameter z1, pk(z1) =

e−z1
zk1
k!
, is a Gamma distribution with parameters (ϕ, ν)6,

ℓ(z1|ϕ, ν) =
1

Γ(ν)

(
νz1
ϕ

)ν
exp

[
−νz1
ϕ

]
1

z1
,
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for which E[z1] = ϕ, Var(z1) =
ϕ2

ν
.7 It is well known that the resulting mixed distribution is

a negative binomial distribution, for which

z =< K >= ϕ, Var(K) = ϕ+
1

ν
ϕ2. (13)

It follows that for this distribution the variance exceeds the mean by an amount that is

decreasing in the parameter ν.

3.4 Emergence of Giant Component

Applying the condition for phase transition to the case of the negative binomial distribution

for the number of contacts each agent has with other agents, we have that the expected

number of second neighbors is z2 = ϕ +
(
1 + 1

ν

)
ϕ2 − ϕ =

(
1 + 1

ν

)
ϕ2. The mean number of

second neighbors exceeds the mean, z1 = ϕ, iff

ϕ ≥ ν

ν + 1
. (14)

Therefore, the smaller is ν the higher is the variance of the Poisson parameter z1, given

its mean ϕ, and the more likely it is that a giant component emerges. In other words,

the variance of the Poisson parameter must be sufficiently large for the giant component to

emerge.

For another application, consider a Poisson distribution as the mixing distribution for

the Poisson parameter z1. For this so called Neyman Type A distribution with parameters

(λ, ϕ) , we have E[k] = λϕ, E[k2] = λϕ+λϕ2 [ Johnson et al, op. cit., 328–329, 371 ]. A way

to visualize this model is to say that each agent undertakes a number of initiatives to contact

others, and the number of those initiatives has a Poisson distribution with parameter λ. Each

of those initiatives produce in turn a number of contacts, whose numbers are independent and

identically distributed Poisson with parameter ϕ. Therefore, condition (11) requires ϕ ≥ 1,

which suggests that the phase transition depends on the same condition as in the Erdös-

Renyi graph, in other words, emergence of a giant component requires greater dispersion

that the Poisson model is associated with.
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3.5 Sizes of Interconnected Groups of Agents

While the condition for emergence of the giant component is interesting in its own right,

many economic applications may be motivated by the value of direct and indirect connections

with other agents. This is the case exactly for the model analyzed by Bala and Goyal, op.

cit., where the net benefit from a strategy g was defined as Πi(g) = µi(g) − cµdi (g), where

µi(g) denotes the expected total number of other agents an agent is connected with and µdi (g)

the expected number of direct such connections. Both these magnitudes must be defined as

shares of the total number of agents, when the number of agents is large. These magnitudes

may be expressed in terms of the modern theory of random graphs with arbitrary degree

distributions, albeit not always so conveniently. The former coincides with the mean size of

the component a randomly chosen agent belongs to, and the latter with the mean number

of connections for each agent.

We proceed further by developing the distribution of component sizes. Let s denote the

random variable denoting component size, and h0k denote its probability mass function. The

derivation of its distribution function by means of PGF techniques is obtained by Newman

et al., op. cit.. The heart of their approach rests on enumerating the number of a randomly

selected agent’s first neighbors and then second neighbors, and so on, that is the total number

of other agents the original agent is connected with, directly and indirectly, while at each step

one is careful to consider the additional contacts only. Let this probability mass function be

denoted by h1k. The number of contacts a typical agent has is distributed according to pk,

and each of the contacts of her first contacts, other than herself, leads to a component with

size distributed according to h1k. Using PGF techniques, we may obtain the PGFs of these

distributions as solutions to functional equations involving the PGF of pk. Then, using the

properties of PGFs, we may compute the moments of h0k in terms of the moments of pk. See

the appendix for further details.

Specifically, the mean size of the number of other agents a randomly selected agent is

connected with, directly and indirectly, is given by

E[s] = 1 +
(E[k])2

2E[k]− E[k2]
=

2z1 − Var[k]

2E[k]− (E[k])2 − Var[k]
. (15)
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For the special case of a Poisson degree distribution, the original Erdös – Renyi case, the

above formula yields a mean component size equal to 1
1−E[k]

which may be computed directly;

see Newman (2003), p. 21, for an intuitive argument. The proportion of all agents who belong

to the giant component is given by the solution to S = 1 − e−E[k]S, which is equal to 0, if

E[k] < 1, and is greater than 0 if E[k] > 1. The mean non-giant component is given by

E[s] = 1
1−E[k]+E[k]S

.

For the special case of a negative binomial distribution for the number of other agents

each agents is connected with, the average size, before the phase transition, is:

E[s] =
1− 1

ν
ϕ

1−
(
1 + 1

ν

)
ϕ
. (16)

An important role of the dispersion of the degree distribution readily follows. From (15)

we have that:

∂E[s]

∂E[k]
= E[k]

E[k]− Var[k]

(2E[k]− (E[k])2 − Var[k])2
,

∂E[s]

∂Var[k]
=

(E[k])2

(2E[k]− (E[k])2 − Var[k])2
(17)

The mean component size is increasing convex in the mean, provided that the mean exceeds

the variance. It is also convex increasing in the variance. The importance of the variance

receives anecdotal support from the alleged existence of a small number of individuals who

have a very large number of social connections in U.S. cities. To understand how important

is the existence of such outliers in terms of social connections for societies to “function” we

need to know the behavioral underpinnings of this alleged fact.

For example, would it suffice for emergence of the giant component if a small number of

people were extraordinarily well connected, and thus let others benefit from their connections,

or should everyone be uniformly well connected? How crucial are such “Lois Weisbergs”8

of the world [Gladwell (1999)] for social cohesion? That is, does it take a small number of

individuals who know a lot of other people and can therefore perform “social arbitrage”? Or

does the widely known notion of “six degrees of separation” (which originates in Milgram’s

experiments 0f the 1960s [Milgram (1967)]) imply that a uniform degree of social connections

suffices for social interconnectedness?

Although little is known within the economics literature about gregarious individuals,
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a few studies provide glimpses into the role of gregarious individuals as workers. Krueger

and Schkade (2005) document a positive and statistically significant relationship between a

worker’s tendency to interact with others (particularly with friends) while not working and

the relative frequency of worker-related interactions on the worker’s jobs. They interpret that

as evidence of sorting of more extroverted workers into more sociable jobs. The relationship of

remuneration to sociability, while controlling cognitive characteristics is also very interesting

but does not seem to have been addressed.

While our analysis so far has emphasized the mean component size, we may explore sev-

eral applications where agents’ benefits depend not only on expectations but more generally

on the actual distribution of component sizes. The moments of the distribution of compo-

nent sizes below and above the phase transition may be obtained. This is made possible by

working with PGF of the distribution of component sizes. The proportion of all agents that

are interconnected above the phase transition may be obtained, albeit not in closed form. It

may also be obtained numerically.

An interesting application would be to consider the following. Agents may randomly

become unavailable to interact with others, even though they may be connected with other

agents. Alternatively, consider that ideas or information arrive randomly at agents, and each

of them passes it on to each of her acquaintances with probability q. The expected number

of others who hear of the idea from an agent who has just received it and has degree k is

equal to q(k− 1). If agents fail to pass on the idea, then their neighbors who were connected

previously through them become disconnected from one another. The likelihood that an

individual receives the idea is proportional to her degree. Therefore, the average number of

other persons a person passes the idea on to is equal to: q
∑

i
ki(ki−1)∑

i
ki

= q (E[k])2−E[k]
E[k]

. More

formally, working from Newman (2002a) in the case of network resilience [ see the Appendix

for some further details ], we have that there exists a threshold value of the probability that

an agent is available, which is given by E[k]

Var[k]+(E[k])2−E[k]
.

For the special case of the negative binomial degree distribution examined above, this

threshold probability is given by: ν
(ν+1)ϕ

. Not surprisingly, the stronger the “intensity” with

which the giant component would emerge, the higher the threshold probability. In other
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words, indirect connections among agents make up for failure of individual agents.

3.6 Trade in Differentiated Products

This example motivates the model of the previous section via trade in differentiated com-

modities. Although not strictly necessary, it also employs a directed graph version of the

model, whereby a country (site) may sell to other countries and use the proceeds to pay in

turn for its own imports. Please see the Appendix for an elementary treatment of the case

of directed graphs.

Individuals in opening up connections with others are motivated by the desirability of

trade. We model the contacts among agents by means of directed graphs. Each agent may

be connected with others and other agents may be connected with her. A directed graph

accommodates conveniently a setting where an individual sells to those she is connected

with, her “out-edges,” and buys from those who are connected with her, her “in-edges.”

A particularly simple way to motivate such trade is by means of trade in differentiated

goods. Product variety is desirable and therefore motivates trade. Assuming monopolistic

competition, each differentiated good’s price is a constant mark-up of the wage rate, the

quantity of each variety produced at the free-entry equilibrium is constant and shared among

all agents and the market clears through the number of varieties. Therefore, an individual’s

welfare depends on the number of her contacts. This is why the model of differentiated goods

In order for an agent to acquire connections with others she has to incur costs. We simplify

the cost side by assuming iceberg costs.

Suppose that each site i is home to ℓ̄ workers. A large number of firms may produce

any arbitrary number of varieties of a differentiated consumption good under conditions of

monopolistic competition using only labor, which the single undifferentiated input in the

world economy. There exists a universal unit of account, which may be used for settling

all transactions across sites. For simplicity, we make the additional assumption that there

is free entry, so that the number of varieties produced is determined and under symmetry

equal through all sites. We develop the formal dependence of the value from trade on the
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number of trading partners.

We start the analysis by assuming that links between sites (that is, countries) are directed.

For each site, there exist in-connections and out-connections. The agents who are located

in site i may buy differentiated varieties from all other sites that are in-connected with site

i. Let nji+ denote the number of varieties imported into i from site j, and Ni+ =
∑J
j=1 n

j
i+,

denote the total number of differentiated varieties imported from all J other sites which have

in-connections with site i. Similarly, let nki−, denotes the number of differentiated varieties

exported to k from site i, and Ni− =
∑K
k=1 n

k
i−, denote the total number of varieties exported

to all K other sites with which site i has out-connections; and Ni denotes the number of

varieties produced in site i. Each site functions as an open economy by selling some of the

own-produced varieties of the differentiated good to the sites that are its out-connections

and uses the revenue thus generated to purchase varieties from the in-connections.

It is a well known result from international trade theory with differentiated products [

Helpman and Krugman (1985) ] that if wage rates are equalized across all sites, wi = w̄, then

the monopolistic competition pricing rule implies that prices would be equal across all sites.

Then the share of a typical agent’s expenditure on goods from site j is given by
nj
i+

ni+Ni+
. It

follows that the total expenditure on all imports by agents in site i is given by w̄ℓ̄ Ni+

ni+Ni+
.

Applying the same logic to site i’s exports, we have that the share of expenditure on

varieties produced in node i by agents in node k that has an in-connection from node i

is given by Ni

Nk+Nk+
. This in turn implies that the total expenditure by all sites that have

in-connections from site i on varieties produced in node i, that is, the total exports of node

i, are given by w̄ℓ̄ Ni
∑K
k=1

1
Nk+Nk+

. Thus, the condition for trade balance is that for a node

i total imports must equal total exports:

Ni+

ni +Ni+

= ni
K∑
k=1

1

nk +Nk+

. (18)

Free entry in each site ensures that each variety is produced at quantity κζ
ξ(1−ζ ), which

implies in turn that the number of varieties produced in each site are equal to ni = ℓ̄1−ζ
κζ

≡ n̄.

Thus, all sites produce the same number of varieties. The trade balance condition then
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becomes: J
1+J

= K
1+K

, which implies:

J = K, (19)

that is, the number of in-edges and out-edges must be equal. Of course, this condition

cannot hold with probability 1, when connections are stochastic. Still, with a large number

of agents, it could be proven that condition (54) is sufficient to ensure that trade balance is

satisfied almost surely: z = E{J} = E{K}. So, we conclude that at least for the purpose of

a symmetric model it suffices to work with an undirected graph.

There is potentially a large number of goods, which enter symmetrically into preferences.

Let all individuals have identical preferences, given by U =
(∑

m c
ζ
m

) 1
ζ , 0 < ζ < 1, where m

ranges over varieties available for purchase in the site where an individual is located. The

range is affected by trade and will be discussed further below. All goods are produced with

the same cost (labor requirements) function, which includes a fixed cost κ and a marginal

cost ξ, both defined in terms of units of labor. It is convenient to define σ ≡ 1
1−ζ , the

elasticity of substitution among the differentiated inputs.

Applying standard results from trade theory under monopolistic competition [ Helpman

and Krugman (1985) ], we have that if wi denotes the wage rate in site i, then profit maximiz-

ing by firms under conditions of free entry implies a price which is constant for all varieties

produced in site i and equal to pi =
ξ
ζ
wi. An individual who is located in site i has demand

for a particular differentiated variety m given by:

cdm = wi
p−σm

P
−(σ−1)
i

,

where Pi =
(∑

m (pm)
1−σ

) 1
1−σ denotes the price index for all goods available in site i, each

of which are indexed by m. Note that the price elasticity of demand for each of the differen-

tiated goods is equal to minus the elasticity of substitution among differentiated products,

σ. Furthermore, it is a standard feature of this theory that the smaller is σ, the higher the

market power of each firm. In the limit when σ tends to infinity, the model of monopolistic

competition implies perfect competition.

To see the basic workings of this model, consider how expenditure is allocated to different

varieties of goods. First, we note that all goods produced in a site would be priced at the
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same price. There are ni goods produced in site i and nji+ are imported from site j to site

i. Therefore, the price index in site i may be written as:

Pi =

Nip
1−σ
i +

J∑
j=1

nji+p
1−σ
j

 1
1−σ

. (20)

If wage rates were equalized across all sites, wi = w̄, then the pricing rule implies that prices

would also be equal across all sites.

If creation of connections between sites is up to individuals’ initiative, then individuals

have an incentive to spend resources in the creation of additional connections because doing

so increases the number of varieties they may purchase from n̄, under autarky, to n̄ + n̄J,

if they may purchase from J other sites as well, that is when site i is connected with J

other sites. Using the behavioral model for individuals above, we have that the indirect

utility function is Uaut = ζ
ξ

ζ
n̄

1
ζ
−1. If J sites have in-connections with site i, then indirect

utility conditional on the number of in-connections being equal to J becomes Ũ(J) = (1 +

J)
1
ζ
−1Uaut. This quantity is random but always larger than under autarky, when J > 0,

and therefore so is its expected value. That is, if the actual number of in-connections is not

known when decisions about contacts are made, then an agent’s expected welfare is measured

as her expected utility, that is, the expectation of Ũ(J) with respect to J . To motivate a

genuine tradeoff, it must be the case that there is a cost associated with the expansion of

the variety of goods associated with creating connections, such as transportation costs for

the imported goods. In that case, an increase in the variety of goods improves welfare but

comes at the cost of increased import prices.

We see this tradeoff clearly by letting transportation costs be in the form of iceberg costs:

to have a unit of a good from site j available in site i, eτ units of the good must be purchase

in site j, where τ, τ > 0, is a parameter. So, the c.i.f. price in site i of a differentiated good

produced in site j is pje
τ , and therefore the price index when differentiated varieties may be

imported changes from (20) to become

Pi =

nip1−σi +
J∑
j=1

nji+p
1−σ
j e(1−σ)τ

 1
1−σ

.

Indirect utility, conditional on the number of in-connections being equal to J, is given by
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Ũ(J) = ζ
ξ
n̄

1
σ−1

(
1 + Je(1−σ)τ

) 1
σ−1 , is a decreasing function of transport costs, cet. par.,

which makes intuitive sense. Therefore, while more connections , with other sites, more

varieties may be imported leading to greater welfare. However, the welfare enhancing effect

of additional in-connections is dampened by the impact of transport costs.

Let E[k] and Var[k] denote the mean of variance of the degree distribution. Expected

indirect utility may be written as:

E{Ũ(J)} = Uaut
(
1 + E[k]e(1−σ)τ

) 1
σ−1

[
1− 1

σ − 1

(
1− 1

σ − 1

)
Var[k]

(e(σ−1)τ + E[k])
2

]
. (21)

We note that the impact of uncertainty in the number of connections depends on the actual

magnitude of the elasticity of substitution. If σ is larger (smaller) than 2, then the indirect

utility function is concave (convex) in the number of connections with other sites, and the

increased varieties made possible by the degree distribution decreases (increases) welfare.

If the mean and variance of the number of connections may vary independently — as

in the case of a negative binomial distribution that we examined earlier —, then for given

values of E[k] and τ, (21) implies that there exists a threshold value of Var[k], above which it

is not attractive to an agent to invest in connections. That is, for the presence of connections

to pay, it must be the case that

2E[k]−
(
E[k2]

)2
≤ Var[k] ≤ σ − 2

(σ − 1)2

1− eτ

(e(σ−1)τ + E[k])
1

σ−1

 (e(σ−1)τ + E[k]
)2
. (22)

We note that in view of (12), Var[k] must exceed 2E[k] − (E[k])2. Therefore, for both the

condition for phase transition to hold and for connections to be attractive, the relationship

between the mean and the variance is restricted.

Transport costs have a subtle effect. They reduce welfare because they increase costs, but

their dampening of the welfare-enhancing effect of greater variety also reduce its variance.

3.7 Graphical Economies: Extension of the Arrow–Debreu Model

In one of the most interesting recent developments of research on economies embedded in

graph settings, economists and computer scientists have examined economic transactions
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of various kinds, ranging from exchange to auctions. These new works provide important

motivation for economic interactions among agents, in contrast to much of the social networks

literature where agents are typically assumed to be passive.

Kakade et al. (2004a, 2004b) have sought to extend the range of key results in math-

ematical economics, such as the Arrow–Debreu theorem on the existence of competitive

equilibrium [ Arrow and Debreu (1954) ], to “graphical” economies. They define graphical

economies in terms of a given graph topology, G, of what direct trades are allowed among

individuals. In the setting of Kakade et al. (2004a) there exist i = 1, . . . , I individuals and

j = 1, . . . , K physically different goods. Goods are indexed by their sellers, so that there is a

total of I ·K goods. The same physical goods sold by different sellers are perfect substitutes.

An undirected graph over I defines trade restrictions; lack of an edge {i′, i′′} means that

those two individuals may not trade directly with another. In other words, every consumer

is allowed to buy goods only from her neighbors, ν(i), that is xij = 0, j ∋ ν(i), and market

clearing is local: each individual’s value of supply (endowment) vector is equal to the value

of her demand vector at the “local” prices.

Let pik be the price of good k sold by individual i. The vector of prices of all goods

sold by an agent define to local price vector, pi. Individual i’s consumption plan satisfies∑
j∈ν(i) p

j · xij = pi · ei, where ei denotes her endowment of goods. Proving existence of a

graphical equilibrium, that is existence of a set of prices, P = {. . . ,pi, . . .}, and plans in which

all plans are optimal at the prices and all markets for each agent i clear:
∑
j∈ν(i) x

ji = ei. This

requires an extension of the Arrow–Debreu model. That is, it is necessary to ensure that no

individuals are left with endowments valued at zero: there are in effect I ·K goods but each

individual has an endowment of K goods and is allowed to sell at the “local” prices only.

Existence of a graphical equilibrium amounts to existence of equilibrium price dispersion.

Graphical equilibria and Arrow-Debreu equilibria coincide if graph G is connected.9

Kakade et al. (2004b) apply this framework to examples where the graph, G of trade

restrictions is random. They use a bipartite random graph and compare bipartite versions

of the Erdös – Renyi model and of a random version of the preferential attachment model.

According to the latter, the economy starts with a buyer and a seller. At each subsequent
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step an additional buyer and an additional seller are added: the buyer is connected with

probability α to a seller in the existing graph uniformly at random, and with probability

1 − α the buyer is connected to a seller in proportion to the existing degree of the seller.

Simultaneously, a seller is attached in a symmetric manner, with probability equal to α

randomly, and to 1 − α with preferential attachment. They also examine a modification

that allows a buyer to be connected to more than one sellers, a feature that produces trade

restriction graphs that are not just trees. All sellers sell only one and the same good.

Structural properties of G are reflected in price dispersion. It is known from the preferential

attachment literature, the resulting degree distribution can be approximated by a power law.

Therefore, an attractive interpretation of the model may be a model for the distribution

of wealth, in which case the preferential attachment model would predict a power law.

In contrast, for the Erdös – Renyi model with a large number of agents and a constant

probability for each edge, price dispersion takes a very different form.10 This particular

application by these authors suggests that it would be interesting to examine the contribution

of “connection” uncertainty (how many other traders a trader trades with) as separate from

endowment and price uncertainty to the distributions of such outcomes as income and wealth.

See also Ioannides and Loury (2004). Of particular interest is to examine the origin of the

sensitivity of outcomes to parameter values, which was discussed in section 2 above.

3.7.1 Other Models of Interactions with Direct Neighbors

The literature has considered also problems set in networks that are populated by agents who

value interactions with their direct neighbors, and whose objectives therefore involve mea-

sures based on the number of direct connections. Consider a setting like that of Bramoullé

and Kranton (2003), where agents value the private information they receive from their

immediate (first) neighbors. So individual i values the total information in his posses-

sion, ei +
∑
j∈ν(i) ej, and incurs a constant marginal cost c. That is, agent i’s payoff is

U(e,G) = b(ei +
∑
j∈ν(i) ej) − cei, where G denotes social structure, ν(i) denotes agent i’s

neighborhood, and the function b(e), with b(0) = 0, is increasing and concave in its argu-

ment. An individual benefits from the sum total of the information directly possessed by
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her neighbors and in turn her own information benefits her neighbors. Depending upon as-

sumptions made about the social structure, an agent’s neighborhood may be either fixed or

random. This model may accommodate the case where the benefits derive from locating the

lowest price seller among a number of sellers. Other literature has interpreted direct connec-

tions themselves as a measure of social capital. This is the case with one of the models in

Mobius and Rosenblat (2002), where if an agent’s neighbor is unable to provide a favor, she

in turn appeals to one of her own other connections. A particularly interesting consequence

of valuing direct contacts only is when agents’ behavior brings about the emergence of the

giant component in the social network.

3.8 Social Networks versus Other Networks

The recent econophysics literature recognized that models that have been proposed to study

engineering and biological networks do not perform well when it comes to social networks.

As Newman and Park (2003) underscore, social networks exhibit non-trivial clustering, or

network transitivity, and show assortative mixing, that is positive correlation between the

degrees of adjacent nodes. Empirically speaking, most other networks show disassortative

mixing. These authors suggest that the community structure of social networks may explain

both clustering and assortative mixing, which do not vanish as the size of the network

increases. If individuals who belong to small groups tend to have few connections and are

connected to others in the same group, who are also like themselves, and similarly individuals

who belong to large groups tend to have more connections and are connected to others in the

same group, then variation in the size of groups would produce assortative mixing. Newman

and Park obtain rigorous results on the impact of community structure in social networks

by describing (through its PGF) the joint probability distribution for ejk, the number of

“excess” nodes that a randomly chosen edge is connected with, that is the number of other

edges attached to the node other than the one that is randomly selected. This allows them

to write an expression for the assortativity coefficient, the excess correlation coefficient for
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the number other nodes each edge is connected with,

r =
1

σ2
q

∑
jk

jk(ejk − qjqk), (23)

where qj denotes the probability distribution for excess degrees for a randomly selected

neighbor, qj =
(k+1)pk+1∑

k
kpk

, and σ2
q its variance. They show that given p, the probability that

individuals are acquainted with one another, the probability functions for rm, the number of

groups each individual belongs to, and for sn, the size of groups, the assortativity coefficient

is positive. In the special case when both the number of groups and the sizes of groups have

Poisson distributions with parameters µ and ν respectively, then the assortativity coefficient

is given by: r = p
1+µ+νµp

. As either of the two means µ and ν increases, the assortativity

coefficient decreases. This is straightforward when it comes to increase of the mean number

of groups an individual belongs to: the more groups an individual belongs to, the less the

relative within-group correlation upon which assortativity depends. That is, the within-

group correlation is diluted by all the other groups the individual belongs to. Increase

in mean group size also increases dispersion, and therefore fewer individuals with similar

numbers of connections will fall within the same community.

Detecting community structure in networks, which is essential in understanding the struc-

ture of networks, is a hard computational problem. See Newman (2004) for a review of

different approaches. Essentially, the statistical inference problem by means of a standard

method like maximum likelihood estimation is complicated by the fact that a large number

of possible configurations must be considered, whose number increases exponentially.

Recently, Čopič, Jackson, and Kirman (2005) get additional mileage by motivating an

abstract problem of community structure as a problem of identifying communities of scientific

journals in terms of patterns of cross-citations. They axiomatize their approach by means

of ranking partitions of a graph in terms of likelihood. Specifically, let Π(I) be the set of all

partitions of I nodes, π its generic element, and for any i ∈ I, let cπ(i) be the component of π

containing i. A community structure is a partition of I. Any two nodes within a community

“interact,” are connected, with probability pin, and any two nodes from different communities

“interact,” are connected, with probability pout. Their model allows for multiple interactions
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sij between any two nodes i, j. So, the likelihood of seeing gij out of sij is:

p
gij
in (1− pin)

sij−gij ,

if i, j belong to the same community, and

p
gij
out(1− pout)

sij−gij ,

if i, j belong to different communities. The likelihood of observing any given pattern of

cross-citations is given by:

Ls,g(π) =
∏
i∈I

 ∏
j∈cπ(i)

(pin)
gij(1− pin)

sij−gij

 ∏
j∈I\cπ(i)

(pout)
gij(1− pout)

sij−gij

 . (24)

Any two community patterns may be compared in terms of their likelihood, and their max-

imum likelihood provides an ordering of all partitions on Π(I). They apply their method to

data on cross-citations among economics journal in 1995–1997 and estimate a pair of proba-

bilities (pin, pout). Of course, the world is more heterogeneous and, in particular, hierarchical.

A lot of people publishing in journals that cite the American Economic Review frequently

are not necessarily themselves cited by author publishing in the American Economic Review.

While detecting community structures has generated scientific interest, there is also con-

siderable interest within business. Recent business ventures are notable for exploring “re-

lationship capital.” One such company, Visible Path, promises to use the “the Science of

Trust” to “transform the way large companies leverage relationship capital to drive top line

revenue growth” [www.visiblepath.com].

3.9 Centrality and Searchability of Random Graphs

Another aspect of social structures that are modelled as random graphs is centrality. This

is a core sociological concept [ Wasserman and Faust (1994) ], that has received renewed

attention in the Internet era. Is there a sense in which we may characterize each individual

in terms of her social importance? If connections confer social importance, then let the

importance of agent i be ϖi, and let us assume that this is proportional to the sum of the
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importance of the other agents she is connected with. That is: ϖi = λ−1∑
j Γijϖj. By

rewriting this in matrix form with ϖ an I−vector denoting social importance of respective

agents, we have:

Γϖ = λϖ. (25)

In other words, the vector of individuals’ social importance, ϖ, and the respective coeffi-

cient of proportionality, λ, are an eigenvector and its respective eigenvalue of the adjacency

matrix Γ. Since the adjacency matrix is symmetric and positive, the Perron-Frobenius theo-

rem guarantees the existence of a maximal positive eigenvalue and a corresponding positive

eigenvector, provided that the graph is connected, or else the maximal eigenvalue would be

equal to zero [ Cvetković et al. (1995) ]. If the social structure is not known with certainty

and may be described by a random graph, what can we say about centrality of the resulting

graph?

While the centrality of the resulting random graph is hard to characterize, the associated

eigenvalue, the inverse of the coefficient of proportionality, is much easier. It is well known

that the maximal eigenvalue is contained between a graph’s maximal degree and its average

degree [ Cvetković et al. (1995) ]. For a random Erdös – Renyi graph corresponding to a

constant edge probability p, its maximal eigenvalue is asymptotically normally distributed

with mean (I − 1)p + (1 − p) and variance 2p(1 − p). Therefore, the maximal eigenvalue

increases linearly with the number of agents. When the edge probability decreases as the

number of agents increases as p(n) = O(ℓnn), the case of the sparse random graph, the largest

eigenvalue is given by (1+ o(1))max{
√
∆, Ip}, where o(1) tends to 0 as max{

√
∆, Ip} tends

to infinity and ∆ is the maximum degree of the graph [ Krivelevich and Sudakov (2003) ].

The asymptotic behavior of the largest eigenvalue is quite critical to network search because

the associated eigenvector gives the social importance of different sites. In fact, some of the

latest developments in the literature on the searchability of the web depends on topological

characteristics of the random graph. For example, the popular search engine Google employs

a variation of the above network centrality model in arriving at a ranking for the importance

of web sites [Newman (2003d)].
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3.10 Applications with Models of Job Matching

The job search model addresses the problem of matching workers and firms. This is an

inherently discrete problem and therefore its stochastic versions have been typically handled

by means of Poisson models or models of other point processes [ Pissarides (2001) ]. The

underlying discrete assignment problem has itself received attention; see Akerlof (1981) and

Shimer (2003), most recently. We examine next a multilateral job matching model, where

agents contact several agents on the other side of the market.

Let the sets denoting firms and workers (with each firm being a “job,” employing one

worker) be, respectively: M = {1, 2, . . . ,M}, N = {1, 2, . . . , N}. Let pj denote the prob-

ability mass function for the random variable J that denotes the number of different firms

that a worker is connected with. Under the assumption that there is at most one connection

with each firm, J may take values j = 1, . . . ,M. Let f0(x) be the PGF of pj. Let qk denote

the probability mass function for the random variable K that denotes the number of different

workers that a firm is connected with. Under the assumption that each firm has at most one

connection with each worker, K may take values k = 1, . . . , N. Let g0(x) be the PGF of qk.

The means of the respective distributions are denoted by, respectively: µ = f ′
0(1), the mean

number of firms a worker is in contact with, and ν = g′0(1), the mean number of workers a

firm is in contact with. For consistency, it should be the case that Mν = Nµ.

If workers are matched with firms at the workers’ sole initiative, the two distributions

pj, qk, may not specified arbitrarily; in fact, in that case, the probability mass function qk is

derived from pj. This is, of course, well recognized and easily derived in models of job search

where individuals apply to only one job at a time. Yet, the derivation in case of multilateral

matching is quite complicated [ Albrecht et al. (2003) ].

Worker and job matching may be modelled as a bipartite graph, with the two respective

groups of nodes being the sets of firms and of workers, M and N , respectively. Next we

consider the groups of all workers who are in contact with the same firms. Individuals

who have been in contact with the same firm may be affected similarly in a variety of ways,

including most notably the fact that only of them would be chosen for employment. Similarly,
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sets of firms who are in contact with the same individuals may be impacted in similar ways.

We can derive the probability generating functions (and through them the parameters of the

respective mass functions) for these groups of workers and separately, of firms.

Consider a contact between a firm and a worker that is chosen randomly from among

all such contacts, that is, from among the edges of the bipartite graph describing such

connections. Now, consider the respective firm and worker linked by such a contact. Let

the PGF of the distribution of the number of other firms that a worker thus chosen is also

in contact with be f1(x), and of the number of other workers that a firm thus chosen has

established contact with be g1(x). From Newman et al. (2001), p. 11, these PGFs are given

by, respectively:

f1(x) =
1

µ
f ′
0(x), g1(x) =

1

ν
g′0(x). (26)

Again, these distributions reflect the impact of connection-biased sampling.

Consider the distribution function of the number of other workers who are in contact with

the same firms as a randomly chosen worker. These workers share in common information

about the same firms. Its PGF is given by: G0(x) = f0(g1(x)), [ ibid. ]. That is, this is

the PGF for the degree distribution for a graph defined as having as nodes all workers and

edges connecting pairs of workers who are in contact with the same firms. In graph-theoretic

terms, this is the distribution of the number of first neighbors, when two workers are assumed

to be neighbors if they are in contact with the same firm. Working in like manner, for a

randomly chosen contact between a firm and a worker, consider the worker thus chosen:

the distribution of the number of other workers that are in contact with the same firm as a

worker thus chosen is given by: G1(x) = f1(g1(x)). Working for the number of firms who are

in contact with the same worker, that is, the PGF for the degree distribution for a graph

defined as having as nodes all firms and edges connecting pairs of firms who are in contact

with the same workers. Its PGF is given by: F0(x) = g0(f1(x)),

To give an example, consider that the number of firms each worker has a contact with

has a Poisson distribution with parameter µ, and that the number of workers each firm

has contacts with has a Poisson distribution with parameter ν. Thus f0(x) = eµ(x−1) =

f1(x), g0(x) = eν(x−1) = g1(x). The PGF for the distribution function of the number of other
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workers who are in contact with same firm as a randomly chosen worker is G0(x) = G1(x) =

e[µ(e
ν(x−1)−1)]. The PGF for the distribution function of the number of other firms who are in

contact with same worker as a randomly chosen firm is F0(x) = F1(x) = e[ν(e
µ(x−1)−1)]. The

average number of first neighbors, the average number of other workers that are in contact

with the firms with which a worker is also in contact, is given G′
0(1) = µν. The average

number of second neighbors is: d
dx
G0(G1(x))

∣∣∣
x=1

= G′
0(1)G

′
1(1) = f ′

0(1)f
′
1(1)[g

′(1)]2 = (µν)2.

The second moment of G0(x) is given by
(
x d
dx

)2
G0(x)

∣∣∣∣
x=1

= µν[1 + ν + µν]. The second

moment of F0(x) is given by
(
x d
dx

)2
F0(x)

∣∣∣∣
x=1

= µν[1 + µ + µν]. Finally, the condition for

emergence of the giant component in the graph of workers who have been in contact with the

same firm is ν ≥ 1
1+µ

, and the condition for emergence of the giant component in the graph

of firms who have been in contact with the same worker is µ ≥ 1
1+ν

. It would be interesting

to apply this model to the case of assignment of workers to jobs in presence of coordination

frictions in the style of Shimer (2003).

4 Markov Random Graph Models of Social Interac-

tions

While interest in social networks is relatively recent within economics, the subject has at-

tracted continuous interest in mathematical sociology. We seek to draw lessons by con-

trasting the economics, econophysics and mathematical sociology literatures. A landmark

development in the mathematical sociology literature is a number of models dating back to

Holland and Leinhardt (1977) that characterize the evolution of the entire social structure

as a stochastic process. A common problem faced by these approaches is how to model in a

tractable way the possible dependence between the decisions of different agents and between

decisions made by a single agent in contacting other agents. For example, the original model

of Holland and Leinhardt rests on the assumption that the states of different agents, given the

state of the social structure in the previous period, are conditionally independent. A great

potential that has been opened up by the economics literature is exactly in offering predic-

tions about the properties of the entire network that follows the development of contacts by
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individual agents. Furthermore, a key aspect of the description of random graphs by means

of arbitrary degree distributions is that it is no longer possible to consider the probability

of individual links as a building block of the model. Therefore, the modern literature on

random graphs has addressed successfully the problem of generalizing the degree distribution

but not transitivity, the phenomenon whereby the acquaintances of my acquaintances are

also likely to be my acquaintances, too. But the techniques developed by the newer literature

on random graphs with arbitrary degree distributions rests heavily on the assumption of the

numbers of connections in adjacent nodes being independent. The usefulness of the network

formation models extends to allowing us to consider the simultaneity of individual decisions.

With an eye on this objective, we discuss next a particular approach to the study of so-

cial networks that allow for dependence among graph-related attributes of connected nodes.

Except for some special cases, this appears to be the only approach that allows modelling

transitivity of social connections. Following Newman (2003), p. 26, any measurable proper-

ties of a graph, {ϵi}, such the number of edges, the number of vertices of a given degree, or

the number of triangles, may be associated with an exponential random graph model. That

is, the probability of a graph G is given by

Prob(G) =
1

Z
e−
∑

i
βiϵi , Z =

∑
G

e−
∑

i
βiϵi , (27)

where Z denotes the partition function. In calculating all of the possible realizations, we

would take into consideration the specifics of the problem. This approach may in principle

be applied to any problem. Unfortunately, only very special problems may lend themselves

to analytical derivations that allow one to study the behavior of these models as parameters

change.

Fortunately, an interesting benchmark is available in the form of the so-called “2-star”

model of a network, that is the case when the network may exhibit only pairs of edges that

share a node, Park and Newman (2004a) have obtained an analytical solution. The 2-star

model follows from (27) in the special case when

Prob(G) =
1

Z
exp

[
− J

I − 1

∑
i

k2i −B
∑
i

ki

]
, (28)

where ki denotes the degree of vertex i. The solution involves the parameters B, J, I of
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the model and ϕ0, which is defined as the solution to ϕ0 = 1
2
[tanh(2Jϕ0 + B) + 1]. In the

approximate mean-field case, E[k] = (I − 1)ϕ0 and a variety of properties of the random

graph, the actual mean degree, the mean squared degree, etc., may be expressed in closed-

form in terms of B, J, I and of ϕ0 [ ibid., p. 3 ]. Those expressions are complicated functions

of the basic parameters, in addition to ϕ0. Specifically, the mean, the mean squared and the

variance of the degree distribution are given by:

E[k] = (I − 1)ϕ0 +
2Jϕ0(1− ϕ0)(1− 2ϕ0)

(1− 4Jϕ0(1− ϕ0)) (1− 2Jϕ0(1− ϕ0))
, (29)

E[k2] = (I − 1)2ϕ2
0 +

(I − 1)ϕ0(1− ϕ0)(1− 4Jϕ2
0)

(1− 4Jϕ0(1− ϕ0)) (1− 2Jϕ0(1− ϕ0))
, (30)

E[k2]− (E[k])2 = (n− 1)
ϕ0(1− ϕ0)

(1− 2Jϕ0(1− ϕ0))
. (31)

This helps make clear that the “deep” parameters of the Markov random graph model would

generally be hard to recover in an estimation setting. The “silver lining” is that one may

check directly whether the underlying network possesses a giant component, that is under

what conditions on the parameters of the model E[k2] ≥ 2E[k].

4.1 The Frank–Strauss Model of Markov Random Graphs

Although this approach may accommodate different measurable properties of graphs, we

stick to graph topology in this exposition. We describe a social network G in terms of

its adjacency matrix as a random matrix. As suggested by Frank and Strauss (1986) and

Strauss (1986), the dependence structure among the random variables describing connections

between different agents are described by the dependence graph D of the random matrix

Γ. The dependence graph is a non-random graph that specifies the dependence structure

between the
(
I
2

)
random variables γij that denote all possible connections among individual

agents. The nodes of D are the element of the index set {(i, j); i, j,∈ I, i ̸= j}, that is all

possible edges of G. The edges of D signify pairs of the random variables that are assumed

to be conditionally dependent, given the values of all other random variables. That is, D

has an edge between (i, j) and (k, ℓ), if γij and γk,ℓ are conditionally dependent.
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Frank and Strauss (1986)11 invoke the Hammersley–Clifford theorem [ Besag (1974) ]

and obtain a characterization of the probability function for the realization of a random

undirected graph Γ, with dependence graph D. This probability is given by

Prob(Γ) = c−1 exp

[∑
A⊂Γ

αA

]
, (32)

where αA is an arbitrary constant, if A is a clique of D, αA = 0, otherwise; c is a normalizing

constant. If the maximal cliques of D are disjoint, then it follows that a general probability

distribution of Γ is specified by separate probability distributions of the maximal sufficient

subgraphs of Γ. Because of the exponential expressions involved in describing this model,

which originate in the Markov random field expressions associated with the Hammersley–

Clifford theorem, these class of models are known as exponential random graph models.

To see the power of the theorem, let us consider a Bernoulli graph, that is, a random

graph where all edge indicators γij are mutually independent Bernoulli random variables,

with edge probabilities pij. Then,

Prob(Γ) =

 ∏
(ij)∈Γ

exp[αij]

1 + exp[αij]

×
 ∏
(ij)/∈Γ

1

1 + exp[αij]

 , (33)

and pij = exp[αij ]

1+exp[αij ]
. The Erdös–Renyi random graph follows for the special when all edge

probability are equal.

Frank and Strauss introduce the notion of a general Markov graph, as a graph whose

dependence graph has no edges between disjoint sets of nodes, such as (i, j) and (k, ℓ). That

is, for a Markov graph Γ, edges which are non-incident to the same node are conditionally

independent. That is, decisions about connections between different pairs of agents (j, k)

and (j′, k′) are independent, as long as j ̸= j′ ̸= k′ ̸= k′. This implies readily that the cliques

of the dependence graph of a Markov random graph correspond to sets of edges such that

any pair of edges within the set must be incident. Such sets are just triangles and stars, that

is k−stars, k = 1, . . . , I − 1 [ ibid., p. 835 ]. This allows us to write a general expression for

the probability of any arbitrary undirected Markov graph:

Prob(Γ) = c−1 exp

[∑
α(Tuvw) +

I−1∑
k=1

∑ 1

k!
α(Sv0...vk)

]
, (34)
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where the first sum enumerates and sums up over all
(
I
3

)
distinct triangles, Tuvw, Tuvw ⊂ Γ,

the second sum enumerates and sums up over all distinct k−stars, for k = 1, . . . , I − 1, and

the functions α are vectors of parameters.

This results admits two simplifications. First, under an assumption of homogeneity,

namely when all topologically isomorphic graphs have the same probability, the argument

of exp[·] above is simplified to: αtt+
∑I−1
k=1 αksk, where t is the number of triangles in Γ and

sk the number of k−stars in Γ, and αt, αk are parameters. Homogeneity essentially means

that nodes, that is agents, are a priori indistinguishable and therefore only distinct graph

topologies matters. Second, in view of the fact that the k−star specific parameters in (34)

are hard to interpret, because every k−star contains

(
k
j

)
j− stars as well, j < k, Frank

and Strauss, ibid., p. 836, show that the probability of a general homogeneous graph is

equivalently rewritten in terms parameters corresponding to the degree distribution of graph

Γ as:

Prob(Γ) = c−1 exp

αtt+ I−1∑
j=1

αjdj

 , (35)

where dj denotes the number of vertices of degree j in Γ. This is the probability of graph Γ,

conditional on the number of triangles t, and on the number of nodes with different degrees.

Some remarks are in order. First, we note that the above expressions give probabilities for

events defined as realizations of entire graphs. Therefore, they are appropriate to consider

when we know the outcome of individual decisions that satisfy the conditions that define

Markov graphs. That is, for a model where individuals make individual decisions to contact

others, and the decisions to each individual makes to contact all others are statistically

dependent, then (35) gives the probability that a graph with t triangles and dj, j−stars

j = 1, . . . , I − 1, will be realized.

Park and Newman (2004c) obtain exact (though not closed-form) solutions for the pa-

rameters of a special case of the above model, that is for an exponential random graph, for

which a graph with a total number of edges and of triangles, denoted by D(Γ) and t(Γ), re-

spectively, occurs with probability proportional to e−[αdD(Γ)−αtt(Γ)]. Let p = E[γij] denote the

probability ( connectance ) that the typical edge is present, q = E[γijγjk] and the probability
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of a two-star (or dyad), and r = E[γijγjkγki] the probability of a triangle, in exponential

random graphs with a probability being proportional to e−[αdD(Γ)−αtt(Γ)]. Using tools from

Park and Newman (2004b), they show that q, the expected number of dyads, is given by the

solution of

q =
eαd−αt(I−2)q + eαt

(eαd−αt(I−3)q + 1)
2
(eαd−αt(I−2)q + 1) + (eαt − 1)

, (36)

and the expected number of triangles in the graph is given by:

r =
eαt

(eαd−αt(I−2)q + 1)
3
+ (eαt − 1)

. (37)

The RHS of Equ. (36) is monotone increasing in q, but may, depending upon parameter

values, be sigmoid and have either three fixed points or one fixed point. The former, the

“broken-symmetry” case, is associated with two areas of parameter values for which the

density of triangles is high and low. The latter, the symmetric case, is associated with

coexistence of both high and low density areas of triangles. While these derivations are for

the so-called mean field case, these authors show that they are exact in the case of large

number of agents.

Second, this is an equilibrium outcome that follows from the theory of Markov random

fields and is consistent, in principle, with a variety of individual contact processes, but is not

linked to any specific law of individual decision making. It is derived under the assumption

of a finite number of agents. Presumably, taking limits for large numbers of agents may lead

to results similar to those of the random graph literature. However, this particular literature

has emphasized empirical applications, especially by sociologists, except for the papers by

Park and Newman, referred to above.

Third, with an eye to empirical applications, it needs to be stressed that estimations with

the Frank–Strauss model pose some problems, in that the normalizing constant contains

parameters that also appear in the numerator of the RHS of (35) and need to be treated as

nuisance parameters.

Fourth, Newman (2003) claims that the model is vulnerable to a particular property of

generating too many complete cliques. These contribute to the overall clustering coefficient

but generate unevenness across the graph.
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Fifth, this approach has been quite popular for structuring estimation models associated

with different types of properties of graphs. See, in particular, Anderson, Wasserman and

Crouch (1999), Pattison and Robins (2002), Pattison and Wasserman (2002) and Wasserman

and Robins (2001), who discuss various aspects of the estimation problem. Finally, Morris

(2003) offers a more optimistic assessment of the prospects of applications of exponential

random graph models when the dependence can be thought of as a neighborhood effect.

5 Observable Consequences of Optimizing Behavior in

Networks

I conclude by looking at whether observable consequences of optimizing behavior may serve

as basis for empirical investigations. The modern literature on networks has emphasized

certain stylized facts, such as the degree distributions typically obeying power laws and

topological features conforming to certain predictions. The literature has addressed the

presence such stylized facts by means of models with large graphs. Yet, the empirics in this

area have not received sufficient scrutiny. When they did receive such scrutiny, as in the

case of Faloutsos et al. (1999) by Chen et al. (2002), the empirical case for power laws

considerably weakened, as we discuss below.

5.1 Actions as Outcomes from Games in Finite Networks

We take up the matter of observable consequences of optimizing behavior in networks by

considering first the case of finite graphs. When individuals interact with a finite number

of other individuals, it is natural to consider interdependence of their actions in the light

of game theory. Galeotti et al. (2006)12 offer a systematic framework for the treatment of

strategic interactions when the definition of neighborhood is described either in terms of

full knowledge of a network and other individuals’ positions in it, or of knowledge of the

network’s degree distribution, when the information is incomplete. Their models allow for a

general class of payoffs, which have as special cases practically all previously studied models,
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and for incomplete information about network structures. Their results apply to interactions

between individuals and their immediate, that is direct, neighbors only. They depend crit-

ically upon whether different individuals’ actions are either complements or substitutes, or

are subject to positive or negative externalities from others. Generally, most of their results

assume that different individuals’ degrees are independent. Their results are derived under

the assumption that adding a link to a neighbor who chooses action 0 is payoff equivalent to

not having an additional neighbor. Consequently, their results do not apply to the case when

payoffs are sensitive to average actions of neighbors or to their product. Although the case

of dependence on the average action of neighbors is quite well understood from the social

interactions literature, it would be interesting if one could nest such dependence within the

general theory proposed by this paper.

5.2 Actions in Large Networks

Carlson and Doyle (1999) (see also Newman et al. (2002b)), introduce the concept of “highly

optimized tolerance” as a feature of either natural selection or deliberate engineering design

that provides robust performance in uncertain environments. They argue that the “ubiqui-

tous,” at least in the view of certain scholars, presence of power laws in various measures

associated with networks is indicative of individual optimization. As far as empirically pre-

dictions are concerned, there are very few papers that offer such predictions. Fabrikant et

al. (2002), discussed above, is the only paper that obtains power law distributions from a

model of individual optimization in certain graph measures arising in the Internet topology

precisely when new nodes that randomly appear choose optimally their connections with

an existing network. Barabasi and Albert (1999) also predict a power law for the degree

distribution of the web graph, but theirs is a reduced-form model of preferential attachment.

That is, a new edge is assumed to attach itself to an existing node of degree k in the network

with probability equal to kpk
2E[k]

, where 2E[k] is the mean degree in the network. This implies

a degree distribution given by pk =
2E[k](E[k]+1)
k(k+1)(k+2)

. In the limit of large k this becomes propor-

tional to k−3, that is, it becomes a power law with exponent equal to 3. This can hardly be

a general case, of course.
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The actual empirical research that made power laws prominent as explanations of the

degree distribution of the internet, such as Faloutsos et al. (1999), can easily be criticized,

and has in fact been severely criticized, on a variety of grounds even within the computer

science literature [ see, in particular, Chen et al. (2002) ]. However, the significance of the

findings lie in their having led the networks literature to direct attention to completely dif-

ferent dynamics than was the case before. Prior to these findings, the operating assumption

in the literature was that the Internet obeyed an Erdös – Renyi random graph!

However, as several authors have emphasized, including, in particular, Newman (2003)

and Dorogovtsev and Mendes (2003), different observed networks have sharply different fea-

tures. Therefore, it should be possible, in principle, to test different models of network

formation, that incorporate the specifics of different settings and thus have different impli-

cations in different circumstances. For example, certain kinds of social relationships require

more deliberate effort in order to be maintained than others. Therefore, going back to

behavioral routes is essential for understanding real world networks.

5.3 Implications for Behavioral Modelling

A particularly interesting area that has been revealed by the present essay is the need to

acknowledge the importance of the data generating mechanism when data on social networks

are used for the purpose of econometric analysis. Just as with length biased sampling in

studies with data on unemployed workers, data on individuals’ connections with others must

be treated differently, depending upon whether they have been collected from a random

sample of individuals or from a random sample of connections.

Suppose that we have information, possibly from micro data, on agents’ connections

with other agents. What can we infer about the property of social networks that may be

associated with these data? Is individual information on agents’ connections compatible

with existence of a network linking these agents? Specifically, suppose that we know the

degree sequence for a given population of agents. As Mihail and Vishnoi (2002) discuss,

for a given degree sequence {d1, d2, . . . , dI} to be realizable in the form of a graph, the
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Erdös-Gallai theorem provides a necessary and sufficient condition in the form of
∑k
i=1 di ≤

k(k − 1) +
∑I
i=k+1min{k, di}, 1 ≤ k ≤ I − 1. A related condition applies to the case of

bipartite graphs, which we take up further below.

I sketch briefly a model of social connections that allows for dependence between agents’

connections with others (transitivity and assortativity). Let us consider Brueckner (2003)

who develops a model of how friendship networks form that depends entirely on modelling

an agent’s decisions to contact other individual agents. A variation of the model could easily

lead to transitivity and degree correlation. Suppose, for example, that the probability that

a connection operates between agents i, j ∈ I, is a function of efforts (eij, eji), expended by

individuals i, j respectively, Pij = Pji = P (eij, eji). Efforts are determined so as to maximize

utility in a Nash equilibrium setting. That is, each agent takes the other agent’s effort is

given when choosing her own. Since all efforts are simultaneously determined through a

fixed-point type of argument, the dependence is evident.

Finally, a noteworthy result of the literature on endogenous network formation, which

was discussed in section 2, is that network topologies is very sensitive to parameter values.

This is not so surprising, of course, but does bolster the case for careful behavioral models

of network formation. Generally, we have little experience with measures associated with

networks, other than degree distributions. While fitting power laws is quite popular, careful

behavioral modelling may allow us to estimate important parameters and test hypotheses

about what motivates people in interacting with others. This literature is in its infancy, but

the importance of the use of data has already been demonstrated by Goyal et al. (2003). It

would be interesting to examine some of the neighborhood effects literature, comprehensively

reviewed by Durlauf (2004), in this light. Another avenue is to consider interactions that are

not necessarily of the zero–one type and thus allow for intensity of interactions. Ioannides

and Soetevent (2005) offer a step in that direction.
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Notes

1I am grateful for research support by the National Science Foundation, through grant ACI-9873339,

and by the John D. and Catherine T. MacArthur Foundation, through the Research Network on Social

Interactions and Economic Disparities. Earlier versions of this paper were presented at the Conference

on Networks: Theory and Applications, Industri Utrekning Institut, Vaxholm, Sweden, June 10–12, 2004,

at the MacArthur Research Network meeting, Palo Alto, October 8–9, 2004 and at the Conference on

Economic Theory and Econometrics (CRETE), Ermoupolis, Syros, July 2005. I thank Adriaan Soetevent

and participants at those conferences for their numerous insightful comments. All errors are mine.

2The linear objective that agents seek to minimize is reminiscent of Ottaviano and Thisse (2004), who

recall Weber (1909) and assume that firms locate so as to minimize a weighted sum of distances from sites

where a firm purchases its inputs and sells its outputs.

3In statistical mechanics, the equivalence is exact, with the former being the canonical and the latter the

grand-canonical ensemble, corresponding to the Helmholtz and Gibbs free energies, respectively. These are

generating functions for moments of graph properties over the distribution of graphs and which are related

by a Lagrange transform with respect to the “field” p and the “order parameter” m.

4This is a conjecture of mine, taking off from ibid., p. 2.

5An alternative derivation, due to Mark Newman, of this result is probably more intuitive. Starting from

a connected component of the graph consider adding a new edge that connects with a previously isolated

node of degree k. Doing so will change the number of node on the boundary of the connected component

by −1 + (k − 1) = k − 2. The likelihood that a node is on the boundary of the connected component is

proportional to k : there are k as many edges by which a node of degree k could be connected to the connected

component than there are for a node of degree 1. Therefore, the expected change in the number of nodes

on the boundary when an additional node is connected is given by
∑

i ki(ki − 2)/
∑

i ki. If this quantity is

negative, then the number of nodes on the boundary decreases and the therefore the size of the connected

component will stop growing. If it is positive, on the other hand, then the number of boundary nodes will

grow and the size of the connected component will grow without limit and will be limited by the size of the

network.

6See Cameron and Trivedi (1986) and Johnson et al. (1993), Ch. 5, for extensive treatment of this

subject.

7 It follows readily by integration that the mixed distribution is given by its probability mass function:

Pr[K = k|ϕ, ν] = Γ(k + ν)

Γ(k + 1)Γ(ν)

(
ν

ν + ϕ

)ν (
ϕ

ν + ϕ

)k

. (38)

8 One-on-One with Lois Weisberg. While you may not recognize the face, you’re probably well-acquainted
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with her work. As the Commissioner of Chicago’s Department of Cultural Affairs, Lois Weisberg has launched

the Chicago Cultural Center, created Gallery 37, and brought Chicago the incredibly popular Cows on Parade

exhibit. Such attractions may sound bizarre to the outsider, but don’t be surprised, anything is possible in

the world of Lois Weisberg.

Long before her career in city government, she started a drama troupe, published an underground

newspaper, founded Friends of the Parks, ran the Chicago Council of Lawyers, and managed multiple political

campaigns. Her numerous careers and magnetic personality have resulted in an intricate web of friends and

acquaintances, inspiring a New Yorker article by Malcolm Gladwell, ”Six Degrees of Lois Weisberg”.

In this episode of Chicago Stories, our cameras follow Lois on a day at the office. Then John Callaway

goes one-on-one with Lois, exploring everything from her childhood in Chicago’s Austin neighborhood to

her current role as Chicago’s ”Queen of Culture”.

From: http://www.wttw.com/chicagostories/loisweisberg.html

9This extension utilizes the concept of quasi-equilibrium [ Debreu (1962) ]. Kakade et al. (2004a) show

that under the standard assumptions on preferences (continuity, monotonicity, and quasi-concavity) and

of non-zero endowments, then for any quasi-equilibrium price vector, all consumers have non-zero wealth.

Kakade et al. (2004a) claim that that condition suffices for the results of Arrow–Debreu to hold.

10 See also Ioannides (1990).

11See also Wasserman and Robins (2001) and several other applications along similar lines, especially

Pattison and Wasserman (2002) and Snijders and Duijn (2002). Several papers in Carrington et al. eds.

(2005) are also relevant.

12The assumption of independence among the degrees of neighbors requires that they in effect assume

that the number of agents tends to infinity [ibid. p.11]. However, these authors do not allow formally for

the number of agents to tend to infinity in much of the paper.
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Bramoullé, Yann, and Rachel Kranton (2003), “A Network Model of Public Goods: Ex-

perimentation and Social Learning,” LEERNA–INRA, University of Toulouse, and

Department of Economics, University of Maryland, April.

Butters, Gerard (1977), “Equilibrium Distributions of Sales and Advertising Prices,” Review

of Economic Studies, XLIV, October, 465–491.

Callaway, Duncan, John E. Hopcroft, Jon M. Kleinberg, Mark E. J. Newman, and Steven H.

Strogatz (2001), “Are randomly Grown Graphs really Random?” SFI working paper,

June.

Cameron, A. Colin, and Pravin K. Trivedi (1986), “Econometric Models Based on Count

Data: Comparisons and Applications of Some Estimators and Tests,” Journal of Ap-

plied Econometrics, 1, 1, 29–53.

59



Carrington, Peter J., John Scott, and Stanley Wasserman eds. (2005), Models and Methods

in Social Network Analysis, Cambridge university Press, Cambridge.

Carlson, J. M., and John Doyle (1999), “Highly Optimized Tolerance: A Mechanism for

Power Laws in Designed Systems,” Physical Review E, 60, 2, August, 1412–1427.

Chen, Q., H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger (2002), “The

Origin of Power Laws in Internet Topologies Revisited,” in Proceedings of the 21st

Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE

Computer Science.

Cvetković, Dragǒs M., Michael Doob, and Horst Sachs (1995), Spectra of Graphs: Theory

and Applications, Johann Ambrosius Barth Verlag, Heidelberg, 3rd edition.
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7 APPENDIX

7.1 Analytics of the Modern Approach to Random Graphs with

Arbitrary Degree Distributions

This material is based entirely on the pioneering work by Mark E. J. Newman et al. (2001a;

2001b), which in turn takes off from Molloy and Reed (1995; 1998). Let pk, k = 0, 1, . . . , be

the probability mass function for a discrete random variable K, the probability that an agent

is connected with K = k other agents. In graph-theoretic terms, this is known as the degree

distribution of a node of the graph. We shall refer to pk as the probability distribution of

the number of an agent’s direct contacts as well. The analytics employed by Newman and

associates are made possible by their reliance on generating function techniques [ Wilf (1994)

]. It is particularly convenient to work with the probability generating function, PGF for

short from now on. This is so because many of the operations with random variables involve

sums of independent draws from different probability distributions, for which convolutions

and related operations are handled quite conveniently by of PGFs.

The PGF for probability mass function pk, is defined as [ Newman (2003d); Wilf (1994)

]:

G0(x) =
∞∑
k=0

pkx
k. (39)

As a PGF, G0(x) is assumed to be normalized in the standard fashion,

G0(1) = 1. (40)

A great advantage of working with the PGFs is that they contain all the information nec-

essary to recover to characteristics of the probability mass function. In particular, the

frequency distribution is recovered by differentiation of the PGF:

pk =
1

k!

dkG0

dxk

∣∣∣∣∣
x=0

. (41)

The moments of the distribution function may also be recovered. In particular, we have for

the mean:

z =< K >=
∞∑
k=0

kpk = G′
0(1); (42)
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and for the higher moments, n = 2, . . . ,:

< Kn >=
∞∑
k=0

knpk =

[(
x
d

dx

)n
G0(x)

]
x=1

, n = 1, . . . , . (43)

Alternatively, this formula may be stated as [ Johnson et al. (1993), p. 49 ]:

< Kn >=
∞∑
k=0

knpk =

[
dn

dwn
G0(e

w)

]
w=0

. (44)

In arriving properties of random graphs with arbitrary degree distributions, it is impor-

tant to bear in mind that the following. While pk is the distribution function for the degree

of a randomly chosen agent, the distribution function for the degree of an agent reached

by following a randomly chosen connection in random graph is not pk. For an agent who

k connections, we are k times as likely to arrive at such an agent than we are at an agent

with only one connection. We can apply this idea in order to obtain the properties of the

probability distribution of an agent’s second neighbors, that is, the number of other agents

reached by following a randomly chosen contact to another agent and then considering that

other agent’s other contacts, that is other than the one we arrived on. Following Newman

(2002), p. 7, the distribution function of an agent’s second neighbors that are associated

with a randomly chosen (first) neighbor is given by qk = (k+1)pk+1∑
j
jpj

. Its PGF is given by

G1(x) =
G′

0(x)

z
. The mean of this distribution is given, from (42) by G′

1(1) =
<K2>−<K>

<K>
, and

therefore the mean number of total number of second neighbors is z2 =< K2 > − < K > .

Working in a like manner we have that the average number of neighbors at distance m is

zm = z2
z1
zm−1, with z1 = z, which by iterating yields

zm =
(
z2
z1

)m−1

z1. (45)

We may derive the PGF for the probability distribution of the number of second neighbors.

Under the assumption that conditional ona the number of contacts being equal to k the

number of second neighbors made possible by each contact is independent of the others then

this PGF is given by:
∑
k pk[G1(x)]

k = G0(G1(x)). That of the third-nearest neighbors is

given by: G0(G1(G1(x))), and so on.

The simplicity of the Erdos–Renyi random graph derives from the fact that the degree

distribution is Poisson. Let the parameter of the Poisson distribution be z, which is equal
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to the mean and the variance. In that case, its PGF is given by G0(x) = ez(x−1). It follows

that G0(x) = G1(x). So, for the Poisson graph, the distribution of the number of contacts of

a randomly chosen agent and of the number of her second neighbors is the same, a property

that is responsible for the simplicity of the Poisson random graph.

7.1.1 Emergence of Giant Component

The condition for the emergence of a giant component follows from Equ. (10). That is, zm

diverges if z2 > z1. We may confirm this result by working from a more fundamental level.

Let us consider the distribution of the sizes of connected components in the graph, and let

H1(x) be the generating function for the distribution of the sizes of components that are

reached by following a randomly chosen connection. The chances that a randomly chosen

component contains a loop goes as N−1, which is negligible for large N. Using the powers

property of the PGF we have that H1 must satisfy:

H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]
2 + ..., (46)

from which follows that

H1(x) = xG1(H1(x)). (47)

Using the same logic we may obtain, H0(x) the PGF for the distribution function for the

size of components that are reached by starting from a randomly chosen agent, that is, the

distribution of the sizes of the group of interconnected agents to which a randomly chosen

agent belongs [ Newman (2002), p. 14–17 ]:

H0(x) = xG0(H1(x)). (48)

While in principle, given the functions G0(x) and G1(x) the above functional equations (47

– 48) may be solved, in practice it are typically very hard to solve for the fixed point of (47)

for any given G1(x). It is still possible, however, to evaluate the moments of the distribution

whose PGF is H1(x), of the sizes of groups of interconnected agents which may be reached

by following a randomly chosen connection (edge).
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An interesting application of the PGF is when agents fail to connect. If bk is the prob-

ability that a node of degree k would be operative, the counterparts of PGFs G0(x) and

G1(x), can still be defined, that F0(x) =
∑∞
k=0 pkbkx

k, and F1(x) =
1
z
F ′
0(x). F0(x) is equal to

fraction of all agents who are operative and no longer equal to 1, when x = 1. However, all

subsidiaries PGFs may be defined. Then, if bk = b, the mean size of the cluster of connected

and present vertices is equal to b
[
1 +

bG′
0(1)

1−G′
1(1)

]
, from where the critical value of b follows:

bc =
1

G′
1(1)

.

7.1.2 Sizes of Groups of Interconnected Agents?

How large are the sizes of the sets of interconnected agents? This question may answered by

studying the size of the components of the random graph when there is no giant component

and comparing it with after the giant component has emerged. Let the size of the components

of the random graph below the emergence of (phase transition to) the giant component be

denoted by the random variable S. The mean size of the components of the random graph

below the emergence of (phase transition to) the giant component is given, according to (42)

by < S >= H ′
0(1).

Specifically, the mean group size to which a randomly chosen agent belongs is given by

H ′
0(1), which is obtained by differentiating (48), evaluating it at x = 1, and using (47) to

obtain H ′
1(1) and the fact that all distributions are normalized so that their values at x = 1

are 1. We thus have:

< S >= 1 +
G′

0(1)

1−G′
1(1)

= 1 +
z21

z1 − z2
. (49)

We applied this formula above to the case of the negative binomial distribution, for which

< S >=
1− 1

ν
ϕ

1−(1+ 1
ν )ϕ

. The denominator is positive, below the emergence of the giant component,

and therefore the numerator, which is larger, as well.

It is interesting to know what the distribution of the sizes of groups of interconnected

agents other than the giant one looks like, once the giant component has emerged. In that

case, the fraction of agents not in the giant component is given by H0(1), which in view of
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(48) and (47) is:

S∞ = 1−G0(υ), (50)

where υ ≡ H1(1) is the unique fixed point of υ = G1(υ), the special case of (47), for x = 1.

The mean non-giant component is given by:

< S >= 1 +
zυ2

(1− S∞)(1−G′
1(υ)

. (51)

This becomes identical to (49), the mean component size before the appearance of the giant

component.

7.2 The Case of Directed Graphs

Directed graph models may accommodate settings where the interaction effects are asym-

metric and depend on the direction of the interaction. E. g., consider a setting where an

individual trades by selling to those she is connected with, that is through her “out-edges,”

and by buying from those who are connected with her, that is through her “in-edges.” A

particularly simple way to motivate such a model is by means of trade in differentiated

goods. Desirability of product variety motivates trade. Assuming monopolistic competition,

the good price is constant and the market clears through the number of varieties. However,

the impact of the goods she buys on her welfare is different from that of the goods she sells.

Therefore, an individual’s welfare reflects the number of his contacts. We take this up in the

further detail below. Another instance of a directional interaction effect is when individuals

assign stereotypes to groups of other individuals. This is the case of whites assigning stigma

to blacks [ Loury (2002) ]. Stigma can persist when the experiences and information of

individuals cannot falsify the stereotypes they hold of others. As Durlauf (2003) argues, this

may in turn be due to lack of information due to lack of interaction with the groups that

are stigmatized.

We allow for general stochastic dependence between the number of in-edges and out-

edges, that is we posit a joint in- and out-degree distribution, for each individual (site).

That is, let pjk for site i be the probability that j other sites are connected with site i, thus

allowing agents in j sites to sell to agents in site i, and that agents in site i are connected with
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k other sites, thus allowing agents in site i to sell to agents in k other sites. In other words,

we pose a joint probability function for a node to have in-degree j and out-degree k that is

given by pjk. To this joint probability mass function there corresponds a joint probability

generating function, JPGF for short, defined as:

B(x, y) =
∞∑

j,k=0

pjkx
jyk. (52)

B(x, y) must satisfy the normalization condition B(1, 1) = 1. From the JPGF we may define

single-argument generating functions G0 and G1, respectively for the number of out-going

connections leaving a randomly chosen agent, G0, and for the number of out-going connec-

tions leaving the agents reached by following a randomly chosen out-connection, G1.We may

also define another set of single-argument generating functions F0 and F1, for the number

of in-going connections arriving at a randomly chosen agent and for the number of in-going

connections arriving at the agents reached by following a randomly chosen in-connection,

respectively. These single-argument PGFs are defined in terms of the JPGF B, introduced

in (52), as follows:

G0(y) = B(1, y), G1(y) =
1
z
∂
∂x
B
∣∣∣
x=1

,

F0(x) = B(x, 1), F1(x) =
1
z
∂
∂y
B
∣∣∣
y=1

,
(53)

where z denote the common for both kinds of degrees mean degree

z =
∂

∂x
B
∣∣∣∣∣
x=1,y=1

=
∂

∂y
B
∣∣∣∣∣
x=1,y=1

. (54)

This obviously follows form the fact that what are in-edges for some nodes is out-edges for

others. We note that whereas this is a consistency condition for the JPGF, it lends itself

as an equilibrium condition of the economic model below, when different individuals make

decisions independently from one another.

7.2.1 An Example with the Number of In-edges and Out-edges Being Depen-

dent

We explore an example with a bivariate Poisson distribution, whose joint probability function

is rather unwieldy, but its JPGF is quite convenient [ Johnson et al. (1997), p. 124–126
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]. Let J and K denote two discrete-valued dependent random variables that correspond

to an agent’s in-degree and out-degree, respectively. These random variables are defined

in terms of three independent Poisson random variables, L′, L′′, L′′′, whose parameters are

respectively, ψ1, ψ2, ϕ12, as follows:

J = L′ + L′′′, K = L′′ + L′′′. (55)

We interpret the component in common as a number of connections that are both in- and

out-connections. The JPGF for the bivariate Poisson for random variables (J,K) is given

by [ ibid. ]:

B(x, y) = exp[ϕ1(x− 1) + ϕ2(y − 1) + ϕ12(x− 1)(y − 1)], (56)

where ϕ1 = ψ1 + ϕ12, ϕ2 = ψ2 + ϕ12. Note that the consistency condition (54) requires that

ψ1 = ψ2, which will be invoked as an equilibrium condition in the model below.

Here the distribution of in-connections for a typical agent is the marginal of B with respect

to J, a Poisson distribution with parameter ϕ1, F0(x) = exp[ϕ1(x− 1)], and the distribution

of out-connections for a typical agent is the marginal of B with respect to K, a Poisson

distribution with parameter ϕ2, G0(x) = exp[ϕ2(y − 1)]. This distribution is particularly

interesting because its conditional distributions are in the form of the sum of two mutually

independent random variables, one of which is Poisson and the other binomial. That is, the

distribution of K conditional on J = j is the same of the sum of L′′, which is Poisson with

parameter ψ2, and of L′′′ conditional on J = j, which is binomial with parameters (j, ϕ12
ψ1+ϕ12

).

Its conditional mean and variance are given by:

< K|J = j >= ψ2 +
ϕ12

ψ1 + ϕ12

j, Var(K|J = j) = ψ2 +
ψ1ϕ12

(ψ1 + ϕ12)2
j. (57)

Furthermore, the joint distribution of in- and out-degrees may be mixed with respect to ϕ12,

while ϕ1, ϕ2 are held constant (and ψ1, ψ2 vary with ϕ12 ).

7.2.2 Emergence of a Giant Component

The concept of the giant component continues to apply to directed graphs but requires

some refinement. For directed graphs, there exist four types of components: in-components,
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out-components, strongly connected components and weakly connected components.. Given a

node a, the in-component is the set of other nodes from which a can be reached; the out-

component is the set of other nodes which can be reached from a; the strongly connected

component is the set of other nodes from which a can be reached and which can be reached

from a; the weakly connected component is the set of other nodes that can be reached from a

ignoring the directed nature of the edges altogether. It turns out that the giant in-component

and the giant out-component form at the same time, defined respectively by F ′
1(1) = 1, and

G′
1(1) = 1, where functions F ′

1 and G
′
1 are as defined in (53). This occurs at the point where

the giant strongly connected component also appears. It size is given by:

Ss = 1− B(u, 1)− B(1, υ) + B(u, υ), (58)

where u, υ are defined as the solutions of : u = F1(u, ), υ = G1(υ).

Kovalenko (1975) provides a rare example of a random graph model where the edge

probabilities are not equal. Specifically, Kovalenko considers random graphs where an edge

between nodes i and j may occur with the probability pij independently of whatever other

edges exist. These probabilities may depend on n. He assumes that the probability tends to

0 as n → ∞ that there are no edges leading out of every node and that there are no edges

leading into every node. Under some additional limiting assumptions about the probability

structure, he shows that in the limit the random graph behaves as follows: there is a subgraph

A1 of in-isolated nodes whose order follows asymptotically a Poisson law with parameter λ1;

there is a subgraph A2 of out-isolated nodes whose order follows asymptotically a Poisson

law with parameter λ2 ; all remaining nodes form a connected subgraph A′.. The orders

of A1 and A2 are asymptotically independent and their parameters are given in terms of

the limit of the probability structure. Relative to any node in A′, A1 may be defined as an

in-component and A2 may be defined as an out-component.

7.2.3 Bipartite Graphs and their Application to Multilateral Matching

A graph is bipartite if its nodes may be partitioned into two nonintersecting sets and all of

its edges connect nodes in one partition to nodes in the other partition. Bipartite graphs are
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convenient models of settings where agents belong to two different but readily identifiable

groups, into which the entire group of interacting agents may be partitioned. E.g., consider

the set made up of movies and actors who played in them. That is, let M the set of movies

and N the set of actors. Or, let M be the set of firms looking for workers, and N the set of

workers looking for firms. Firms search for workers and workers search for firms. The event

that a worker and a firm that have established contact for the purpose of employment may

be modelled by means of a edge between a node in the set N and a node in the set M. Let

the cardinalities of those sets be M and N, respectively: M = |M|, N = |N |.

Let pj denote the probability mass function for the random variable J that denotes the

number of connections a worker has with different firms. Under the assumption that there

is at most one connection with each firm, J may take values j = 1, . . . ,M. Let f0(x) be

the PGF of pj. Let qk denote the probability mass function for the random variable K that

denotes the number of connections a firm has with workers. Under the assumption that each

firm has at most one connection with each worker, K may take values k = 1, . . . , N. Let

g0(x) be the PGF of qk. The PGFs f0 and g0 satisfy the standard normalization conditions

f0(1) = 1, g0(1) = 1. The means of the respective distributions are given by, respectively:

f0(1)
′ = µ, the mean number of firms a worker is in contact with, and g0(1)

′ = ν, the mean

number of workers a firm is in contact with.

Next we establish the probability mass functions of the degree distributions for the social

networks describing connections among workers who are in contact with the same firm.

Individuals who have in common the experience of having been in contact with the same

firm may be considered as a social group. Similarly, firms who have in common the experience

of having been in contact with the same individual may be considered as a social group. The

wider the spread of information about a particular firm among individuals, or respectively,

about a particular individual among firms, the more informed the job market is.

Consider a contact between a firm and a worker that is chosen randomly from among

all such contacts, that is, from among the edges of the bipartite graph describing such

connections. Now, consider the respective firm and worker linked by such a contact. Let

the PGF of the distribution of the number of other firms that a worker thus chosen is also
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in contact with be f1(x), and of the number of other workers that a firm thus chosen has

established contact with be g1(x). From Newman et al. (2001), p. 11, these PGFs are given

by, respectively:

f1(x) =
1

µ
f ′
0(x), g1(x) =

1

ν
g′0(x). (59)

Consider the distribution function of the number of other workers that are in contact with

the same firms as a randomly chosen worker. These workers share in common information

about the same firms. Its PGF is given by: G0(x) = f0(g1(x)), [ ibid. ]. That is, this is

the PGF for the degree distribution for a graph defined as having as nodes all workers and

edges connecting pairs of workers who are in contact with the same firms. In graph-theoretic

terms, this is the distribution of the number of first neighbors, when two workers are assumed

to be neighbors if they are in contact with the same firm. Working in like manner, for a

randomly chosen contact between a firm and a worker, consider the worker thus chosen:

the distribution of the number of other workers that are in contact with the same firm as a

worker thus chosen is given by: G1(x) = f1(g1(x)). The PGF for the distribution function of

the number of second neighbors is given by G0(G1(x)).

To give an example, consider that the number of firms each worker has a contact with

has a Poisson distribution with parameter µ, and that the number of workers each firm

has contacts with has a Poisson distribution with parameter ν. Thus f0(x) = eµ(x−1) =

f ′
1(x), g0(x) = eν(x−1) = g′1(x). The PGF for the distribution function of the number of other

workers who are in contact with same firm as a randomly chosen worker is G0(x) = G1(x) =

exp
[
µ
(
eν(x−1) − 1

)]
. The average number of first neighbors, the average number of other

workers that are in contact with the firms with which a worker is also in contact, is given

G′
0(1) = µν. The average number of second neighbors is: d

dx
G0(G1(x))

∣∣∣
x=1

= G′
0(1)G

′
1(1) =

f ′
0(1)f

′
1(1)[g

′(1)]2 = (µν)2.

We shall postpone, for the time being, defining the counterparts here for the set of

concepts pertaining to giant components and the like as those above and concentrate instead

on an application of the model to multilateral search.

We consider next the distribution function for the number of other firms that are in
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contact with the same set of workers as a randomly chosen firm. Using the same logic as

for the derivation of the PGF of the distribution function of the number of other workers

that are in contact with the same firm as a randomly chosen worker G0(x), the latter’s PGF

is obtained in a similar manner: F0(x) = g0(f1(x)). From this by applying (41), we can in

principle recover the frequency distribution. For the special case when both the number of

firms each worker has a contact with and the number of workers each firm has a contact have

Poisson distributions with parameters µ and ν, respectively, then F0(x) = exp
[
νeµ(x−1) − 1

]
.

For this distribution function, we have that the frequency distribution, that is the probability

for a firm that j other firms are also in contact with the same workers that it is in contact

with is given by [ Newman et al. (2001a) ]:

rj =
µj

j!
eν(e

−µ−1)
j∑
i=1

 j

i


[
νe−µ

]i
, (60)

where the coefficients

 j

i

 are the Stirling numbers of the second kind:

 j

i

 =
i∑

r=1

(−1)i−r

r!(i− r)!
rj.

The simulations reported in ibid., suggest that this frequency distribution is bimodal.

Although the degree distribution functions for contacts of firms with workers and of

workers with firms are specified independently, they have to be compatible with one another.

That is, a contact by a firm m with a worker n would be enumerated in both the degree

distribution for the firm and for the worker. Compatibility with respect to the total count,

in particular, requires that the total number of contacts when computed as the number of

workers, N, times the average number of contacts with firms per worker, µ, be equal to

the number of contacts computed as the number of firms, M, times the average number of

workers each firm is in contact with, ν:

Nµ =Mν. (61)

This condition should be arrived at as an equilibrium condition when we motivate search by

firms for workers or by workers for firms.
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