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                                                                     Abstract                                   

While an understanding of spatial spillovers and feedbacks in housing markets could 
provide valuable information for location decisions, little known research has examined 
this issue for the U.S. Metropolitan Statistical Areas (MSAs). Also, it is unknown 
whether there can be differences in the spatial effects before and after a major housing 
“bust”. In this paper we examine spatial effects in house price dynamics. Using panel 
data from 363 US MSAs for 1996 to 2013, we find that there are significant spatial 
diffusion patterns in the growth rates of urban house prices. Lagged price changes of 
neighboring areas show greater effects after the 2007-08 housing crash than over the 
entire sample period of 1996-2013. In general, the findings are robust to controlling for 
potential endogeneity, and for various spatial weights specifications (including contiguity 
weights and migration flows). These results underscore the importance of considering 
spatial spillovers in MSA-level studies of housing price growth. 
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1. Introduction  

Spatial effects in economic phenomena have recently attracted particular attention 

by economists. For instance, during periods of housing booms, house prices in 

metropolitan areas in the Northeast of the U.S. show distinct patterns as they appreciated 

at similarly high rates, while house prices in metropolitan areas in the Midwest did not 

experience comparably high appreciation rates during those same periods. Thus, house 

price dynamics might have spatial features. Spatial features of the housing bust 

associated with the Great Recession of 2007-2009 are currently receiving particular 

attention. This paper looks empirically at such spatial aspects in house price dynamics in 

more detail and by utilizing data that include several housing market booms and busts 

including the Great Recession.  

A contribution of this paper is our focus on spatial effects in assessing the impacts 

of lagged Metropolitan Statistical Area (MSA for short) house price growth. Another 

contribution is our use of MSA to MSA migration panel data to assess the importance of 

other MSAs’ house price growth on a particular MSA’s contemporaneous house price 

growth. We also demonstrate that in the periods following the Great Recession of 2007-

09, the spatial effects appear to be stronger than before the crisis. These spatial spillover 

results can have important implications for both residential and business location 

decisions. 

While our focus here is on MSA level house price growth, economists have 

studied the role of space in house price dynamics at various levels of aggregation. Some 

studies look at spatial effects at the level of submarkets within a particular MSA. The fact 

that different urban neighborhoods are often developed at the same time, dwellings in 
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them may share similar structural characteristics and neighborhoods may offer similar 

amenities suggest that house prices may react similarly to exogenous shocks. Basu and 

Thibodeau (1998) confirm this intuition by using data from submarkets within 

metropolitan Dallas. Also working at a similar local level, Clapp and Tirtiroglu (1994) 

estimate a spatial diffusion process in house price for towns in the Hartford, CT, MSA. 

They find that lagged house price changes in a submarket affect the current house price 

of a contiguous submarket positively and more strongly than the lagged house price 

changes for noncontiguous submarkets. However, such evidence of spatial effects at the 

submarket level of aggregation may be MSA-specific, and the conclusions for a single 

MSA may not necessarily be valid for other MSAs. Further, there could be spatial effects 

between submarkets that are geographically contiguous and belong to the same economic 

area and housing market, but not in the same MSA. 

A second level of aggregation at which economists have examined spatial effects 

is at the US Census division. Pollakowski and Ray (1997) find that although house prices 

in one division are affected by lagged house prices in other divisions, there is no clear 

spatial diffusion pattern that describes such processes. That is, lagged house price 

changes of adjacent Census divisions do not provide greater explanatory power in 

explaining current house prices than those in non-adjacent divisions. However, when 

those authors look at house prices within the greater New York’s primary metropolitan 

statistical areas (PMSAs), they find evidence of spatial pattern consistent with that by 

Clapp and Tirtiroglu (1994).  

Given mixed results from previous research on spatial diffusion patterns in house 

prices at different aggregation levels, this paper has the following aims; one, to examine 
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house price interactions at the MSA level of aggregation across the entire continental 

U.S;  two, to bring geographic and economic distances into the analysis in addition to 

adjacency as measures of proximity.  

The paper employs the consolidated house price index, which has been published 

(since March 1996) by the Office of Federal Housing Enterprise Oversight (OFHEO). 

The data cover almost 400 MSAs across the entire US, with data for all MSA’s going 

back to 1995 (Calhoun, 1996). We use these data along with appropriate geographic 

information to study house price dynamics across the entire U.S. at the MSA level of 

aggregation and to compare the results with other levels of aggregation.  

The organization of this paper is as follows: section 2 reviews the existing 

literature; section 3 introduces the econometric models used in this study; section 4 

describes the data and methodology; section 5 presents the results and impulse response 

diagnostics, and section 6 concludes. 

2. Literature Review 

The modern view of housing emphasizes its role as an asset in household 

portfolios (Henderson and Ioannides, 1983). Economists predict that asset prices in 

informationally efficient markets react rapidly to new information. Over the last twenty 

years, however, empirical studies have established that this might not be the case for 

housing markets (Rayburn et al., 1987; Guntermann and Norrbin, 1991). Economists 

have come to believe that households may be backward-looking in housing markets. 

Therefore, past house price changes can be used to explain future prices changes. Case 

and Shiller (1989) use their own house price indices for four major cities and find that 
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one-year house price lag in a city is statistically and economically significant in 

forecasting that city’s current house price.  

Informational inefficiency in housing markets, as exhibited by temporal and 

spatial persistence in house prices, is not surprising when one considers the potential 

frictions affecting real estate markets. For instance, real estate markets do not clear 

immediately after a shock to the economy.  The process of matching buyers with sellers 

of existing houses takes time.  It also takes time for developers to bring new houses to the 

market, after an increase in demand, and to liquidate inventories when demand weakens. 

Speculative inventory holding is very costly. Transaction costs in housing markets are 

also higher than other asset markets. Case et al. (2005) find that selling costs, such as five 

to six percent brokerage fees nominally charged in the US, combine with the physical and 

the psychological costs of moving (e.g. moving across neighborhoods and changing 

schools) to generate substantial transaction costs. Such costs limit arbitrage opportunities 

for rational investors, and thus lead to pricing inefficiencies.  

Brady (2014) reviews some recent studies on spatial aspects of housing prices that 

have incorporated Vector Autoregressions (VAR) as an approach to model simultaneity.4 

In earlier work, Anselin (2001) and Pace et al. (1998) introduce general methodologies 

for incorporating the time dimension in spatial models.5 These papers followed Clapp 

and Tirtiroglu (1994), which was one of the pioneering works on spatial effects in house 

price dynamics that we referred to earlier, using house price data from Hartford, CT. 

                                                 
4 These include Pesaran and Chudik (2010), Holly et al.  (2011), Beenstock and Felsenstein (2007), and 
Kuethe and Pede (2011).  
5 One advantage of our approach over the approaches of Pace et al. (1998), Anselin (2001), and others who 
utilize a VAR approach is that ours is well-suited for a study where contemporaneous spatial lags are not 
present. Our approach is also parsimonious, which is helpful in estimating versions of the model with time 
lags that contain several types of spatial lags. 
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These authors regress excess returns, defined as the difference between the return of a 

submarket within an MSA and the return at the MSA level, on the lagged excess returns 

of a group of neighboring towns and on a “control group” of non-neighboring towns. The 

authors find that estimated coefficients were significant for excess returns in neighboring 

towns, but insignificant for non-neighboring towns. Their results suggest that house price 

diffusion patterns exist within an MSA and are consistent with one form of a positive 

feedback hypothesis, where individuals would be expected to place more weight on past 

price changes in their own and neighboring submarkets and less weight on those further 

away.  

Pollakowski and Ray (1997) also examine house price spatial diffusion patterns, 

but at a much higher aggregation level. Using vector autoregressive models with 

quarterly log house price changes from the nine U.S. Census divisions, these authors are 

unable to identify a clear spatial diffusion pattern. Past growth rates in neighboring 

Census divisions were correlated with a particular division’s current growth rates for 

some divisions. However, upon examining neighboring PMSAs within the greater New 

York CMSA, like Clapp and Tirtiroglu (1994), the authors find evidence in support of a 

positive feedback hypothesis.  Shocks in housing prices in one metropolitan area are 

likely to Granger-cause subsequent shocks in housing prices in other metropolitan areas.  

More recently, Brady (2008), using spatial impulse response function and VAR 

models, finds that spatial autocorrelations in house prices across counties in California 

are highly persistent over time. The average housing price in a Californian county is 

positively affected by bordering counties for up to 30 months. Brady (2011) examines 

how fast and how long a change in housing prices in one region affect its neighbors. 
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Using an impulse response function with a panel of California counties, he finds that the 

diffusion of regional housing prices across space lasts up to two and half years. Brady 

(2014) estimates the spatial diffusion of housing prices across U.S. states over 1975- 

2011 using a single equation spatial autoregressive model. He shows that for the 1975 to 

2011 period spatial diffusion of housing prices is statistically significant and persistent 

across US states and so is in the four US Census regions for the United States. He shows 

that the persistence of spatial diffusion may be more pronounced after 1999 than before. 

Holly et al. (2010) also find spatial correlations in both housing prices across the 

eight Bureau of Economic Analysis (BEA) regions and housing prices across the 

contiguous states within the U.S. They find evidence of house price departures from the 

long run growth rates for markets in California, Massachusetts, New York, and 

Washington, even after accounting for spatial effects between states. Holly et al. (2011) 

work with data for the UK, but also allow for spillovers from the US economy (to express 

financial markets interdependence), in order to explain the spatial and temporal diffusion 

of shocks in real house prices within the UK economy at the level of regions. They model 

shocks that involve a region specific and a spatial effect. By focusing on London they 

allow for lagged effects to echo back to London, which in turn is influenced by 

international economic conditions via its link to New York and other financial centers. 

They show that New York house prices have a direct effect on London house prices. 

Their use of generalized spatio-temporal impulse responses allows them to highlight the 

diffusion of shocks both over time and over space. 

An interesting recent development in this literature is the utilization of data on 

individual transactions. DeFusco et al. (2013) use micro data on the complete set of 
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housing transactions between 1993 and 2009 in 99 US metropolitan areas to investigate 

contagion in the last housing cycle. By defining contagion as the price correlation 

between two different housing markets following a shock to one market that is above and 

beyond that which can be justified by common aggregate trends, their estimations allow 

them to determine the timing of local housing booms in a non-ad hoc way. The evidence 

for contagion is strong during the boom but not the bust phase of the cycle. They show 

that these effects are due to interactions between closest neighboring metropolitan areas, 

with the price elasticity ranging from 0.10 to 0.27. The impact of larger markets on 

smaller markets imply greater elasticities. They show local fundamentals and 

expectations of future fundamentals are limited in accounting for their estimated effects, 

suggesting a potential role for non-rational forces.  

Bayer et al. (2014) utilize data from a detailed register of housing transactions in 

the greater Los Angeles metropolitan Area from 1988 to 2012. Properties in their data set 

are fully geocoded, which allows those authors to readily merge with 2011 county tax 

assessor data and obtain information on property attributes. For some of the data, 

additional information may be obtained from the Home Mortgage Disclosure Act 

(HMDA) forms on purchaser/borrower income and race. Bayer et al. find evidence of 

strong spillovers within neighborhoods: homeowners were much more likely to speculate 

both after a neighbor had successfully “flipped” a house, and when a house had been 

successfully flipped in their neighborhood. Social contagion appears to be at work and to 

involve amateur investors, whose share of the market reached a record high at the same 

time as the market reached its peak, with equity losses following in the ensuing crash. 
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3. Econometric Models 

Following the literature, we postulate that housing prices (in our case, defined at the 

MSA level) in a given period depend on lagged housing prices and MSA specific effects. 

By differencing the housing prices, we are left with the annual house price growth rate of 

MSAi at year t6 as a dependent variable. We utilize this measure to calculate one-year 

through four-year lagged house prices growth of MSAi in year t. Similarly, we calculate 

the one-year, two-year, three-year, and four-year time lags of the spatial lags of the 

dependent variable. As we explain below, these spatial lags are obtained using the 

contiguity neighbor weights, the inverse distance weights for several distance intervals, 

and the migration weights. The results presented in the tables are for the growth-rate 

regressions, the growth-rate regressions with the spatial lags for the contiguous weights, 

and the growth rate regressions with the MSA to MSA migration weights. While we also 

estimate models for the growth rates with inverse distance weights, due to potential 

multicollinearity concerns between the inverse distance weighted house price lags for 

various intervals that lead to many insignificant t-statistics, and these results are available 

from the authors upon request. 

 

The growth rate of house prices in MSAi is defined in the standard fashion as the 

difference in logs, Gi,t = log ( HPI i,t )  –  log ( HPI i,t-1 ). We compute Gi,t by using values 

                                                 
6 The MSA fixed effects would then drop out, although for completeness we present two sets of results – 
one with and one without MSA fixed effects. 
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for each year’s first quarter.7 Such differencing eliminates unobserved additive 

heterogeneity at the log house price levels in the form of MSA specific fixed effects.  

Baseline Model: Own-Lag Effects 

We start with an autoregressive model up to order 4, AR(4), for the house price 

annual growth rates as a baseline for comparison against spatial effects: 

Gi,t = β 0 + β 1Gi,t-1 + β 2Gi,t-2 + β 3Gi,t-3 + β 4Gi,t-4 + εi,t ,                    (1) 

where εi,t , the error term, may include MSA-specific time-invariant fixed effects. Our 

choice of 4-year lags is based on the literature discussed above, where other researchers 

have found significant correlation between lagged and current growth-rates. In our 

estimation of model (1), all four lags are statistically significant. Our results based on  the 

Akaike Information Criterion (AIC) imply the four lag specification is preferred over 

models with additional lags.8 

Incorporating Geography into the Model by Means of Cross-Lag Effects 

We control for spatial effects in several ways. First, we add as a regressor in the 

r.h.s. of (1) the average annual growth rate in the HPI of all MSAs that border MSAi at 

                                                 
7 We think this choice rather than the fourth quarter is more appropriate in order to be 
close to individuals’ circumstances, given the fact that the IRS-based data that we use for 
the migration weights originate in income tax returns.   
8 One could argue that the lagged dependent variables can give rise to time series autocorrelation. It is for 
this reason that we have utilized the Heteroskedasticity Autocorrelation Consistent (HAC) estimator.  
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time period t, Ai,t, and up to four of its lags.9  That is, we estimate dynamic fixed effect 

spatial autoregressive models up to order 4, SAR(4):10 

Gi,t = η  + β φ


i,t + λ δ


i,t + εi,t ,             (2) 

where η  is a constant intercept, φ


i,t is a vector of four own-lag growth rates, δ


i,t is a 

vector of the four lags of the mean annual growth rate of all MSAs that border MSAi, and 

β  and λ are the respective vectors of parameters. 

Second, we introduce physical distances between MSAs in order to examine 

whether spatial dependence in MSA house prices is related to distance among them. For 

each MSAi, we group the remaining 362 MSAs into 5 groups. Group 1 includes all MSAs 

that are less than 100 km away from MSAi; Group 2 includes all MSAs that are between 

100 km and under 200 km from MSAi; and Groups 3, 4, and 5 include MSAs that lie 

within 200 km to 350 km, 350 km to 500 km, and 500 km to 1000 km from MSAi, 

respectively. We calculate the inverse distance weighted (IDW) growth rates for each of 

the 5 intervals for each MSAi at time period t. The use of inverse distance weights 

imposes a particular spatial attenuation of interactions. The lagged IDW growth rates for 

each of the 6 intervals are then incorporated into (1), such that we have, 

Gi,t = η  + β φ


 i,t + λ δ


i,t + µ ω


 i,t + εi,t ,         (3) 

where ω


 i,t is a vector of the four lags for the annual inverse distance weighted growth 

rate of all MSAs in each of the 5 distance intervals relative to MSA i. 

                                                 
9 Using adjacency as a measure of geographical proximity has also been used in previous literature. 
Dobkins and Ioannides (2001) use adjacency for comparing MSA population growth rates. Pollakowski 
and Ray (1997) and Holly et al. (2011) use it at the regional and the state level, respectively. 
10 Anselin (2001) and Pace et al.  (1998) provide overviews of space-time models. 



11 | P a g e 
 

 Finally, to proxy for economic interaction we add an additional set of spatial 

weights based on migration data. Specifically, we denote the ith element at time t of α


i,t 

 as Σj ψ ij,t Gj,t , where ψjj,t =0, and i,j=1,2,…,363. ψ ij,t is the year t total migration – the 

sum of migration inflows and outflows – between MSAj and MSAi. We then modify 

equation (3) to incorporate the time lags of the migration weighted housing price growth 

rates: 

Gi,t = η  + β φ


 i,t + λ δ


i,t + µ ω


 i,t +  γα


i,t + εi,t ,        (4) 

where γ is a vector of parameters. We estimate this specification for the time period 

1996-2011, because those are the only years covered by the migration data set. 

 Given the potential for multicolinearity among the inverse distance spatial lags 

(since one might speculate greater migration flows occur between larger cities that are far 

away), we estimate a variation of equation (4) by dropping the term µ ω


 i,t. The resulting  

equation includes only spatial lags for contiguous neighbors and migration spatial lags: 

Gi,t = η  + β φ


 i,t + λ δ


i,t  +  γα


i,t  + εi,t .        (5) 

MSA-specific effects 

The housing literature suggests that it may be important to consider MSA-specific 

effects in house prices dynamics. We recall the maxim “location-location-location” in 

connection with real estate and apply it at the MSA level. Indeed, intuitively, growth 

rates in house prices in MSA’s in a relatively warm state such as California could have 

different fundamental characteristics than houses in colder MSA’s in New England. In 

addition, Gyourko et al. (2013) identify “superstar cities,” defined as cities with 
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extraordinarily high growth in real income and fixed housing supply, whose housing 

prices exhibit greater volatility and faster appreciation rates. Thus, there may well be 

unobservable idiosyncratic differences among different MSAs. Further, results reported 

in Thanapisitikul (2008) suggest widely varying patterns in boom and bust periods of the 

housing price cycle across MSAs.  In addition to estimating these models without fixed 

effects, we also adopt fixed effects in the stochastic structure of Equations (2), (3), and 

(4), because such effects could capture MSA-specific patterns that may be correlated with 

other regressors.  

Since the own-lags of the dependent variable are included as regressors, our 

model is susceptible to endogeneity bias. This is in principle quite important, especially 

because we use annual growth. Such bias may be due to a common contemporaneous 

component, which may arise from an exogenous shock in the previous period. Following 

Arellano and Bond (1991) and Glaeser and Gyourko (2006), we use the Arellano-Bond 

estimator. Briefly, this procedure utilizes the generalized method of moments (GMM) to 

instrument with the dependent variable’s own lag, Gi,t-1, with Gi,t-2. This process is 

repeated for the dependent variable’s own second, third, and fourth lags. That is, Gi,t-2 is 

instrumented by Gi,t-3, Gi,t-3 by Gi,t-4, and Gi,t-4 by Gi,t-5. The same procedure is repeated for 

the possibly endogenous spatial regressors.  

It is important to note that the Arellano-Bond estimator11, like all instrumental 

estimation methods, hinges on two assumptions. First, Gi,t-h must be correlated with    

                                                 
11 As described by Arellano and Bover  (1995) and Blundell and Bond  (1998), lagged levels are not good 
instruments for first differenced variables. While they suggested using lagged differences and lagged 
levels, we chose to use the lagged differences of the housing price indexes and lagged differences of all the 
lagged spatial variables. Given the large number of instruments with lags of all the lagged differences, and 
the documented poor performance of the levels as instruments, we chose this approach rather than also 
including lagged levels. 
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Gi,t-h-1, where h denotes a lag. Second, the instrument, Gi,t-h-1, must be uncorrelated with 

the model’s error term.12 One potential problem that may arise is when the instruments of 

the spatial regressors are correlated with the time lag of the dependent variable, which 

could result in multicollinearity. As discussed in Brady (2008), this issue is less of a 

concern when there is high variability in the dependent variable. Since we use panel data 

from 363 MSAs, in which the cross-sectional variability in house price growth rates is 

high, this helps mitigate the problem of multicollinearity in the instruments and in the 

time lags of the dependent variable. 

4. Data Description13 

Our rich data set, which results from merging the house price data with contextual 

information from a number of different sources including three different measures of 

spatial proximity, is a distinct contribution of the present paper. 

4.1 House Price Data 

House price data are taken from the Office of Federal Housing Enterprise 

Oversight (OFHEO). We define a panel dataset that is comprised of annual (based on 1st 

quarter) house price indices from 363 MSAs within the continental U.S. The panel data 

run from the first quarter of 1975 until the first quarter of 2013 and they were first 

published in March of 1996. However, because OFHEO requires that an MSA must have 

at least 1,000 total transactions before the MSA’s Housing Price Index (HPI) may be 

published, the panel is unbalanced, with only roughly half of the 363 MSAs have HPIs 

                                                 
12 We examined the correlation between the instruments and the error term for the AB estimation of 
equation (1) below. The correlations range from 5.79x10^-19 to 1.07x10^-16. These correlations appear 
sufficiently small that we are confident the errors are uncorrelated with the instruments. 
13 See Table 1 for the complete list of MSAs included in this study, which are based on the U.S. Census 
Bureau’s 2009 MSA definitions; and the summary statistics. 
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that begin in 1975. We are able to obtain a balanced panel beginning in 1995 through 

2013.14 We use the first quarter data from each year during this period to construct the 

balanced panel. A map of the U.S. and all of the 363 MSA’s is in Figure 1, and a list of 

the 363 MSA’s is in Table 1.15  

4.2 Spatial Data 

We use three measures of spatial proximity. The first is a contiguity or adjacency 

matrix, a 363x363 matrix W; the second is a 363x363 matrix of physical distances 

between metro areas, D.16 The third, also a 363x363 time-varying matrix, ψ t, is a set of 

migration weights defined by using migration data. This migration data was originally 

collected by the Internal Revenue Service (IRS). We use a compiled version of the IRS 

data that we obtained from Telestrian.com. 

 Regarding the contiguity weights, any pair of MSAs that border one another, the 

value “1” is entered into W, otherwise the default value is “0”. W is normalized such that 

the sum of each row equals one.  

For the distance matrix, the U.S. Census Bureau provides centroids (reference 

points at the center of each polygon) for all of the 363 MSAs. The physical distances, 

measured in kilometers, between any pair of centroids define the entries in D.  

                                                 
14 As we detail further below, this conforms to the availability of the migration data, 
which is based on the US Internal Revenue Service information. 
15 Note that since we focus on the continental U.S., Figure 1 includes some MSA’s that we did not include 
in our sample, such as those in Alaska, Hawaii, and Puerto Rico. Also, Figure 1 also shows Micropolitan 
Statistical Areas, but we restrict our attention to the MSAs due to data consistency and availability over our 
entire sample period of 1996-2013.  
16 All spatial distance data are calculated based on 2009 Tiger Line files from the U.S. Census Bureau, 
which include latitude and longitude for the MSA centroids. We use the Haversine distance formula to 
calculate the distances between each pair of MSAs. For the contiguity matrix, an ArcGIS script is used to 
identify whether any polygons (MSA boundary) pairs border one another. 
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The migration data are annual, covering the period 1996-2011 (16 years). The 

migration weights that MSA j have on MSA i in a given year are based on the sum of 

migration inflows and outflows between i and j in that year. Since our annual migration 

data cover the period 1996-2011, we construct a separate migration weights matrix for 

each of these years, ψ t. We then row-normalize this migration weights matrix, and place 

them into a larger, block diagonal matrix that is dimension (16 times 363) by (16 times 

363).  

4.3 Consumer Price Index Data  

The Consumer Price Index (CPI) data are taken from the Bureau of Labor 

Statistics (BLS). The data are the Urban Consumer CPI for All Items from 1995 to 2013, 

for each of 4 regions in the U.S. Each MSA is classified into one of these 4 regions, then 

the appropriate regional CPI is used to deflate its HPI. Using these regional CPI deflators 

avoids some limitations with the MSA-level CPI data that are noteworthy. First, the BLS 

only publishes CPI data for 27 metropolitan areas.17  There are only 39 MSAs that fall 

inside (completely and partially) the boundaries of the 27 metropolitan areas.  Therefore 

only 39 MSAs have a reported CPI, while many of the 39 MSAs also share common CPI. 

Second, the frequency of the published CPI varies (monthly, bimonthly, and 

semiannually) for different metropolitan areas. These variations do not necessary 

coincide with the timing of OFHEO’s HPI, which is reported on a quarterly basis.  

Descriptive statistics for the housing price growth and spatial lags of housing 

price growth are presented in Table 2.  The typical MSA experienced year-over-year 

mean price growth of approximately 0.4% and a twice as large median value. Its 

                                                 
17 See www.bls.gov for the list of the 27 metropolitan areas. 
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neighbors’ house price growth ranged from an average (mean and median) of between 

2% and 3%, depending on the definitions of neighbors. The largest year-over-year 

increase in an MSA over the years 1996-2013 was 28%, while the largest drop was 45%. 

This range is somewhat smaller for the neighboring MSA’s maximum and minimum 

year-over-year price growth. 

 

5. Empirical Results 

Table 2 reports summary statistics for the data. The average annual real growth 

rate of housing prices in MSAs is approximately 0.43%, while the average of the 

contiguity “neighbor” MSA price growth was 0.37% and the migration weighted MSA 

price growth rate average was approximately 0.72%.  

 Tables 3 and 4 report the estimation results for the OLS and Arellano-Bond 

regressions, respectively. Columns 1, 4, 7, and 10 present estimates that only include time 

lags of the house price growth rates (“lagged growth”) as explanatory variables. Columns 

2, 5, 8, and 11 of Tables 3 and 4 include time lags of the contiguity-based spatial lags 

(“spatial lag growth”), in addition to the own lagged growth variables. Columns 3, 6, 9, 

and 12 of Tables 3 and 4 present results for time lags of the migration-based spatial lags 

(spatial migration growth), in addition to the “lagged growth” and “spatial lagged 

growth” variables. The first two rows of each of Tables 3 and 4 indicates whether or not 

the results in each corresponding column of the table were estimated with MSA-level 

fixed effects (“Yes” if the model included fixed effects, “No” if not); and whether the 

model is estimated based on the post-2007 sample (indicated by “Yes”) or for the entire 

sample period (indicated by “No”). The entire sample period covers the years 1996-2013 



17 | P a g e 
 

(except for the regressions containing spatial lags for migration flows in columns 3, 6, 9, 

and 12 of Tables 3 and 4, which covers the period 1996-2011, due to data unavailability 

for 2013).  

 
5.1 Own-Lag Effects: Baseline Results 
 

For our entire sample of 1996-2013, we first report the results of the own-lags 

regression. We first focus on the results in Table 3, which reports the baseline results 

from estimating equation (1) with only own-lags effects and MSA fixed effects, for the 

CPI-deflated housing price growth regression. Column 1 of Table 3 reports the 

coefficient estimates of the own-lagged model with fixed effects. The coefficients on the 

first 2 lags are positive, less than 1, and statistically significant. The coefficients on the 

three-year and four-year lags are negative, less than 1 in absolute value, and statistically 

significant.  The sign of the one-year lag coefficient is consistent with previous literature, 

suggesting that the first own-lag of house prices has explanatory power in forecasting the 

next period’s house prices. Since the third, and fourth own-lags are all also highly 

statistically significant but negative, though smaller in absolute value than the first and 

second own-lags, once again this may suggest some degree of mean reversion.  

We introduce four time lags of the spatially lagged growth rates of all MSAs 

contiguous to MSAi as additional regressors as in equation (2), with fixed effects. The 

results are reported in column 2 of Table 3. The first three of these lagged spatial lag 

coefficients are positive, while the second and fourth time lags are statistically significant 

at all significance levels.  We perform a likelihood ratio test between the restricted model 

(OLS estimates of own-lags without the presence of adjacent spatial regressors) and the 
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unrestricted models (equation (2)).  The LR test statistic is approximately equal to 100, 

while the χ2 statistic (critical value) with 4 degrees of freedom is 9.49. Hence, the LR test 

strongly rejects the null hypothesis at all levels of statistical significance that spatial 

dependence is not present in the residuals. 

In column 3 of Table 3, we add time lags of spatial lags using migration weights, 

for the OLS model as in equation (5). Since our migration data covers the years 1996-

2011, we estimate equation (5) for this time period. In the OLS case for the time lags of 

the spatially lagged migration weights in column 3 of Table 3, the second time lag is 

positive and significant, while the fourth time lag is negative and significant; the other 

two time lags are insignificant. Column 4 of Table 3 presents the growth rates with fixed 

effects regression results, for the estimated coefficients of own-time lags.18 These results 

are similar to the results without fixed effects in column 1, in terms of their signs and 

significance. Column 5 of Table 3 presents the fixed effects results for the model with 

own-time lags and time lags of the contiguity spatial lags. In contrast to the OLS results 

in column 2, these results are similar in terms of the signs and significance of the 

coefficients. Finally, in column 6 of Table 3 we add time lags of spatial lags using 

migration weights with fixed effects, as in equation (5). The signs and significance of 

these coefficients are similar to the OLS version of this model in column 3 of Table 3.  

A number of remarks are in order. First, spatial effects from growth rates of 

housing prices in neighboring MSAs are clearly present. Second, in general, lagged house 

                                                 
18 We also estimate models where we add time lags of inverse distance weights spatial lags, as in equation 
(3). Once again, all four of the own-price lags are statistically significant. But in this version of the model, 
all of the contiguity neighbor spatial lags, and all of the inverse distance spatial lags with the exception of 
the second and fourth year lags of the 500 to 1000 km spatial lags, are statistically insignificant (which we 
attribute to multicollinearity). We do not present these inverse distance results in the paper, however the 
detailed results are available from the authors upon request. 
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price growth rates for adjacent MSAs have a comparable degree of explanatory power 

relative to the own-lags in explaining MSAi’s current growth rates. Third, including fixed 

effects does not substantially affect the estimates.19 And fourth, the own-lag effects and 

cross-lag effects could be co-determined. Accordingly, we re-estimate these models with 

the Arellano-Bond estimator, which accounts for potential endogeneity of the regressors. 

Column 1 of Table 4 reports the results using the Arellano-Bond correction, for 

OLS. The signs for all 4 lag coefficients remain unchanged. 20 The 4-period lagged 

growth rate coefficient is now positive.  

Column 2 of Table 4 reports the results including both the own-lags and the time 

lags of the spatial variables with the Arellano-Bond estimator. Here the first and third 

year time lags of the own lags are significant, but none of the spatial lags is significant.21 

In contrast, the Arellano-Bond estimations with fixed effects have similar signs and 

significance, with the exception of the fourth spatial lag, which is now significant.  

The results for equation (3) with the Arellano-Bond estimator are not as good as 

those obtained with OLS. Specifically, none of the spatial parameter estimates are 

significant. We examine the correlations between the various inverse distance and 

contiguity spatial lag variables, and find that there is likely a high degree of 

multicollinearity that is leading to insignificant parameter estimates. Given the lack of 

                                                 
19 For completeness, we include the fixed effects estimates in Table 3. Obviously, if the original model is a 
fixed effects specification with the house price index in levels, these fixed effects would drop out when 
obtaining the first differences. 
20Although the magnitude of the coefficient on the one-year lag is greater than 1.0, it is not statistically 
significantly greater than 1.0. 
21 The one-period lag on both the own-lag and the spatial lag are greater than 1.0 in magnitude, but not 
statistically significantly greater than 1.0. 
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significance of most of the parameters when we include inverse distance weighted spatial 

lags, we omit those results from Table 4.22 

Column 3 of Table 4 presents the results for equation (5) estimated by the 

Arellano-Bond estimator, without fixed effects. All parameter estimates are highly 

insignificant. While one might anticipate that there can be persistence over time in MSA-

to-MSA migration that leads to time series autocorrelation and contributing to the high 

standard errors (and in turn, low t-statistics), all of these estimates are based on 

heteroskedasticity and autocorrelation consistent (HAC) standard errors. Thus, it is likely 

in the full sample that when we include time lags of both types of spatial lags and control 

for potential endogeneity, there is little evidence of spatial spillovers. One might 

conjecture, however, that this result does not hold during the period following a “bust”, 

so we turn our attention to the post-2007 period. 

Column 4 of Table 4 estimates the own-lag model with fixed effects for the 

Arellano-Bond estimator. While the signs are similar to the OLS estimates in column 1, 

the magnitudes are somewhat larger in column 1 than those in column 4. Column 5 

presents the results for the Arellano-Bond fixed-effects estimation where we include 

own-lags and time lags of spatial contiguity neighbors. In column 5, there is one 

additional own-lag and one additional spatial lag that is significant, compared with the 

OLS model in equation 2. Finally, column 6 of Table 4 presents the Arellano-Bond 

estimation results including fixed effects, and once again, all parameter estimates are 

highly insignificant.  

 

                                                 
22 These results are available from the authors upon request. 
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5.2. Post-2007 Results 

 Since one might expect the results to differ after the onset of the Great Recession 

in 2007, we re-estimated the models described above, for the period 2008-2013 (and for 

equation (5), for the period 2008-2011, because of the unavailability of migration flows 

data after 2011).  

The post-2007 sample OLS estimates of the model with own-time lags, shown in 

Table 3 column 7, are similar in terms of signs and significance of the parameter 

estimates for the entire sample OLS estimates in column 1 of Table 3. In the post-2007 

sample with own- and contiguity neighbor spatial lags in Table 3, column 8, there are 2 

more significant spatial lags, but one fewer significant own-lag, than for the results in the 

full sample in column 2. In column 9 of Table 3 for the post-2007 sample, there is one 

additional significant migration spatial lag, and two additional significant contiguity 

neighbor spatial lag, compared with the results for the full sample in column 3 of Table 3. 

When we incorporate fixed effects for the post-2007 sample, the results for the model 

with only own-time lags in column 10 is similar to the results without fixed effects for the 

entire sample in column 1; the fixed effects post-2007 model in column 11 of Table 3 

with contiguity spatial lags has one more significant contiguity spatial lag than the 

corresponding model for the full sample in column 2; and there are two more significant 

contiguity spatial lags and two more significant migration spatial lags in column 12 of 

Table 3 compared with column 6.   

In the Arellano-Bond estimation for the post-2007 sample, the results for the 

model with only own-time lags in column 7 of Table 4 are similar to the results for the 
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full sample in column 1 of Table 4. In the model with own-time lags and contiguity 

neighbor spatial lags for the post-2007 sample, there are two additional significant own-

time lags and one additional significant spatial time lag in column 8 of Table 4, compared 

with column 2 of Table 4. For the time lags of the migration weighted spatial lags 

estimated with the Arellano-Bond approach in equation (5), shown in column 9 of Table 

4, two of the own-price lags are significant, as are the two-, three- and four-period lagged 

migration weighted price changes (whereas all of the variables are insignificant in the full 

sample Arellano-Bond estimations in column 3 of Table 4).  These larger magnitudes in 

the post-2007 sample imply contagion may have been more important after the crisis of 

2007-08. More importantly, spatial contagion in this post-2007 model is present in the 

three-period lag of the spatial lag, which is significant and not in the one-, two-, and four-

period lags of the spatial lag in column 8 of Table 4, which are insignificant.23  

In column 10 of Table 4 for the post-2007 sample in the Arellano-Bond model 

with fixed effects, there is one additional significant own-time lag compared with the full 

sample in column 1 of Table 4.  In column 11 of Table 4, there are two additional own-

time lags and one additional contiguity spatial lag that is significant in this post-2007 

Arellano-Bond fixed effects model compared with the full sample Arellano-Bond results 

without fixed effects in column 3 of Table 4. Virtually all own- and spatial time lags in 

the post-2007 Arellano-Bond fixed effects model are highly insignificant in column 12 of 

Table 4, while two of the own-price growth lags are significant, two of the spatial 

migration growth lags are significant, and all 4 contiguity price growth spatial lags are 

insignificant. In contrast, for the OLS post-2007 model with fixed effects in column 12 of 
                                                 
23 None of the four spatial lags are statistically significant in the full sample, while one of the spatial lags 
are statistically significant in the post-2007 sample. 
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Table 3, three out of the 4 own-price lags are significant, while all 4 migration spatial 

lags are significant, and 2 out of 4 contiguity neighbor spatial lags are significant.24 These 

post-2007 OLS fixed effects results in Table 3 are very similar to the post-2007 Arellano-

Bond fixed effect results in Table 4. 

5.2.1 Structural Breaks after 2007  

As an additional diagnostic, we examine models with structural breaks for the 

post-2007 period while including the entire sample from 1996-2013 in the data set.25 This 

allows us to determine whether or not such a model is preferred over our approach in the 

previous section with the post-2007 data set only. As a robustness check, we re-estimate 

each of the 3 basic models including a set of structural break interaction terms. These 

three models are  OLS models (with MSA fixed effects and HAC standard errors): one, 

with own-time lags only; two, with spatial lags of neighbors with own- and neighbor-time 

lags; and three, spatial lag of neighbors and migration spatial lag, together with own- and 

neighbor- and migration- time lags). For the most part, the signs and statistical 

significance of the parameter estimates in each model are not substantially different when 

we estimate each model with structural breaks compared with its counterpart in the 

estimations with the post-2007 sample only. A major difference, however, is that in all 

three of the basic models, the R-squared (as well as the adjusted R-squared) is 

substantially higher in the post-2007 sample estimation than in the structural breaks 

                                                 
24 With the inverse distance weights model in equation (3) for post-2007, only 3 of the time-lagged inverse 
distance spatial lags are significant, and all of the own time lags are statistically significant. This is a slight 
improvement over the results for the entire sample, but still somewhat disappointing, likely due to the 
multicollinearity between the inverse distance-weighted spatial lags. In the version of the model with the 
Arellano-Bond estimator for post-2007, the one-year and two-year own time lags are the only two 
statistically significant variables in the model. These detailed coefficient estimates are available from the 
authors upon request. 
25 While we do not report these results in the Tables, we summarize them in this section. Detailed results 
for these models are available upon request from the authors. 
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estimation with the entire sample period. For this reason, we have chosen not to present 

detailed tables of the structural breaks estimation results (these results are available from 

the authors upon request). We do include some discussion of these results below. 

  In the version of the model with the own-MSA time lags only, the break dummy 

is statistically significant, and the first two lagged coefficients are not substantially 

different than they are for the model with no structural breaks. After factoring the 

interaction terms for the structural break, the last two lags (years 3 and 4) are significantly 

less than they are in the model without the breaks. But the R-squared is lower in the 

model with structural breaks (0.578) opposed to the model with the post-2007 data only 

(0.689). 

 In the model with neighbor spatial lags and own- and neighbor- time lags, there 

are 3 own-time lags interaction terms that are negative and significant, and there are 2 

spatial own-time lags interaction terms that are negative and significant. The pre-2008 

coefficients are smaller than they were in the full sample model with no structural break 

terms. Once again, the model with the sample post-2007 has a higher R-squared than the 

model with the post-2007 interaction terms (0.712 opposed to 0.594). 

Finally, we include the structural break interaction terms for neighbor spatial lags, 

migration spatial lags, and own-, neighbor-, and migration- time lags. In this variation of 

the model, two migration spatial weighted time lagged break variables are positive and 

significant, while only one is negative and significant, implying a large effect of 

migration on house price growth in the post-2007 period. Once again, the R-squared 

value for the sample that includes only post-2007 observations (R-squared=0.7399) is 
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substantially higher than the R-squared=0.6051 for the model estimated with structural 

break interaction terms. 

5.2.2 Moran I test for Spatial Dependence 

We conduct and report here a Moran I test before and after the Great Recession of 

2007-2009, in order to examine whether spatial effects are more pronounced following 

the crisis. We repeat two cross-sectional regressions for equation (1), one of which is for 

all 363 MSA’s in 2007 and the other is for the same MSA’s in 2012. The Moran I test 

cannot reject the null hypothesis of no spatial autocorrelation (P-value=0.2800) for the 

year 2007. But we find the opposite result for the 2012 regression, with a P-value of 

0.0012. These Moran I test results confirm our claim that spatial effects are particularly 

pronounced following the Great Recession of 2007-2009. 

5.3 Impulse Response Functions 

 
Here we report the simulations that utilize the estimates discussed in the 

previous section (based on column 4 of Table 3 for the own-effects, and column 5 of 

Table 3 for the feedback effects) in order to help us assess  the  “r ipp le”  ef fec t  

o f  a one standard deviation shock to house price growth rates in one area propagate 

across space, ceteris paribus.26 The first simulation examines how house price growth 

rates in one area respond to a shock in that same area, or the own-effect. The results 

from the first simulation will serve as a benchmark against spatial effects, which is the 

focus of the second simulation. The second simulation looks at how the own-effects 

interact with the spatial effects. For both simulations, we assume that there are only two 
                                                 
26 A referee pointed out that impulse response functions are more commonly used with long time-series 
data, while here we have a greater number of cross-sectional than longitudinal observations. While we are 
aware of the fact that our approach stretches the standard practice a bit, we still think it is an interesting 
diagnostic avenue to pursue.  
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MSAs, X and Y, and that they are mutually and exclusively adjacent neighbors to one 

another. The first simulation focuses on the effect that a shock in X has on prices in X. The 

second simulation focuses on the effect that a shock in X has on Y, and the feedback effects that 

Y has on X. Finally, we present the total effects – inclusive of the feedbacks and the direct 

effects – of a shock on X. 

 
 
5.3.1. Simulation 1: Own-Effect 

We compute the impulse response function of house prices in X to an 

exogenous one standard deviation shock that occurred in X, and follow the effect the 

shock has on house price growth rates in X over time, 

 
Gx,t = B0 + B1Gx,t-1 + B2Gx,t-2 + B3Gx,t-3 + B4Gx,t-4 + εx,t ,                                           (6) 
 
 
 
where Gx,t  is the annual house price growth rate of X at period time t, B0  to B4  are the 

estimated coefficients of equation (1) taken from column 4 of Table 3, and εx,t  is the 

model’s error term. 

Consider an exogenous one standard deviation shock on X at time t = 0, such that 

Gx,0 = 0.0615, the standard deviation of all house price growth rates from Table 2. We 

then follow this unit shock and see how it attenuates. The results are reported in Figure 2.  

 
 
 
5.3.2 Simulation 2: Effects on Neighboring MSA Y of a One 
Standard Deviation Shock to MSA X House Prices (with 
Feedback Effects) 
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We report the impulse response function of house price growth rates in Y to 

an exogenous one standard deviation shock on house price growth rates in X, and 

follow the effect of this shock over time. We also follow the effects of this shock on X 

over time, that is, we allow for feedback effects between X and Y, 

 

Gy,t = η0 + β1 Gy,t-1 + β 2 Gy,t-2 + β3 Gy,t-3 + β 4 Gy,t-4 + λ1 Gx,t-1 + λ2 Gx,t-2 + λ3 Gx,t-3 + λ4 Gx,t-4 + εx,t  , (7) 
 
 
 
where Gx,t  and Gy,t  are the annual house price growth rate of X and Y at period time 

t,respectively, η0 ,β1  to β 4 , and λ1  to λ4  are the constant, the estimated coefficients of the  

own-lags, and the estimated coefficient of the adjacent spatial lags in equation (3), based 

on the results in column 5 of Table 3, respectively. 

The second simulation begins with an exogenous one standard deviation shock 

on house prices in X such that Gy,0  = 0.0615. We follow this unit shock and examine 

the period t = 1 effects, that linger to affect house prices in X in the subsequent years. 

This simulation also allows for the spillover effect on house prices in X to feedback and 

affects house prices in Y. For example, the impulse response function will estimate how 

an exogenous unit shock on house prices in Boston in 2000 has spillover effects on 

house prices in Providence in 2001, and how the spillover effect lingers and affects 

house prices in Providence in 2002 and the subsequent years. Moreover, the spillover 

effect from Boston to Providence in 2001 will have a feedback effect on house prices in 

Boston in 2002. This feedback effect also lingers and continues to affect house prices in 

Boston in 2003, 2004, and so on. In addition, the lingering feedback effect from 

Providence to Boston in 2003 will spillover and affect house prices in Providence in 

2004. Both the feedback and spillover effects will continue to interact in the same 
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manner as the previous year, but the effects will greatly attenuate since the 

coefficients β1 through β4 and λ1   to λ4 are all smaller than 1, and will ultimately 

disappear. The results of this experiment are reported in Figure 2. 

Figure 2  pictures the changes in the annual house price growth rate of X, 

Gx,t,, across time for both simulations. It also pictures the spillover effects on Y of the 

shock to X. The first simulation reveals that a one standard deviation (approximately 

6.15%) exogenous shock in X has positive but attenuated impacts on the house price 

growth rate in X for the first three years and the growth rate becomes negative in the 

fourth year. The house price growth rate in X hits a trough in the sixth year at about -2% 

before it begins to recover to around 1% and finally levels out after approximately 9 

years. 

The second simulation focuses only on spatial effects, that is, how an exogenous, 

one standard deviation shock on house prices in area X affects house prices in Y. To 

have a more complete understanding of how house prices interact across space, this 

simulation allows for feedback effects – in both directions –  between house prices in X 

and Y.  It is noteworthy that the positive spatial effect in time period 1 is lower than the 

own-effect of the same period, which is calculated in the first simulation. The impact of 

the unit shock also attenuates slower than those in the first simulation; the growth 

rate of house prices in X becomes negative between the fifth and the sixth year. The 

growth rate hits the trough at -0.75 percent during the seventh year, before it 

recovers and moves towards the growth rate of the MSA X house prices. We also 

simulate the effects (including feedbacks) of this shock on MSA X in Figure 2. Finally, 

we graph the total effect of a shock in X. That is, it reflects the sum of the direct effect in 
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MSA X and the effect in MSA Y, where we allow for feedback effects between the two 

adjacent MSAs.  

It is important to note that we have simplified these simulations by treating the 

reference MSAs, X and Y, as mutually and exclusively adjacent neighbors. In 

reality, there are many MSAs that have more than one neighbor, and thus the results 

from our simulations are merely indicative. Nonetheless, the simulations help us 

conceptualize how spatial effects have significant and lasting effects over time in house 

prices. 

 

6. Conclusions 

We argue that studying house price dynamics at the MSA level can be more 

informative than those at higher levels of aggregation, such as the national and the 

Census region levels. This is, in part, because at the higher levels of aggregation the 

regional own-lag effects obscure the own-lag effects and spatial effects of MSAs within 

the respective US Census division.  

Using panel data from 363 MSAs across the U.S. from 1996 to 2013, we establish 

that there is a notable spatial diffusion pattern in inter-MSAs house prices. Specifically, 

information on lagged price changes in neighboring (i.e., contiguous) MSAs, in addition 

to an MSA’s own time-lagged price changes, helps explain current house price changes. 

Consideration of migration flows can also be a driver for spatial interdependence in 

housing prices across MSAs. Such spatial attenuation is intuitively appealing, but has not 

been documented in earlier research. We use our estimation results to obtain a variety of 

diagnostics including impulse response functions for the house price dynamics.  
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           Overall, we find that spatial effects play a significant role in explaining house 

prices even after controlling for own-lag effects. These spatial effects are particularly 

pronounced when considering the post-2007 sample period. In other words, our results 

imply greater spatial contagion following the Great Recession of 2007-09. 

Our finding of very significant spatial effects underscores the need to incorporate 

the spatial dimension into existing house price dynamic equilibrium models, such as 

Glaeser and Gyourko (2006). The spatial threshold effects in spatial house price 

interactions that we identify suggest that policy makers and economic agents must take 

into account spatial attenuation and interactions when making economic decisions. For 

instance, it may be important to consider the spatial diffusion pattern in inter-MSA house 

prices when formulating business development policies. The impact of such a policy in 

some areas may spillover into the housing markets of neighboring areas, an intuitively 

appealing notion. 

Our results on the richness of the dynamics in house prices are relevant in 

assessing arguments about housing price bubbles. Robert Shiller writing in the New York 

Times on “How a Bubble Stayed under the Radar” (Shiller, 2008) argues that the 

fundamental problem in verifying the existence of a housing market bubble is that 

“[the] information obtained by any individual — even one as well-placed as 
the chairman of the Federal Reserve — is bound to be incomplete. If people 
could somehow hold a national town meeting and share their independent 
information, they would have the opportunity to see the full weight of the 
evidence. Any individual errors would be averaged out, and the participants 
would collectively reach the correct decision.” 
 

Shiller goes on to state that 

“Of course, such a national town meeting is impossible. Each person makes 
decisions individually, sequentially, and reveals his decisions through 
actions — in this case, by entering the housing market and bidding up home 
prices” [ibid.]  
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Our paper provides some evidence on Shiller’s argument. Specifically, information from 

neighboring areas is very important. Naturally, overreactions are smaller when people 

can share information, even if the combined information is still incomplete.  
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Figure 1 – Metropolitan Statistical Areas of the U.S., 2009 definitions (Source: U.S. Census Bureau) 

 

 



Figure 2 
 

 
Source: Authors’ Own Calculation



Table 1: 363 MSA’s in the continental U.S. (2009 U.S. Census Delineations) 
 

Abilene, TX  Denver-Aurora-Broomfield, CO            Lancaster, PA    
 Akron, OH  

 
Des Moines-West Des Moines, IA  Lansing-East Lansing, MI   Racine, WI  

Albany, GA  
 

Detroit-Warren-Livonia, MI  Laredo, TX  
 

Rapid City, SD  
 Albany-Schenectady-Troy, NY  Dothan, AL  

 
Las Cruces, NM  

 
Reading, PA  

 Albuquerque, NM  
 

Dover, DE  
 

Las Vegas-Paradise, NV  
 

Redding, CA  
 Alexandria, LA  

 
Dubuque, IA  

 
Lawrence, KS  

 
Reno-Sparks, NV  

 Allentown-Bethlehem-Easton, PA-NJ  Duluth, MN-WI  
 

Lawton, OK  
 

Richmond, VA  
 Altoona, PA  

 
Durham-Chapel Hill, NC  

 
Lebanon, PA  

 
Riverside-San Bernardino-Ontario, CA  

Amarillo, TX  
 

Eau Claire, WI  
 

Lewiston, ID-WA  
 

Roanoke, VA  
 Ames, IA  

 
El Centro, CA  

 
Lewiston-Auburn, ME  

 
Rochester, MN  

 Anderson, IN  
 

El Paso, TX  
 

Lexington-Fayette, KY  
 

Rochester, NY  
 Anderson, SC  

 
Elizabethtown, KY  

 
Lima, OH  

 
Rockford, IL  

 Ann Arbor, MI  
 

Elkhart-Goshen, IN  
 

Lincoln, NE  
 

Rocky Mount, NC  
 Anniston-Oxford, AL  

 
Elmira, NY  

 
Little Rock-North Little Rock-Conway, AR  Rome, GA  

 Appleton, WI  
 

Erie, PA  
 

Logan, UT-ID  
 

Sacramento--Arden-Arcade--Roseville, CA  
Asheville, NC  

 
Eugene-Springfield, OR  

 
Longview, TX  

 
Saginaw-Saginaw Township North, MI  

Athens-Clarke County, GA  Evansville, IN-KY  
 

Longview, WA  
 

Salem, OR  
 Atlanta-Sandy Springs-Marietta, GA  Fargo, ND-MN  

 
Los Angeles-Long Beach-Santa Ana, CA  Salinas, CA  

 Atlantic City-Hammonton, NJ  Farmington, NM  
 

Louisville-Jefferson County, KY-IN  Salisbury, MD  
 Auburn-Opelika, AL  

 
Fayetteville, NC  

 
Lubbock, TX  

 
Salt Lake City, UT  

 Augusta-Richmond County, GA-SC  Fayetteville-Springdale-Rogers, AR-MO  Lynchburg, VA  
 

San Angelo, TX  
 Austin-Round Rock, TX  

 
Flagstaff, AZ  

 
Macon, GA  

 
San Antonio, TX  

 Bakersfield, CA  
 

Flint, MI  
 

Madera-Chowchilla, CA  
 

San Diego-Carlsbad-San Marcos, CA  
Baltimore-Towson, MD  

 
Florence, SC  

 
Madison, WI  

 
San Francisco-Oakland-Fremont, CA  

Bangor, ME  
 

Florence-Muscle Shoals, AL  Manchester-Nashua, NH  
 

San Jose-Sunnyvale-Santa Clara, CA  
Barnstable Town, MA  

 
Fond du Lac, WI  

 
Manhattan, KS  

 
San Luis Obispo-Paso Robles, CA  

Baton Rouge, LA  
 

Fort Collins-Loveland, CO  Mankato-North Mankato, MN  Sandusky, OH  
 Battle Creek, MI  

 
Fort Smith, AR-OK  

 
Mansfield, OH  

 
Santa Barbara-Santa Maria-Goleta, CA  

Bay City, MI  
 

Fort Walton Beach-Crestview-Destin, FL  McAllen-Edinburg-Mission, TX  Santa Cruz-Watsonville, CA  
Beaumont-Port Arthur, TX  Fort Wayne, IN  

 
Medford, OR  

 
Santa Fe, NM  

 Bellingham, WA  
 

Fresno, CA  
 

Memphis, TN-MS-AR  
 

Santa Rosa-Petaluma, CA  
 Bend, OR  

 
Gadsden, AL  

 
Merced, CA  

 
Savannah, GA  

 Billings, MT  
 

Gainesville, FL  
 

Miami-Fort Lauderdale-Pompano Beach, FL  Scranton--Wilkes-Barre, PA  
Binghamton, NY  

 
Gainesville, GA  

 
Michigan City-La Porte, IN  Seattle-Tacoma-Bellevue, WA  

Birmingham-Hoover, AL  
 

Glens Falls, NY  
 

Midland, TX  
 

Sebastian-Vero Beach, FL  
 Bismarck, ND  

 
Goldsboro, NC  

 
Milwaukee-Waukesha-West Allis, WI  Sheboygan, WI  

 Blacksburg-Christiansburg-Radford, VA  Grand Forks, ND-MN  
 

Minneapolis-St. Paul-Bloomington, MN-WI  Sherman-Denison, TX  
 Bloomington, IN  

 
Grand Junction, CO  

 
Missoula, MT  

 
Shreveport-Bossier City, LA  

Bloomington-Normal, IL  
 

Grand Rapids-Wyoming, MI  Mobile, AL  
 

Sioux City, IA-NE-SD  
 Boise City-Nampa, ID  

 
Great Falls, MT  

 
Modesto, CA  

 
Sioux Falls, SD  

 Boston-Cambridge-Quincy, MA-NH  Greeley, CO  
 

Monroe, LA  
 

South Bend-Mishawaka, IN-MI  
Boulder, CO  

 
Green Bay, WI  

 
Monroe, MI  

 
Spartanburg, SC  

 Bowling Green, KY  
 

Greensboro-High Point, NC  Montgomery, AL  
 

Spokane, WA  
 Bradenton-Sarasota-Venice, FL  Greenville, NC  

 
Morgantown, WV  

 
Springfield, IL  

 Bremerton-Silverdale, WA  Greenville-Mauldin-Easley, SC  Morristown, TN  
 

Springfield, MA  
 Bridgeport-Stamford-Norwalk, CT  Gulfport-Biloxi, MS  

 
Mount Vernon-Anacortes, WA  Springfield, MO  

 Brownsville-Harlingen, TX  Hagerstown-Martinsburg, MD-WV  Muncie, IN  
 

Springfield, OH  
 Brunswick, GA  

 
Hanford-Corcoran, CA  

 
Muskegon-Norton Shores, MI  St. Cloud, MN  

 Buffalo-Niagara Falls, NY  Harrisburg-Carlisle, PA  
 

Myrtle Beach-North Myrtle Beach-Conway, SC  St. George, UT  
 Burlington, NC  

 
Harrisonburg, VA  

 
Napa, CA  

 
St. Joseph, MO-KS  

 Burlington-South Burlington, VT  Hartford-West Hartford-East Hartford, CT  Naples-Marco Island, FL  
 

St. Louis, MO-IL  
 Canton-Massillon, OH  

 
Hattiesburg, MS  

 
Nashville-Davidson--Murfreesboro--Franklin, TN  State College, PA  

 Cape Coral-Fort Myers, FL  Hickory-Lenoir-Morganton, NC  New Haven-Milford, CT  
 

Stockton, CA  
 Cape Girardeau-Jackson, MO-IL  Hinesville-Fort Stewart, GA  New Orleans-Metairie-Kenner, LA  Sumter, SC  
 Carson City, NV  

 
Holland-Grand Haven, MI  New York-Northern New Jersey-Long Island, NY-NJ-PA  Syracuse, NY  

 Casper, WY  
 

Hot Springs, AR  
 

Niles-Benton Harbor, MI  
 

Tallahassee, FL  
 Cedar Rapids, IA  

 
Houma-Bayou Cane-Thibodaux, LA  Norwich-New London, CT  Tampa-St. Petersburg-Clearwater, FL  

Champaign-Urbana, IL  
 

Houston-Sugar Land-Baytown, TX  Ocala, FL  
 

Terre Haute, IN  
 Charleston, WV  

 
Huntington-Ashland, WV-KY-OH  Ocean City, NJ  

 
Texarkana, TX-Texarkana, AR  

Charleston-North Charleston-Summerville, SC  Huntsville, AL  
 

Odessa, TX  
 

Toledo, OH  
 Charlotte-Gastonia-Concord, NC-SC  Idaho Falls, ID  

 
Ogden-Clearfield, UT  

 
Topeka, KS  

 Charlottesville, VA  
 

Indianapolis-Carmel, IN  
 

Oklahoma City, OK  
 

Trenton-Ewing, NJ  
 Chattanooga, TN-GA  

 
Iowa City, IA  

 
Olympia, WA  

 
Tucson, AZ  

 Cheyenne, WY  
 

Ithaca, NY  
 

Omaha-Council Bluffs, NE-IA  Tulsa, OK  
 Chicago-Naperville-Joliet, IL-IN-WI  Jackson, MI  

 
Orlando-Kissimmee, FL  

 
Tuscaloosa, AL  

 Chico, CA  
 

Jackson, MS  
 

Oshkosh-Neenah, WI  
 

Tyler, TX  
 Cincinnati-Middletown, OH-KY-IN  Jackson, TN  

 
Owensboro, KY  

 
Utica-Rome, NY  

 Clarksville, TN-KY  
 

Jacksonville, FL  
 

Oxnard-Thousand Oaks-Ventura, CA  Valdosta, GA  
 Cleveland, TN  

 
Jacksonville, NC  

 
Palm Bay-Melbourne-Titusville, FL  Vallejo-Fairfield, CA  

 Cleveland-Elyria-Mentor, OH  Janesville, WI  
 

Palm Coast, FL  
 

Victoria, TX  
 Coeur d'Alene, ID  

 
Jefferson City, MO  

 
Panama City-Lynn Haven-Panama City Beach, FL  Vineland-Millville-Bridgeton, NJ  

College Station-Bryan, TX  Johnson City, TN  
 

Parkersburg-Marietta-Vienna, WV-OH  Virginia Beach-Norfolk-Newport News, VA-NC  
Colorado Springs, CO  

 
Johnstown, PA  

 
Pascagoula, MS  

 
Visalia-Porterville, CA  

 Columbia, MO  
 

Jonesboro, AR  
 

Pensacola-Ferry Pass-Brent, FL  Waco, TX  
 Columbia, SC  

 
Joplin, MO  

 
Peoria, IL  

 
Warner Robins, GA  

 Columbus, GA-AL  
 

Kalamazoo-Portage, MI  
 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD  Washington-Arlington-Alexandria, DC-VA-MD-WV  
Columbus, IN  

 
Kankakee-Bradley, IL  

 
Phoenix-Mesa-Scottsdale, AZ  Waterloo-Cedar Falls, IA  

 Columbus, OH  
 

Kansas City, MO-KS  
 

Pine Bluff, AR  
 

Wausau, WI  
 Corpus Christi, TX  

 
Kennewick-Pasco-Richland, WA  Pittsburgh, PA  

 
Weirton-Steubenville, WV-OH  

Corvallis, OR  
 

Killeen-Temple-Fort Hood, TX  Pittsfield, MA  
 

Wenatchee-East Wenatchee, WA  
Cumberland, MD-WV  

 
Kingsport-Bristol-Bristol, TN-VA  Pocatello, ID  

 
Wheeling, WV-OH  

 Dallas-Fort Worth-Arlington, TX  Kingston, NY  
 

Port St. Lucie, FL  
 

Wichita Falls, TX  
 Dalton, GA  

 
Knoxville, TN  

 
Portland-South Portland-Biddeford, ME  Wichita, KS  

 Danville, IL  
 

Kokomo, IN  
 

Portland-Vancouver-Beaverton, OR-WA  Williamsport, PA  
 Danville, VA  

 
La Crosse, WI-MN  

 
Poughkeepsie-Newburgh-Middletown, NY  Wilmington, NC  

 Davenport-Moline-Rock Island, IA-IL  Lafayette, IN  
 

Prescott, AZ  
 

Winchester, VA-WV  
 Dayton, OH  

 
Lafayette, LA  

 
Providence-New Bedford-Fall River, RI-MA  Winston-Salem, NC  

 Decatur, AL  
 

Lake Charles, LA  
 

Provo-Orem, UT  
 

Worcester, MA  
 Decatur, IL  

 
Lake Havasu City-Kingman, AZ  Pueblo, CO  

 
Yakima, WA  

 Deltona-Daytona Beach-Ormond Beach, FL  Lakeland-Winter Haven, FL  Punta Gorda, FL  
 

York-Hanover, PA  
 

     
 Youngstown-Warren-Boardman, OH-PA  

      
Yuba City, CA  

       Yuma, AZ  
  



Table 2 - Descriptive Statistics, 363 U.S. Metropolitan Statistical Areas, Annual Growth Rates 

    
  

Neighbor (contiguity weights) Neighbor (Migration Weights) 

 
Real House Price Growth Real House Price Growth  Real House Price Growth 

     Mean 0.0043 0.0037 0.0072 
 Median 0.0087 0.0029 0.0179 
 Maximum 0.2847 0.2781 0.2079 
 Minimum -0.4586 -0.4586 -0.1739 
 Std. Dev. 0.0615 0.0497 0.0443 
 Skewness -0.5448 -0.4651 -0.6685 
 Kurtosis 8.1719 8.0560 3.7618 

     Jarque-Bera 7605.4184 7195.1214 572.9798 
 Probability 0.0000 0.0000 0.0000 

     Sum 28.1163 24.0774 42.0466 
 Sum Sq. Dev. 24.7439 16.1550 11.3989 

     Observations 6534 6534 5808 

     Years 1996-2013 1996-2013 1996-2011 
   



 

Table 3 - 1996-2013, OLS estimates (regressions using migration data cover the years 1996-2011) 
     Dependent Variable: House Price Index Growth between year t and t-1, for MSA i 

       
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
MSA-Level Fixed Effects? No No No Yes Yes Yes No No No Yes Yes Yes 
Post-2007 sample? No No No No No No Yes Yes Yes Yes Yes Yes 
constant 0.0038 0.0046 0.0061 0.0013 0.0014 0.0023 -0.0219 -0.0239 -0.0212 -0.0992 -0.1027 -0.1109 

 
3.4879 4.3707 6.0110 0.0679 0.1411 0.2254 -11.6479 -13.4886 -12.9309 -6.6274 -7.0855 -8.0289 

Lagged Growth (t-1) 0.6725 0.6646 0.6557 0.6645 0.6542 0.6436 0.4787 0.5409 0.6030 0.0845 0.0980 0.0404 

 
18.7082 17.6752 16.1218 18.0750 48.4598 44.9028 10.8214 11.8537 11.5192 3.8790 4.2363 1.6346 

Lagged Growth (t-2) 0.1363 0.1174 0.0890 0.1372 0.1179 0.0883 0.1222 0.0342 -0.0513 0.1344 0.0450 -0.0509 

 
3.5566 3.0593 2.1310 3.4508 7.4371 5.1947 2.7476 0.7173 -0.9276 7.4445 2.3037 -2.4031 

Lagged Growth (t-3) -0.2708 -0.2784 -0.2776 -0.2712 -0.2799 -0.2798 -0.3070 -0.2313 -0.1602 -0.2240 -0.1695 -0.0999 

 
-10.2602 -9.8116 -8.9641 -9.9521 -17.8217 -16.5397 -10.6354 -6.9375 -4.2012 -12.1182 -8.6546 -4.8241 

Lagged Growth (t-4) -0.1003 0.0768 -0.0449 -0.1108 -0.0879 -0.0570 -0.1336 -0.1460 -0.1587 -0.2892 -0.3282 -0.3916 

 
-4.0124 3.0905 -1.7460 -4.2813 -6.2859 -3.9069 -4.7688 -5.5903 -6.0219 -16.7853 -18.5013 -21.5490 

Spatial Lag Growth (t-1) 
 

0.0082 -0.0049 
 

0.0138 -0.0018 
 

-0.2425 -0.1211 
 

-0.0921 -0.1983 

  
0.3770 -0.1961 

 
0.8030 -0.0810 

 
-7.7079 -3.9729 

 
-3.2241 -5.7566 

Spatial Lag Growth (t-2) 
 

0.0770 -0.0155 
 

0.0777 -0.0184 
 

0.2592 0.0626 
 

0.2621 0.0396 

  
2.7036 -0.4862 

 
3.7260 -0.6399 

 
7.0226 1.6401 

 
10.9748 1.2349 

Spatial Lag Growth (t-3) 
 

0.0345 0.0235 
 

0.0365 0.0235 
 

-0.1320 0.0353 
 

-0.1037 0.0394 

  
1.2952 0.8429 

 
1.7232 0.7882 

 
-3.7028 0.9791 

 
-4.2561 1.2286 

Spatial Lag Growth (t-4) 
 

-0.1341 0.0096 
 

-0.1318 0.0118 
 

-0.0493 -0.0586 
 

0.0156 -0.0747 

  
-5.4314 0.3651 

 
-6.7540 0.4464 

 
-1.8794 -2.1875 

 
0.6868 -2.6416 

Spatial Migration Growth (t-1) 
  

0.0164 
  

0.0221 
  

-0.2243 
  

0.1587 

   
0.4303 

  
0.7894 

  
-3.9291 

  
4.2938 

Spatial Migration Growth (t-2) 
  

0.1809 
  

0.1873 
  

0.3869 
  

0.4047 

   
3.3937 

  
5.1580 

  
5.8120 

  
9.3184 

Spatial Migration Growth (t-3) 
  

0.0254 
  

0.0290 
  

-0.3275 
  

-0.2051 

   
0.5648 

  
0.7840 

  
-4.9808 

  
-4.7835 

Spatial Migration Growth (t-4) 
  

-0.3069 
  

-0.3037 
  

-0.0220 
  

0.0904 

   
-6.1895 

  
-8.7183 

  
-0.4374 

  
2.2960 

R-squared 0.4975 0.5044 0.5148 0.5027 0.5099 0.5205 0.5160 0.5426 0.5586 0.6893 0.7115 0.7399 
Numbers in bold italics are t-statistics; all standard errors are HAC consistent 

       



 

Table 4 - 1996-2013, Arellano-Bond Estimation (regressions using migration data cover the years 1996-2011) 
    Dependent Variable: House Price Index Growth between year t and t-1, for MSA i 

       
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
MSA-Level Fixed Effects? No No No Yes Yes Yes No No No Yes Yes Yes 
Post-2007 sample? No No No No No No Yes Yes Yes Yes Yes Yes 
Constant 0.0002 0.0030 0.0290 -0.0015 0.0049 0.0215 0.0087 0.0004 -0.0029 0.0991 0.0678 0.0417 

 
0.0706 0.7645 0.3694 -0.0362 0.0705 0.1530 0.9541 0.0644 -0.4297 1.2442 0.9246 0.6974 

Lagged Growth (t-1) 2.5980 4.7649 16.9758 2.5766 3.9537 7.9512 1.8243 -1.5373 1.4168 2.3640 1.9901 1.7368 

 
3.1737 1.5845 0.3229 3.5235 2.2607 0.8757 5.0538 -5.6363 5.2540 3.3191 2.9915 3.0643 

Lagged Growth (t-2) -1.2409 -2.7375 -11.1459 -1.2219 -2.1540 -4.8760 -0.6470 0.5790 -0.6114 -0.7392 -0.6839 -0.6978 

 
-2.0603 -1.3034 -0.3076 -2.2688 -1.7709 -0.7869 -2.8910 3.1559 -3.2741 -2.5095 -2.6135 -3.1427 

Lagged Growth (t-3) -0.4775 -0.4118 -0.6716 -0.4741 -0.3955 -0.4431 -0.3676 -0.2098 -0.0534 -0.4633 -0.2299 -0.0516 

 
-4.4231 -2.7177 -0.5000 -4.7545 -3.4086 -1.4269 -6.6315 -3.8213 -0.8676 -5.6964 -4.0185 -0.8133 

Lagged Growth (t-4) 0.4784 0.9798 3.9734 0.4761 0.8036 1.8163 0.3116 0.1496 0.0369 0.5062 0.3042 0.1411 

 
1.8554 1.2640 0.3074 2.0069 1.6840 0.7812 2.8343 1.9570 0.5461 2.1299 1.4375 0.8056 

Spatial Lag Growth (t-1) 
 

-2.9138 -0.2449 
 

-2.1175 -0.3542 
 

-0.1604 -0.1159 
 

-0.4883 -0.2989 

  
-1.2376 -0.0617 

 
-1.6699 -0.2753 

 
-0.6053 -0.4156 

 
-0.7780 -0.3896 

Spatial Lag Growth (t-2) 
 

2.0804 0.1022 
 

1.4961 0.2133 
 

0.3570 0.0484 
 

0.4458 0.0886 

  
1.2836 0.0344 

 
1.7556 0.2292 

 
1.9821 0.2514 

 
1.7943 0.3040 

Spatial Lag Growth (t-3) 
 

-0.1196 0.4683 
 

-0.0997 0.2038 
 

-0.3668 0.0573 
 

-0.3884 0.0765 

  
-0.7921 0.2837 

 
-0.8953 0.5945 

 
-5.1805 1.0260 

 
-4.3886 1.1907 

Spatial Lag Growth (t-4) 
 

-0.7466 -0.5192 
 

-0.6039 -0.2626 
 

0.0997 -0.0712 
 

-0.0051 -0.1339 

  
-1.4773 -0.3355 

 
-2.0787 -0.6742 

 
1.0291 -0.7795 

 
-0.0251 -0.5407 

Spatial Migration Growth (t-1) 
  

-9.3060 
  

-3.7966 
  

-0.2181 
  

-0.2723 

   
-0.2900 

  
-0.7021 

  
-1.2430 

  
-0.7370 

Spatial Migration Growth (t-2) 
  

6.2083 
  

2.5456 
  

0.6116 
  

0.6385 

   
0.2971 

  
0.7470 

  
2.9660 

  
2.9254 

Spatial Migration Growth (t-3) 
  

-2.4819 
  

-1.0708 
  

-0.7133 
  

-0.7857 

   
-0.2926 

  
-0.6995 

  
-4.2043 

  
-3.0033 

Spatial Migration Growth (t-4) 
  

-1.4366 
  

-0.7917 
  

0.1918 
  

0.1909 

   
-0.3507 

  
-0.9822 

  
2.3847 

  
1.8521 

J-statistic 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Numbers in bold italics are t-statistics; all standard errors are HAC consistent 
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