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Abstract

This paper proposes a logit response game with a spatial social structure and solves it exactly.
We derive closed-form solutions for the strategy choice probabilities, the spatial correlation
function of strategies of distant players, and the expected utility. We study how the prob-
ability of adopting a cooperative strategy in a prisoner’s dilemma game and the probability
of adopting Pareto efficient strategies in a cooperation game are affected by changes in the
parameter that expresses payoff-responsiveness.
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1. Introduction

Almost all the economic and social activities involve spatial proximity. A retailer, a
supermarket, a convenience store, a restaurant, etc, compete with their neighbors. A retailer
engages in price competition with its neighbors. A restaurant decides whether or not to
renovate taking account of the competition with its neighboring restaurants. One chooses
whether to open a shop at a location or not, taking consideration of the competition with
its neighbors if they exist. Spatial proximity is not limited to economic activities only. For
example, patterns of diffusion and changes of European languages and cultures can be also
analyzed as spatial coordination games. Changes and mutual influences propagate spatially.

We analyze the decision problems involving interactions over space by investigating a spa-
tial game in which players play games only with their neighbors and choose discrete strategies
according to the logit response model (Luce (1959); Anderson et al. (1992); Train (2003)).
The associated logit probabilities are endogenous responses that express that players are not
perfectly rational. Their evaluation of the payoffs of their actions is subject to error.

The specific model that we will study in the present paper is a simple spatial logit response
two-strategy game with general symmetric payoffs. Several previous authors have studied
local interactions models of the logit type that we address in this paper. Several authors have
drawn attention to the fact that it is mathematically equivalent to the Ising model, which was

1The current version became possible after the authors became aware of each other’s papers, Ioannides
of Konno’s original paper and Konno of Ioannides’s 2004 conference version of his Economic Theory (2006).
Ioannides (2004) includes results much along the lines of Konno’s working paper, which had not been included
in the published version of Ioannides (2006). Thereupon they decided to join forces and combine results from
both papers into the current paper.
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introduced by statistical physics (Ising (1925); Baxter (1982); Brézin (2010); Nishimori and
Ortiz (2011)), and has been adopted by numerous econophysics applications (Weidlich (1972,
1991); Sznajd-Weron and Sznajd (2000)). Models relying on the machinery of random fields
were first introduced by Föllmer, and then adopted by others (Föllmer (1974); Blume (1993);
Lux (1995, 1997); Brock and Durlauf (2001); Hautsch and Klotz (2003); Bayer and Timmins
(2005); Ioannides (2006); Zanella (2007); Chang (2007); Levy (2008)). However, Blume must
be credited with recognizing that Gibbs distributions admit a (spatial) Logit interpretation.

The progress to date has been incomplete. Many applications emphasize steady-state
properties and rely on mean-field approximations or numerical simulations. The mean-field
approximation does not account for the richness associated with the underlying spatial struc-
ture. Mean-field approximations simply fall short of the exact solution in closed-form proposed
by the present paper. It is thus attractive to take full advantage of the techniques developed
by statistical physics to obtain exact solutions. Although numerical simulations afford us
some intuition, exact solutions helps us to understand the models in full depth.

In the present paper, we adapt the model to the requirements of Glauber dynamics of the
one-dimensional Ising model (Glauber (1963)) and derive the exact solution of the steady state
employing statistical physics methods. We will derive exact solutions for the probabilities
that a player chooses different strategies, the strategy correlation function C(r) (the effect
of a strategy chosen by a player on the strategies chosen by the players at a graph-distance
r), and the expected utility of the decision process of the typical player. We show how
the probability of adopting a cooperative strategy in a prisoner’s dilemma game and the
probability of adopting a Pareto efficient strategy in a cooperation game, respectively, change
in response to changes in β, the payoff-responsiveness parameter that reflects the dispersion of
the underlying stochastic shocks that affect player valuations. We also derive the probabilities
in the limit as β goes infinity.

Having addressed the solution to spatial logit response games, we show that there exists a
formal similarity with binary discrete choice models with social interactions. Taking off from
Brock and Durlauf (2001), Ioannides (2004, 2006) proposed an interactive discrete choice
model, with agents’ acting under full information of other agents’ decisions.

1.1. Outline of the Paper

The remainder of the present paper goes as follows. Section 2 introduces logit response
games embedded in spatial structures, and Section 3 gives the exact solution. We exactly
derive the probability that a player chooses a particular strategy, the strategy correlation func-
tion, and the expected utility E[U ]. We also discuss the relationship between the mean-field
solution and the exact ones. Section 4 examines the dependence of the probability of adopting
a cooperative strategy in a prisoner’s dilemma game and the probability of adopting a Pareto
efficient strategy in cooperation game, respectively, to changes in the payoff-responsiveness
parameter, β. Section 5 discusses the conceptual and analytical similarities between the treat-
ment herein of spatial logit response games and interactive discrete choice models. Section 6
concludes.

Appendices A, B, and C explain the method of deriving the exact solution, which relies
on statistical physics, in further detail. Appendix A discusses the detailed balance condition
and then derives the strategy probabilities in the steady state, which is interpreted as an
equilibrium. Appendix B derives the solution by the transfer-matrix method. Appendix C
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shows that our results do not depend on whether the spatial structure is a circle or a line in
the limit with many agents.

2. The Model

Let N players be located on a circle, as illustrated in Fig. 1. Player j interacts with his
neighbors only and derives payoff from each game outcome. As illustrated in Fig. 1, player
j’s neighbors are players j− 1 and j+1. We assume the periodic boundary condition: player
N + 1 is the player 1 and player k + N is the player k. We show in Appendix C that in
the limit of many players, the solution does not depend on whether the spatial structure is
a circle or a line. The players can not move to other locations. We justify this by assuming
that it is too costly for a player to move, once the location has been determined, although it
is costless to engage in a strategic game with his neighbors. However, in principle, one may
extend the model and assume that to exit, or to enter, is indeed a strategy. The payoff matrix
of the game is given by the general form

( A B

A (a, a) (b, c)

B (c, b) (d, d)

)
. (1)

At each time step, one randomly chosen player chooses a strategy from the strategy space
{A,B}, according to a logit probability, conditional on the strategies of their neighbors.
Allowing for the players to update their strategies sequentially is no loss of generality and
may be formalized by means of the device of a Poisson clock; c.f., Blume (1993).

Figure 1: The players are set on a circle and play games with the adjacent players only. The numbers identify
the players.

In order to take advantage of the machinery of the Ising model of statistical physics, we
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transform the matrix (1) by defining the auxiliary variables (x, y, z, w) as follows:

x =
a− b− c+ d

4
,

y =
a+ b− c− d

4
,

z =
a− b+ c− d

4
,

w =
a+ b+ c+ d

4
.

(2)

Let Si denote the strategy of player i; Si = +1 corresponds to the strategy A and Si = −1
corresponds to the strategy B. Suppose that player i and player j are adjacent to each other;
in other words, j = i− 1 or i+ 1. The payoff Ui,j for player i from strategy Si when player j
adopts strategy Sj is expressed in terms of x, y, z, and w as follows:

Ui,j = xSiSj + ySi + zSj + w. (3)

By substituting Si = ±1 and Sj = ±1 in Eq. (3), we can confirm that the payoff Ui,j

reproduces the payoff matrix in Eq. (1). What a player i chooses when choosing strategy is
the value of Si. Let N−vector S denote the strategies of all the players {S1, S2, · · · , SN}. Let
∂i denote the set of all players that are i’s neighbors; ∂i = {i + 1, i − 1} in the present case
of a circle. A randomly chosen player i chooses the strategy Si, conditional on his neighbors’
strategies, with the logit probability

Pr(Si) ∝ exp

∑
j∈∂i

βUi,j

 , (4)

where β is a non-negative parameter indicating the responsiveness of the utility function to
the payoffs. In fact, this parameter reflects the inverse of the variance of the extreme-value
of type II shock underlying the logit model. When the variance is very large, β is small and
the observed utility payoffs are not important for the choice. At the other extreme, when the
variance is very small, the shock is relatively less important than the observed payoffs, which
in turn dominate the choice. The probability Pr(Si) that a player chooses Si in Eq. (4) is
recast into the form, after the normalization,

Pr(Si) =

exp

[
β
∑
j∈∂i

(xSiSj + ySi + zSj + w)

]
∑

Si=±1

exp

[
β
∑
j∈∂i

(xSiSj + ySi + zSj + w)

]

=

exp

[
β
∑
j∈∂i

(xSiSj + ySi)

]
∑

Si=±1

exp

[
β
∑
j∈∂i

(xSiSj + ySi)

] . (5)
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3. The Exact Solution

The probability Pr(Si) in Eq. (5) that a randomly chosen player i chooses the strategy Si

is the same as the probability that a randomly chosen site i chooses Si = ±1 in the Glauber
dynamics (Glauber (1963)). We can use a statistical-mechanical method of analyzing the
dynamics.

Let {S} denotes the set of a combination of the strategies {S1, S2, · · · , SN} and let the
probability Pr({S}) denote the joint probability that player 1 takes the strategy S1, player
2 takes the strategy S2, . . ., and player N takes the strategy SN . The cardinality of the set
of all possible outcomes for the entire economy, {S}, is 2N , because there are N players and
two strategies A and B. Let us order all possible sets sequentially as

{S}1 = {S1 = +1, S2 = +1, · · · , SN = +1}, (6)

{S}2 = {S1 = −1, S2 = +1, · · · , SN = +1}, (7)

{S}3 = {S1 = +1, S2 = −1, · · · , SN = +1}, (8)

{S}4 = {S1 = −1, S2 = −1, · · · , SN = +1}, (9)

...

{S}2N = {S1 = −1, S2 = −1, · · · , SN = −1}. (10)

We will occasionally refer to the set of strategies {S}µ as the µth configuration and de-
note it simply as µ, such as in Pr(µ). Suppose that configuration µ is given by {S}µ =
{S1, · · · , Si, · · · , SN} and configuration ν is given by {S}ν = {S1, · · · , S′

i, · · · , SN}. The
difference is the strategy of the player i only, S′

i ̸= Si. To transit from configuration µ to
configuration ν, player i is randomly chosen with probability 1/N to update his strategy from
Si to S′

i. Let T denote the transition matrix across the 2N configurations. The transition
probability Tµν from the configuration µ to the configuration ν is, thus, given by

Tµν =
1

N

exp

[
β
∑
j∈∂i

(xS′
iSj + yS′

i)

]
∑

S′
i=±1

exp

[
β
∑
j∈∂i

(xS′
iSj + yS′

i)

] . (11)

Let P denote the vector

P =
(
Pr(1),Pr(2), · · · ,Pr(2N )

)
, (12)

P(t) denote P as of time t. The vector P(t) is updated by the transition matrix T such that
P(t + 1) = P(t)T. We will characterize the probabilities that different strategies prevail at
the steady state, which we identify as the equilibrium in the present paper. The steady state
Pss is the vector to which P converges when the numbers of updates of strategies tends to
infinity. In Appendix A, we will derive Prss(S1, S2, · · · , SN ) and show their existence and
uniqueness. Our treatment utilizes the fact the dynamics in our model are equivalent to the
Glauber dynamics after transformation (2).

The steady state probability of strategies is given by

Prss(S1, · · · , SN ) =
exp[βH(S1, · · · , SN ; a, b, c, d)]

Z(β, a, b, c, d)
, (13)
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where H and Z are defined by

H(S1, · · · , SN ; a, b, c, d) ≡ x

N∑
i=1

SiSi+1 + y

N∑
i=1

Si, (14)

Z(β, a, b, c, d) ≡
∑
{S}

exp [βH(S1, · · · , SN ; a, b, c, d)] , (15)

and {S} denotes the set of all the possible combinations of the strategies {S1 = ±1, S2 =
±1, · · · , SN = ±1}.

We will use the transfer-matrix method (see, e.g., Nishimori and Ortiz (2011); Brézin
(2010); Baxter (1982)) developed in statistical mechanics in order to obtain the exact strategy
probability, the strategy correlation function, and the expected utility. Details are given in
Appendix B. We thereby arrive at the following three propositions.

3.1. Players’ Strategy Choice Probabilities

We have the following proposition concerning the probability that a player chooses a
strategy. A derivation is provided in Appendix B.2.

Proposition 1. The probability pA that a player takes the strategy A in the steady state is
exactly given by

pA =
exp

(
β a−b−c+d

4

)
sinh(β a+b−c−d

4 )

2
√
exp

(
β a−b−c+d

2

)
cosh2(β a+b−c−d

4 )− 2 sinh(β a−b−c+d
2 )

+
1

2
(16)

in the limit as N → ∞.

The sign of a+ b− c− d determines risk dominance. Our rationale for considering the limit
for N → ∞ is as follows. We are interested in “emergent” phenomena when many players
interact spatially. We underscore that to the best of our knowledge, the exact solution of this
kind of model may be obtained in cases of circle and line topologies only.

3.2. Strategy Correlation Function

Next we investigate the stochastic interdependence of strategies at different graph-distances
from one another. We do so by deriving the strategy correlation function C(r), where r de-
note the graph-distance between the two players. The strategy correlation function C(r) over
distance r is defined by

C(r) ≡ E [(Si − E[Si])(Si+r − E[Si+r])] = E[SiSi+r]− E[S]2. (17)

An intuitive interpretation of the strategy correlation function C(r) is as follows. Suppose
that shops choose a price between a high and a low price. Provided that a shop chooses the
low price, the probability that another shop in the distance r from the first shop may choose
the low price is given by the strategy correlation function C(r).

We now have the following proposition, whose derivation is explained in detail in Appendix
B.3.
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Proposition 2. The correlation function C(r) of the strategies of players at graph distance
r is given by

C(r) = sin2(2ϕ)

(
λ−
λ+

)r

(18)

in the limit N → ∞, where ϕ and λ± are defined by

cot(2ϕ) = exp

[
β
a− b− c+ d

2

]
sinh

(
β
a+ b− c− d

4

)
, (19)

λ± =exp

[
β
a− b− c+ d

4

]
cosh

(
β
a+ b− c− d

4

)
±

√
exp

[
β
a− b− c+ d

2

]
cosh2

(
β
a+ b− c− d

4

)
− 2 sinh

(
β
a− b− c+ d

2

)
.

(20)

The strategy correlation C(r) of players’ strategies at graph distance r decays as (λ−/λ+)
r.

Note that by construction
(
λ−
λ+

)r
tends to 0, as r → ∞. Therefore the correlation C(r)

attenuates spatially when the number of agents is large.

3.3. Expected Utility

The proposition that follows reports the solution for the expected utility of the game for
the typical player. The derivation is given in Appendix B.4.

Proposition 3. The expected utility E[U ] is given by

E[U ] =
(a− b− c+ d)

2

[
cos2(2ϕ) +

(
λ−
λ+

)
sin2(2ϕ)

]
+ (a− d) cos(2ϕ) +

(a+ b+ c+ d)

2
(21)

in the limit as N → ∞.

3.4. The model on a Line

So far, we have solved the model with the players located on a circle. The following ques-
tion naturally arises: what if the spatial structure retains the one-dimension but is construed
on a line? The line topology, illustrated in Fig. 2, is conceptually very similar to the circle,
with the only difference of the players at either end. We show that the spatial structure of
either a circle or a line leads to same results in the limit as N → ∞. Suppose that there are
N players and the player 1 and the player N are on the ends of the line. They interact only
with the player 2 and the player N − 1, respectively. It turns out that with many players,
the agents at either end have vanishing influence. Hence, we are concerned with players deep
within a line, when N → ∞.

Regardless of whether the spatial structure is a circle or a line, the probability pA that
a player chooses strategy A, the strategy correlation function C(r), and the expected utility
E[U ] are the same in the limit as N → ∞. The details of the derivations are given in Appendix
C.
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1　　  2　　 3　 　 4      ・・・・・・   N-1       N       

Figure 2: Players are set on a line and play games with adjacent players only.

3.5. Comparison with the Mean-field Approximation

Local interaction Logit games have been solved by mean-field approximation in many
studies (e.g., those referred in the introduction). We comment here on the relationship be-
tween the exact solution and a mean-field approximate solution. A mean-field approximation
is the approximation in which the strategies S of adjacent players are replaced by the mean
strategy E[S] of all players. In the mean-field approximation, the mean strategy E[S] is given
self-consistently by the following relation

E[S] = tanh

[
β

(
a− b− c+ d

2
E[S] +

a+ b− c− d

4

)]
; (22)

see, for example, Baxter (1982); Brézin (2010); Nishimori and Ortiz (2011). This is the central
equilibrium condition in the interactive discrete choice model [ Brock and Durlauf (2001)].
See also section 5 below.

The mean-field approximation does not take account of details of the underlying spatial
structure. This is an instance of a more general property known as universality. See Durlauf
(2004). Therefore, the mean-field approximation generally works well in high-dimensional
settings, but poorly in low-dimensional ones. In contrast, the exact solution of the game is
available only in one dimension as of now. Since in the present study we are interested in
the effect of the spatial structure, we chose to work in one dimension and employ the method
of the exact solution. The mean-field approximation would produce quite a different result
in the present case of one dimension. Indeed, the above condition admits in general three
fixed points of the hyperbolic tangent function, which are identified as multiple equilibria; see
Brock and Durlauf (2001) and Ioannides (2006).

3.6. The limits β → 0 and β → ∞
The parameter β indicates the sensitivity of the logit probabilities to the payoff from

different strategies. It actually reflects the dispersion of the underlying shocks that give rise
to logit probabilities: β → 0 expresses that the variance of the extreme value distributed
random shocks that give rise to the logit probabilities tends to infinity. In that case, the
probability that a player chooses strategy A is given by pA = 1/2 — the payoffs are irrelevant.
The strategy correlation function is given by C(r) = 0. The corresponding expected utility
is given by E[U ] = (a+ b+ c+ d)/4.

In the other extreme, β → ∞, the variance of the random shocks is equal to zero, resulting
in a deterministic choice: the probability pA of choosing strategy A, the strategy correlation
function C(r), and the expected utility E[U ] all depend on the signs of x and y. The players
are perfectly rational and choose the best strategy in the limit.

8



4. The Sensitivity of Strategy Probabilities to β in Prisoner’s Dilemma and Co-
operation Games

4.1. The Change in the Probability of Cooperation in Response to Changes in β

We study next how the probability that a player chooses cooperation changes in response
to changes in β in a prisoner’s dilemma game. The payoff matrix of prisoner’s dilemma game
under investigation is given by

( C D

C (e− f, e− f) (−f, e)

D (e,−f) (0, 0)

)
. (23)

The strategies C and D denote cooperation and defection respectively: e denotes the benefit
from cooperation and f the cost for cooperation; both of them are assumed to be positive.
Let pC denote the probability that a player chooses the strategy C.

We have

∂pC
∂β

= −1

4
f cosh2(

fβ

2
) < 0. (24)

Proposition 4. The larger β is, the lower the probability pC that a player chooses to coop-
erate in a prisoner‘s dilemma game is.

corollary 1. As β → ∞, the probability pC that a player chooses cooperative strategy C goes
to 0 in the prisoner‘s dilemma game.

4.2. The Change in the Probability of Taking Pareto Efficient Strategy in Response to β

Next we study how the probability that a player chooses a Pareto efficient strategy changes
in response to the increase in β in a cooperation game. The payoff matrix prisoner’s dilemma
game under investigation is given by

( P R

P (a, a) (0, c)

R (c, 0) (d, d)

)
, (25)

5 where a > d > c > 0 and a < c+d hold true. The strategy pair (P, P) is the Pareto efficient
one, where strategy R is risk dominant. The strategies P and R denote Pareto efficient and
risk dominant strategies, respectively. Let pP denote the probability that a player chooses
the Pareto efficient strategy P.

We have

∂pP
∂β

=
e−

1
4
β(a−c+d)

[
2(a− c+ d) sinh

(
1
4β(a− c− d)

)
+ (a− c− d) cosh

(
1
4β(a− c− d)

])
8
[
e

1
2
β(a−c+d) cosh2

(
1
4β(a− c− d)

)
− 2 sinh

(
1
2β(a− c+ d)

)]3/2 < 0,

(26)

Proposition 5. The greater β is, the lower the probability pP that a player chooses Pareto
efficient strategy P in the coordination game is.

corollary 2. As β → ∞, the probability pP that a player chooses Pareto efficient strategy P
goes to 0 in the coordination game.
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5. Relation to social interaction models

5.1. Interactions based on Agents’ Actual Environments

Much of the interactive discrete choice literature assumes that agents act by forming
expectations over their neighbors’ actions. This is the case of Brock and Durlauf (2000; 2001)
and Ioannides (2006). Those authors employ the self-consistency condition in section 3.5 as
an equilibrium condition. With local interactions, however, to be defined shortly, where one
knows one’s neighbors, it is reasonable to assume that individuals observe their neighbors’
actual actions. This is what we take up in this section. By imposing the requirement that
agents’ optimal decisions be consistent with one another at equilibrium, which constitutes
a counterpart of the game-theoretic formulation earlier in the paper, we may, in principle,
obtain the probability distribution functions for agents’ decisions in terms of fundamentals
and of the distributions of the random utility components. This aspect of the model has not
been fully explored in the context of the interactive discrete choice literature.4

Suppose that individual i′s utility function is given by:

Ui(Si;
∼
S∂i) ≡ hSi + Si

∑
j∈∂i

JijSj + ϵ(Si), (27)

where
∼
S denotes the vector of all agents’ decisions, {S1, . . . , SN}, and

∼
S∂i its subvectors

composed of those of i′s neighbors, ∂i ⊆ {1, . . . , I}, and Jij denote interaction weights. Here,
the social component of individual i’s utility is defined as a function of the actual decisions of
one’s neighbors, ωi

∑
j∈∂i Jijωj . Under the assumption that the shocks in (27) are extreme-

value distributed, utility maximization by individual i, conditional on
∼
S∂i yields that:

Prob(Si = 1|
∼
S∂i) =

exp
[
β
(
2h+ 2 1

|ν(i)|
∑

j∈∂i JijSj

)]
1 + exp

[
β
(
2h+ 2 1

|ν(i)|
∑

j∈∂i JijSj

)] , i = 1, . . . , I. (28)

This is a description of each agent’s best response conditional on her environment. It coincides
with the conditional specification of a Markov random field: the probability distribution of
each agent’s state depends on those of her neighbors.

A key result from the literature on Markov random fields states that if this is a strictly
positive nearest neighbor specification, then there exists a single probability distribution func-

tion for the state of the economy
∼
S, known as global phase, which is consistent with the local

specification [Kindermann and L.Snell (1980)]. The global phase is a Markov random field,
and in fact every Markov random field is equivalent to a Gibbs state for some single nearest
neighbor potential [ Kindermann and L.Snell (1980) ].

Equilibrium with social interactions when agents know the actual decisions of their neigh-
bors thus have very different structure than those of the Brock-Durlauf model. Being de-
scribed by means of a probability distribution function that coincides with the global phase
of the respective Markov random field, this distribution is characterized by more general
dependence than dependence on each agent’s neighbors.

4This is alluded to but examined by Ioannides (2006) only in the dynamic case; see ibid., sections 3.1, 3.1.1
and 3.12. It is presented in Ioannides (2004), sections 3, 3.1.
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The two interactions topologies that are particularly interesting to us are interactions
over a circle and along a line, as we have discussed earlier in the paper. The former may
be referred to as “cyclical interaction as an one-dimensional nearest-neighbor Ising model;”
the latter interaction as an “one-dimensional nearest-neighbor Ising model along a line.” The
solutions corresponding to these specific topologies are exactly analytically equivalent to the
solutions obtained earlier in the paper in the asymptotic case for N → ∞; see Eq. (4).
Specifically,

Prob(
∼
S) ∼ exp

βJ N∑
j=1

SjSj+1 + βh
N∑
j=1

Si

 , (29)

where the normalizing constant is derived in Ioannides (2004), section 3.1 and App. 8.7, and
solved for explicitly below in Appendix B. The case of interactions along the line is adapted in
the obvious way. As it has already been indicated above, they differ from the Brock-Durlauf
setting: the exact solutions for agents’ equilibrium behavior that we obtain do not involve
fixed points.5

5.2. An Econometric Interpretation

The model of discrete decisions with social interactions, when individuals’ utilities depend
on their neighbors’ actual decisions, admits an interpretation as an econometric model of
simultaneous equations involving discrete decisions. Specifically, if the utility functions of
agents i = 1, . . . , N, as defined in (27), are interpreted as indicator functions for the discrete
choices of the logit models, then the discrete choice probabilities, given by (29), are the
corresponding reduced forms for the structural system of simultaneous equations of the logit
type (28).

The earlier literature on structural models of discrete choice, such as Schmidt (1981)
and others, emphasizes conditions for “internal consistency” or “coherency.” Such conditions
guarantee that given the values of exogenous variables, observed and unobserved, unique
values for the dependent variables are implied and the associated likelihood functions are well
defined.

We may think of decisions by an interacting group of N agents with a more general
interaction topology. The counterpart of (27), may be written in concise vector form as
follows: ∼

S= 1
[
2hI+ 2N−1Γ

∼
S +

∼
ε
]
, (30)

where I denote anN−vector of 1’s, N−1, the inverse of the matrix of each agent’s neighbors, Γ,
the matrix of interaction coefficients which subsumes the adjacency matrix of the interaction
topology, an N × N matrix and the N−column vector

∼
ε is defined as the difference of 2N

independently and identically type I extreme-value distributed random variables, εi = ϵi(1)−
ϵi(−1), written as a column vector,

∼
ε≡∼

ϵ (1)− ∼
ϵ (−1), and 1[R] is a N− vector indicator

function of the N−vector R, with its ith element equal to 1, if the ith element of R, Ri > 0,
and is equal to −1, otherwise. Equ. (30) represents a nonlinear spatial autoregressive model
for discrete endogenous variables.

The consistency conditions proposed by Schmidt (1981) and applied to (30) reduce to the
condition that the model be recursive [ ibid., Condition 12.6, p. 429 ]. It may be shown

5They do involve an auxiliary variable whose values is defined in terms of the root of Eq. (B.16).
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the system of simultaneous discrete choice equations (30) is not recursive for the cases of
complete, cyclical, and interaction along the line topologies. The present paper establishes
that interactive discrete choice models that are defined in those topologies and with agents’
being assumed of acting under full knowledge of their neighbors’ decisions are isomorphic to
spatial logit response games.

5.3. Dynamic Analysis of Social Interactions

We may move to a dynamic analysis with social interactions in nonlinear settings by
assuming that agents make decisions with knowledge of the actual state of their neighbors in
the preceding period, given an arbitrary interaction topology. That is:

∼
St= 1

[
2hI+ 2N−1Γ

∼
St−1 +

∼
ε
]
. (31)

Ioannides (2006) discusses how the stationary distribution associated with this model may
be obtained. Ioannides (2006) also reports an explicit solution for the case of interactions
defined on a d−dimensional torus, which are translation-invariant and symmetric, a result
that rests on Bigelis (1999).

6. Conclusion

We have solved in closed form a general two-strategy symmetric-payoff logit-response game
with one-dimensional spatial structure, without appealing to a mean-field approximation.
Unlike the mean-field approximation of discrete response models, which does not take account
of details of the underlying spatial structure, our approach produces an exact solution that
does fully depend on network topology. The game we study can analyze several models,which
can be interpreted as games with spatial structures, ranging from pure social interactions to
retailers competing with their neighbors. A spatial structure is very important in coordination
games. The propagation in linguistic innovations and changes in languages and cultures, for
example, over the ages in Europe may be explained as spatial coordination games. Changes
in languages and cultures diffuse and propagate spatially.

We solve the logit response game with spatial structure by introducing a transformation
that maps from the two-strategy spatial logit response games to the Ising-spin interaction
model. The transformation makes the dynamics of the game equivalent to the Glauber dy-
namics of statistical mechanics. We then apply the transfer-matrix method, which is a com-
mon tool of statistical mechanics, and obtain the exact solution of the game. We investigate
the steady state, which is interpreted as the equilibrium concept in the present paper. We
derive the strategy choice probabilities, the strategy correlation function C(r) as a function
of the graph-distance r between players, and the expected utility E[U ] of the game, an exact
measure of players’ welfare exactly in closed-form. We study the sensitivity of these endoge-
nous objects to a key parameter of the model. The strategy correlation function C(r) gives
the stochastic interdependence across the strategies adopted by other players at distance r,
and show that the effects decay geometrically. We show that the greater the sensitivity of
the strategy choice probabilities to the payoffs is, that is the parameter β, the smaller the
probability of adopting a cooperative strategy in a prisoner’s dilemma game is. We also show
that the greater β is, the smaller the probability of taking Pareto efficient strategy in the
coordination game is, tending to 0 as β → ∞. Unlike mean-field approximations of spatial

12



logit response models whose equilibria are characterized by fixed points of the hyperbolic tan-
gent function, our solutions are obtained in closed form. We establish an equivalence between
spatial logit response games and social interactions models with agents observing their actual
environments, discuss its econometric characterization, and develop its dynamic counterpart.

*Acknowledgement. Konno expresses gratitude to Naomichi Hatano, Shin-ichi Hanada, and
Takatoshi Tabuchi for helpful comment and discussions and to Japan Society for the Promo-
tion of Science for financial support.

This research was partly supported by the grants-in-aid from 21st-Century Culture and
Science Foundation, Seimeikai, and Japan Society for the Promotion of Science.

Appendix A. The Probability of Strategies in the Steady State

The present Appendix explains how we may obtain the steady-state probability of adopt-
ing different strategies. Our discussion is equivalent to the detailed balance condition of the
Metropolis method (Metropolis et al. (1953)), the Gibbs sampler (the heat-bath method),
and the Markov Chain Monte Carlo (MCMC). They are basic results for reversible stochastic
processes [Kelly (1979); Blume (1993)].

We show the existence and uniqueness of the steady state below. Prss(µ) denotes the µth
component of the steady state Pss, that is the probability of the set of strategies {S}µ in the
steady state, which is also referred to as the steady-state probability of strategies {S}µ. Note
that in the steady state, the strategy of each player is not stationary but the probability of
the strategies is stationary. This steady state is interpreted as the equilibrium in the present
paper.

We show that the steady-state probability is given by

Prss(µ) =
exp[βH(µ; a, b, c, d)]

Z(β, a, b, c, d)
, (A.1)

where H and the Z called partition function are respectively given by

H(µ; a, b, c, d) ≡ H({S}µ; a, b, c, d) = x
N∑
i=1

SiSi+1 + y
N∑
i=1

Si, (A.2)

Z(β, a, b, c, d) ≡
∑
µ

exp[βH(µ; a, b, c, d)], (A.3)

and
∑

µ denotes the summation over all possible 2N sets of strategies {S}µ. Note that x and
y in Eq. (A.2) are functions of a, b, c, and d as are defined in Eq. (12). The expectation in
the steady state is therefore given by

E[Q] ≡ =
∑
µ

Prss(µ)Q(µ)

=
1

Z(β, a, b, c, d)

∑
µ

Q(µ) exp[βH(µ; a, b, c, d)], (A.4)

for an arbitrary quantity Q. We occasionally let H(µ) denote H({S}µ; a, b, c, d) and Z denote
Z(β, a, b, c, d).
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After an update of strategies, P(t) changes to P(t+1). Let T denote the transition matrix
given by the update rule from the state P(t) changes to P(t+1) as defined in Section 3. The
element Tνµ of the matrix T is the transition probability that the system hops from the νth
configuration (the νth set of the strategies {S}ν) to the µth configuration in a update. The
update of the strategies is then described by

P(t+ 1) = P(t)T. (A.5)

As the update progresses, the probability of strategies converges to the unique steady state
Pss from any initial state P(0) as

lim
n→∞

P(0)Tn = Pss. (A.6)

The steady state Pss exists and is unique thanks to the Perron-Frobenius theorem, because
(Tn)µν > 0,∀µ, ν, ∃n for the transition matrix T under consideration in the present paper.

The steady state Pss satisfies

PssT = Pss, (A.7)

or ∑
ν

Pss(ν)Tνµ = Pss(µ),∀µ, (A.8)

which is followed by

∑
ν( ̸=µ)

Pss(ν)Tνµ +Pss(µ)

1−
∑
ν (̸=µ)

Tµν

 = Pss(µ), (A.9)

because the transition matrix must satisfy

2N∑
ν=1

Tµν = 1. (A.10)

Hence, we obtain ∑
ν (̸=µ)

Pss(ν)Tνµ =
∑
ν (̸=µ)

Pss(µ)Tµν . (A.11)

It is generally not easy to obtain the steady-state solution of Eq. (A.11) for a given
transition matrix T. However, it is much easier to solve a sufficient condition of Eq. (A.11),

Pss(ν)Tνµ = Pss(µ)Tµν ,∀µ, ν, (A.12)

which is called the detailed balance condition in the field of statistical physics. Equa-
tion (A.12) means that the probability flow from any configuration into any other config-
uration is equal to the probability flow in the opposite direction. Since the steady state is
known to be unique, a solution that satisfies the detailed balance condition (A.12) must be
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the unique steady-state solution of Eq. (A.11). Noting that the transition matrix given in
Eq. (11) satisfies

Tµν

Tνµ
=

exp[βH(ν)]

exp[βH(µ)]
, (A.13)

we find that any components of the steady state Pss should satisfy

Pss(ν)

Pss(µ)
=

exp[βH(ν)]

exp[βH(µ)]
. (A.14)

In view of the normalization condition

2N∑
µ=1

Pss(µ) = 1, (A.15)

we arrive at the solution (A.1).

Appendix B. Transfer-Matrix Calculation of the Exact Solution

In the present Appendix, we show a method of calculating the summation over µ in the
partition function Z in Eq. (A.3). We then obtain for the steady state, closed-form expressions
of (i) the probability that a player choose a strategy, (ii) the strategy correlation function,
and (iii) the expected utility. The method that we use here is the transfer-matrix method
developed for statistical-mechanical models in one spatial dimension (see, e.g., Baxter (1982);
Brézin (2010); Nishimori and Ortiz (2011)).

Appendix B.1. Partition function Z

Let us define the matrix V such that the matrix elements V (S, S′) are given by

V (S, S′) ≡ exp

[
βxSS′ +

1

2
βy(S + S′)

]
. (B.1)

In other words, we have

V (+1,+1) = exp(βx+ βy), (B.2)

V (+1,−1) = exp(−βx), (B.3)

V (−1,+1) = exp(−βx), (B.4)

V (−1,−1) = exp(βx− βy), (B.5)

where S = +1 indicates the first row and column of the matrix, while S = −1 indicates its
second row and column. The matrix representation is therefore given by

V =

(
eβx+βy e−βx

e−βx eβx−βy

)
. (B.6)

We begin with noting the identity

exp[βH({S}µ)] = V (S1, S2)V (S2, S3) · · ·V (SN−1, SN )V (SN , S1). (B.7)
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Therefore, the partition function (A.3) is given by

Z =
∑
µ

V (S1, S2)V (S2, S3) · · ·V (SN−1, SN )V (SN , S1). (B.8)

The summation
∑

µ here is decomposed to∑
µ

=
∑

S1=±1

∑
S2=±1

· · ·
∑

SN=±1

. (B.9)

Therefore, Eq. (B.8) indeed takes the form of matrix multiplication:

Z =
∑

µ1=1,2

∑
µ2=1,2

· · ·
∑

µN=1,2

Vµ1µ2Vµ2µ3 · · ·VµN−1µNVµNµ1 , (B.10)

which is reduced to

Z = TrVN . (B.11)

We can calculate the expression (B.11) easily by diagonalizing the matrix V. Since the
matrix V is symmetric, we can diagonalize it by means of an orthogonal matrix O in the
form

O−1VO = D ≡
(
λ+ 0
0 λ−

)
, (B.12)

where |λ+| > |λ−| and λ+ > 0 We can exclude the case of degenerate eigenvalues thanks to
the Perron-Frobenius theorem. We then have the partition function in the form

Z = TrVN = TrDN = λ+
N + λ−

N . (B.13)

The explicit expressions of U and λ± are given by

U =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, (B.14)

λ± = eβx cosh(βy)±
√
e2βx cosh2(βy)− 2 sinh(2βx), (B.15)

where ϕ is defined by the following equation.

cot(2ϕ) = e2βx sinh(βy). (B.16)

In the limit N → ∞, the expression (B.13) is dominated by the first term because |λ+| > |λ−|
and λ+ > 0. We thereby have

lim
N→∞

Z ∼ λ+
N . (B.17)
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Appendix B.2. Probability of a strategy

We now calculate the probability pA that a player chooses the strategy A. Since Si = ±1
corresponds to the strategies A and B of the player i, respectively, we have

pA =
1

2
(E[S] + 1) , (B.18)

where

S ≡ 1

N

N∑
i=1

Si (B.19)

and E[· · · ] is the expectation in the steady state, as was defined in Eq. (A.4).
We can also calculate E[S] by the transfer-matrix method. Its definition in conjunction

with the identity (B.7) is followed by

E[Si] =
1

Z

∑
{S}µ

V (S1, S2)V (S2, S3) · · ·

· · ·V (Si−1Si)SiV (Si, Si+1) · · ·
· · ·V (SN−1, SN )V (SN , S1). (B.20)

Let us then define the matrix M such that the matrix elements are given by

M(S, S′) = SδS,S′ . (B.21)

Its matrix representation is given by

M =

(
1 0
0 −1

)
. (B.22)

Then we can replace Si in Eq. (B.20) with M(Si, S
′
i). After the same reasoning as in

Eqs. (B.7)–(B.11), we obtain

E[Si] =
1

Z

∑
{S}µ,S′

i

V (S1, S2)V (S2, S3) · · ·

· · ·V (Si−1Si)M(Si, S
′
i)V (S′

i, Si+1) · · ·
· · ·V (SN−1, SN )V (SN , S1)

=
1

Z
Tr(V i−1MV N−i+1) =

1

Z
Tr(MV N ). (B.23)

This indeed proves the uniformity of the space

E[S] = E[Si],∀i. (B.24)

By diagonalizing the matrix V by using matrix O again, we have

E[S] =
1

Z
Tr(O−1MODN ). (B.25)
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Using the identity

O−1MO =

(
cos(2ϕ) − sin(2ϕ)
− sin(2ϕ) − cos(2ϕ)

)
, (B.26)

we arrive at

E[S] =
1

λ+
N + λ−

N

(
λ+

N − λ−
N
)
cos(2ϕ). (B.27)

In the limit N → ∞, we find

lim
N→∞

E[S] = cos(2ϕ). (B.28)

The explicit expression of E[S] in the limit N → ∞ is given by

lim
N→∞

E[S] =
eβx sinh(βy)√

e2βx cosh2(βy)− 2 sinh(2βx)
. (B.29)

Remembering that x and y are functions of the game parameters a, b, c, and d, we arrive at

lim
N→∞

pA =
exp[β(a− b− c+ d)/4] sinh[β(a+ b− c− d)/4]

2
√
exp[β(a− b− c+ d)/2] cosh2[β(a+ b− c− d)/4]− 2 sinh[β(a− b− c+ d)/4]

+
1

2
.

(B.30)

The sign of y = a+ b− c− d determines the risk dominance.

Appendix B.3. Strategy correlation function

We now calculate the strategy correlation function C(r) over the distance r, which is
defined in Eq. (7), or

C(r) ≡ E[(Si − E[Si])(Si+r − E[Si+r])]

= E[SiSi+r]− E[S]2, (B.31)

where we used the uniformity E[Si] = E[S]. The expectation E[SiSi+r] can be calculated by
the transfer-matrix method again. The same transformation as in Eqs. (B.20)–(B.28) leads
to

E[SiSi+r] =
1

Z
Tr(MV rMV N−r)

N→∞−→ cos2(2ϕ) +

(
λ−
λ+

)r

sin2(2ϕ). (B.32)

Therefore, the strategy correlation function C(r) over the distance r is given by

C(r) =

(
λ−
λ+

)r

sin2(2ϕ), (B.33)
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where ϕ and λ± are written in terms of the original parameters as

cot(2ϕ) = exp

(
β
a− b− c+ d

2

)
sinh

(
β
a+ b− c− d

4

)
, (B.34)

λ± = exp

(
β
a− b− c+ d

4

)
cosh

(
β
a+ b− c− d

4

)
±

√
exp

(
β
a− b− c+ d

2

)
cosh2

(
β
a+ b− c− d

4

)
− 2 sinh

(
β
a− b− c+ d

2

)
.

(B.35)

Appendix B.4. The expected utility

The expected utility is given by

E[U ] = E

∑
j∈∂i

(xSiSj + ySi + zSj + w)


= xE[Si−1Si] + xE[SiSi+1] + kyE[Si] + zE[Si−1] + zE[Si+1] + kw

= kxE[SiSi+1] + k(y + z)E[S] + kw, (B.36)

where k = 2 is the coordination number (the number of the adjacent players). We therefore
arrive at

E[U ] =
k(a− b− c+ d)

4

(
cos2(2ϕ) +

λ−
λ+

sin2(2ϕ)

)
+

k(a− d)

2
cos(2ϕ) +

k(a+ b+ c+ d)

4
. (B.37)

Appendix C. The Model on a Line

In the present Appendix, we will solve the model on a line (Fig. 2) by the transfer-matrix
method, in order to show that the result does not depend on whether the underlying structure
is a circle or a line in the limit N → ∞. Let us first calculate the partition function Z on a
line. The equation is modified from Eq. (B.10) to

Z line =
∑

µ1=1,2

∑
µ2=1,2

· · ·
∑

µN=1,2

Vµ1µ2Vµ2µ3 · · ·VµN−1µN . (C.1)

Note that the final matrix element in Eq. (B.10) is missing in Eq. (C.1). We therefore have

Z =
∑
µ=1,2

∑
ν=1,2

(
VN−1

)
µν

=
(
1 1

)
VN−1

(
1
1

)
(C.2)

instead of Eq. (B.11). The same diagonalization as in Eq. (B.12) gives

Z line =
(
1 1

)(cosϕ − sinϕ
sinϕ cosϕ

)(
λ+

N−1 0

0 λ−
N−1

)(
cosϕ sinϕ
− sinϕ cosϕ

)(
1
1

)
= λ+

N−1
(
1 + sin2 ϕ

)
+ λ−

N−1
(
1− sin2 ϕ

)
. (C.3)
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In the limit N → ∞, we thereby have

lim
N→∞

Z ∼ λ+
N−1

(
1 + sin2 ϕ

)
. (C.4)

The expectation E[Si] is similarly given by

E[Si] =
1

Z line

(
1 1

)
Vi−1MVN−i

(
1
1

)
(C.5)

instead of Eq. (B.23). The same procedure as Eqs. (B.25)–(B.28) gives

E[Si] =
(
1 1

)
ODi−1

(
O−1MO

)
DN−iO−1

(
1
1

)
. (C.6)

In the limit i,N → ∞ with 1 ≪ i ≪ N , we have

lim
N→∞

lim
i→∞

1≪i≪N

E[Si] = cos(2ϕ), (C.7)

which is identical with Eq. (B.28).
The expectation E[SiSi+r], which is given on a line by

E[SiSi+r] =
1

Z line

(
1 1

)
Vi−1MVrMVN−r−i

(
1
1

)
, (C.8)

converges to Eq. (B.32) in the limit 1 ≪ i < i + r ≪ N . Therefore, the strategy correlation
function C(r) as well as the expected utility E[U ] on a line are identical to Eqs. (B.33)
and (B.37), respectively.
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