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CHAPTER 8

Diffusion of Technological Change and
Economic Growth

Yannis M. Ioannides

8.1 INTRODUCTION

One of the most significant developments in neoclassical economic theory is the theory of
economic growth. While economic growth as a subject has received a lot of attention from
the classical economists, the pioneering work by Solow (1956) gave it new impetus and
elevated the subject to great prominence. The literature that has been produced is vast, and
it has been eloquently reviewed in many survey articles and books (e.g., Burmeister and
. Dobell 1970; Dixit 1976; Wan 1971).

A crucial development within growth theory is models of technological change. One of
several concepts of technological change (or progress) which have been developed is the
notion that innovations may be embodied in new capital goods. Johansen (1959) is the
seminal paper that launched the topic. The key idea of that theory is differences in the
substitutability between factors of production before and after investment takes place. One
of the most interesting features of Johansen's model is that, under certain conditions, per
capita production may grow, stagnate, or even decrease over time. Even though the
growth rate of production and output per capita do not depend on the savings rate, the
latter affects the time-independent factor in these growth rates. This, in particular, implies
for countries with different savings rates, which however start at the same initial position,
the country with a higher propensity to save will start out with the higher relative growth
rate (before "the asymptote" is reached).

We are currently witnessing a renewed interest from economists in the fundamental
determinants of economic growth. Lucas (1985), in a provocative reexamination of the
performance of neoclassical growth theory in explaining economic development, has
concluded that allowing for increasing returns is the only way for that theory to explain
observed economic growth across countries and time. An essential element of Lucas'
reexamination is that the steady state growth rate per capita magnitudes in standard
versions of the neoclassical growth model does not depend on those behavioral
parameters which may be interpreted as determinants of the propensity to save. E.g., in
the model in Cass (1965), per capita consumption and per capita capital grow at a rate
equal to the (exogenous) rate of neutral technological change divided by the share of labor
in aggregate production.
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The special notion of increasing returns that is invoked by Lucas, namely that they are
external to the industry but internal to the economy as a whole, 1 has received support
from Romer (1986), who argues that (technological) knowledge is the key factor
responsible for such form for increasing returns.2 Romer (1987) offers a critical review
of the traditional growth accounting literature. He interprets the empirical evidence as
implying an aggregate production function which contains no autonomous technological
change factor, and exhibits capital elasticity close to unity and labour elasticity close to
zero.3 4

Several researchers, such as Baumol, et.al. (1985) and Baumol (1986), have
emphasized that there are inherent factors in the economy which constrain the economy-
wide propagation of cost improvements accomplished in some sectors - such as those
associated with information technology. Baumol, et.al. (1985) emphasize the significance
of what they call asymptotically stagnant sectors. There inputs from "very progressive
sectors"” are used jointly with inputs from "stagnant" sectors. They show that the share in
total costs of progressive components diminishes continually while that of stagnant
components increases both in real terms and as a share of total cost. Computers have
brought about an extraordinary increase in labor productivity, but they are intermediate
products and thus not consumed directly. They are used with complementary inputs to
produce computational services. The argument is the cost of these complementary inputs
comes to dominate the total cost - "the progressive component is innovating itself out of
its cost-dominating positions” (ibid) - and ultimately the activity assumes all the
characteristics of stagnant services.

This paper addresses the impact of the diffusion of technological change on the
dynamics of economic growth. This topic has been recognized as worthy of attention by
the growth literature of the 1960's, but has received surprisingly little attention. An
exception is a recent paper by Shleifer (1986), in which the timing of innovations is
endogenous. The innovating firm captures the whole market but prices its product at the
marginal cost of inefficient firms. However, the advantages of innovation are rather short-
lived. An interesting feature of Shleifer's model is that it leads to cyclical activity. Firms
choose to innovate at time of high aggregate demand. Therefore, the resulting
synchronization of innovations gives rise to a multiplicity of perfect-foresight equilibria.

1 Actually, this concept has been utilized by trade theorists [Chipman (1980)] and is central to the modem
urban economics literature [see Henderson and Ioannides (1981) for an application in modeling growth of a
system of cities]. Lucas, op.cit. also emphasizes the urban aspects of the operation of such externalities -
motivated both by the significance of urbanization for economic growth and the presumed importance of
externalities for understanding the development of urban economies. Production of knowledge (inventive
activity), though not by increasing returns, was investigated by Shell (1967).

2The essence of the methodology applied by Romer (1986) is that knowledge is treated as an externality.
Given the aggregate level of knowledge, firms' production functions are assumed to be concave in inputs -
say firms' own technology and labor input. Then equilibrium is defined by equating the sum of individual
firms' demand for knowledge to aggregate technology, which enters into individual production functions.
A critical assumption is that from a planner's point of view, by treating all firms as identical, an
individual firm's production function is convex in knowledge. No accumulation of physical capital, but
only accumulation of knowledge takes place. Accumulated knowledge has increasing external effects, but
is produced with diminishing returns.

Capital investment can have positive external effects through the creation of new knowledge, which
spills over throughout the economy and may be propagated by the introduction of new intermediate goods.
The latter is related to the total amount of invested capital, so that investment has an additional effect
resembling that of an externality.
3Romer, ibid. does not explain why labor's coefficient should be so small, except that it could be
explained by a putty-clay capital type of theory. Romer also corroborates the evidence in Baumol et.al.
(1985) that computerization has not brought forth the magnitudes of benefits one would expect on the
basis of the sheer reduction in the cost of computing machinery.
4A small labor elasticity is consistent with putty-clay theories of economic growth [Johansen (1959)).
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One of them is always the steady-growth acyclical equilibrium, in which inventions are
implemented immediately.5

Chari and Hopenhayn (1986) also endogenize the adoption of new technologies. A
key, and innovative, characteristic of their model is that new technologies are embodied in
the form of human capital. Young individuals choose the vintage of capital with which to
work and thus acquire capital vintage-specific skills. The paper emphasizes the
determination of the distribution of workers over vintage-specific skills, which they
show to be single-peaked at the steady state. Thus, in general, it takes time for newer
technologies to become popular, and technologies associated with different vintages are
used at the same time.

From a modern perspective, the technological change of particular interest is the one
associated with computerization. Certain stylized facts about computerization may be
constructed as embodied, as in the case of digitally controlled machine tools, or
disembodied, as in the case of software improvements. It takes a long time and substantial
start-up costs to fully computerize a particular establishment, time during which the new
technology cannot be utilized to full advantage. A related issue is that of flexibility.
Technological change associated with computerization may improve flexibility, but such
flexibility may be utilized in a economy-wide sense only if all firms are computerized.
Another crucial stylized fact about computerization is the significance of the network
effect (Chow 1969; Katz and Shapiro 1986). The more computers have been installed, the
easier it is to utilize an additional computer. However, what is significant here is the
adoption of the same standard, or else there is no network effect. The advantages of
computerization do not appear only within firms. E.g. firms may pass to one another
masses of data in electronic form, but such communication is otherwise very costly.

This paper uses an aggregative neoclassical growth model, which includes explicit
assumptions about the diffusion of technological change in order to study the ensuing
dynamics. We show that the consideration of non-instantaneous diffusion of
technological change in conjunction with embodied capital-augmenting technological
change leads to a second-order differential equation in aggregate capital per capita. Even
though this equation is difficult to solve, it allows us to conclude that the long-run growth
rates of all magnitudes of interest do not depend upon the propensity to save. That
conclusion is based on two alternative specific assumptions about the process of diffusion
of technological change. Our result depends critically on the assumption that technological
change is capital - augmenting, for which it is well-known that it is possible to aggregate
across capital vintages. That along with the equalization of effective factor intensities
across vintages ensures the validity of our results. The second-order differential equation
that we obtain implies interesting dynamics, whose precise properties depend on the
characteristics of the process of diffusion. The study of these dynamics is left for future

work.

5Cost reductions associated with economy-wide computerization may be assumed to diminish at an
increasing rate with the percentage of the economy which is computerized. To see this, consider the cost
of having bills paid directly from bank accounts. The cost is miniscule in a fully computerized economy,
and may be substantial in a partly computerized one.

6The issue of flexibility is of particular interest in its own terms [Kulatilaka (1986)]. Very much like a
clay-putty model, embodied innovations may allow greater substitution ex post than the substitution
possibilities embodied in the technology available ex ante. Flexible manufacturing systems are a case in
point here. As far as modelling flexibility is concerned, dual models like that of Fuss (1977) [see Ansar,
et.al. (1986) for a recent application] are superior for the purposes of empirical investigations to those
utilized by Mizon (1974) and Malcomson and Prior (1979).



104 Diffusion of Technological Change |

8.2. NEOCLASSICAL ECONOMIC GROWTH WITH DIFFUSION OF
TECHNOLOGICAL CHANGE

8.2.1 Diffusion of Technological Change

Consider a neoclassical economy consisting of an infinity of firms with an aggregate
measure of unity. At the beginning of time all firms have identical technologies. Their
production function exhibits constant returns to scale. As time evolves some firms
innovate. The proportion of firms which have innovated by time t is given by y(t). The
function y(-) satisfies the following conditions:

y>0; im y(t)=1.
y tA‘Emy()

We have now yet made any specific assumption about the nature of the process which
described the diffusion of technological change through the economy. For the purposes of
comparison we could consider a number of alternative processes. An assumption made
frequently is that the spread of innovations across the economy is described by the so-
called logistic growth equation:’

YL% = c(1-y(®),

where ¢ is a positive constant. That is, the growth rate of y(t), the proportion of all firms
which have adopted the innovation by time t, is proportional to the number of firms
which have not yet innovated. The higher that number the higher is the growth rate. It is
an interesting property of logistic growth that innovation spread initially at increasing rate
but ultimately at a decreasing one. Integrating the logistic growth equation yields:

- (0)cct
YO =150 + yoyest

If innovations were to spread at a constant growth rate, then they would spread
through the entire economy in finite time. This case is not particularly interesting in our
context.

However, the case of a continuously decreasing growth rate is particularly interesting.
In this negative exponential case we have:

y=1-ec.

Innovation takes the form of knowledge that is newly acquired and allows better
utilization of productive factors.

8.2.2 Embodied Technological Change With Diffusion

As we described in Section A above, innovation takes the form of knowledge about how
to implement capital-augmenting technological progress. For a firm which innovates at

7See Allen (1982) for a justification of the logistic growth equation by means of a behavioral model of
information transmission (involving Gibbs states with nearest neighbor potential), and Chow (1969) for
an application on the growth of demand for computers).
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time 6, one unit of capital yields e¥® efficiency units of capital, where ¥y is an exogenous
rate of technological change. We further assume that technological progress is embodied
in capital goods and that the technology is putty-putty. That is, a firm that has innovated at
time 0 and invests I(8) units of capital, has an effective capital equal to €¥01(8)e-5(t-6) at
any time t 2 0, where 6 denotes a constant exponential rate of deterioration. Thus, the rate
of output at t by a firm that innovated at time 8 is given by:

F(0,t) = F(e-5teB81(0),L;(60,1)), t26. (1)

where B =7+ §, and (F,+) is a variable-proportions production function which exhibits
constant returns to scale. The subscript i is a mnemonic for innovation. After it has
innovated, a firm may vary its output only by varying its labor input at time t, L;(6,t),
t > 0. We assume throughout that all existing vintages of capital are used at any point in
time. This in effect, is an assumption about the curvature of the production function.8

Equilibrium in the labor market implies that all firms face the same wage rate. Thi
requires that the marginal product of labor be equalized across all firms, that is, firms
which have already innovated and thus operate with capital stocks of different vintages, as
well as firms which have yet to innovate. This, in turn, along with the constant returns to
scale assumption implies that the capital-labor ratio in firms which have not yet innovated,
ks(t) = K¢ (t)/Lg(t), is equal to the effective capital-labor ratios across all currently existing
vintages:

_ K _ etebore)
ky(D) = L:(t) = L.0.0 3

The subscript s is a mnemonic for stagnant.

Equilibrium in the labor market requires that the labor supply, N(t), be equal to the
demand for labor by all firms, that is by those which have yet to innovate and by those
which have already innovated. A proportion 1-y(t) belong to the former category and y(t)
to the latter. To aggregate the labor demands by the firms that belong to the latter group
we must take into consideration when they innovated. Therefore, we have:

o<t @

N = (1-yOL® + | Li ©.05(8)d. 3)

Let N(t), the exogenous labor force (which is equal to total labor supply), grow at a
constant exponential rate n. Equations (2) and (3) yield the total demand for capital:

ks®ON(D) = (1-yOK (1) + et . ! eBO1(6)y(6)d6. “
<t

The total rate of output is obtained as follows:

8That capital becomes obsolete in finite time is an assumption which has crucial consequences for the
dynamics of the model in Johansen (1959).

Kurz (1963) criticises Johansen for failing to account for the endogeneity of obsolescence. As labor
productivity might rise over time, certain vintages of capital might have to be retired before they have
physically depreciated. Kurz defines as a terminal path the situation where each variable develops through
time at a constant relative rate of change. He shows that on a terminal path, capital becomes obsolete after
a constant length of time has clapsed from when first installed, 6 = -I—AQ log(1-w), where 1- is labor's

relative share of output and A is equal to the rate of technical progress in the vintage production function.
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(1-y(D)F(K(t),Ls(1)) + . i F(e-3eBO1(6),L;(6,1))y(6)d®
<t

= f(1k JO)(1-y(®))Lg(t) + St 5 | eB8I(0)y(8)do]
<t

=kg(ON®F( k1 (1)). &)

Thus, output per capita is equal to F(kg(t),1) and depends only on the capital-labor ratio in
the stagnant sector, k¢(t). (5) exploits a well-known result of aggregation from growth
theory, namely that constant returns to scale together with capital-augmenting embodied
technological progress allow aggregation of capital of all vintages (Solow, 1959; Dixit
1976). A new feature in our analysis is that this aggregation still holds when a certain
portion of the economy operates under different production conditions.

In order to complete the analysis, we must develop the equation of motion of the
system and the determination of the rate of investment when innovation occurs. Even
though it pays to adopt the innovation, the process of competition bids away all rents,
reducing profits of innovating firms to zero, in the current period as well as in all future
ones. Were it not for this, we should characterize the optimal amount of investment in
terms of the trade off between the future stream of extra profits and the present cost of
investment. It is thus natural to assume that the innovating firms simply convert their
current capital into one that embodies the new technology. We assume that this
conversion process is costless. Therefore, for the innovating firms we have for all t:

K1) = I(t). (6)

We retain the neoclassical growth theory assumption of a constant gross savings rate.
We may obtain the equation of motion of the system by equating savings per unit of time
to additional investment needed by the stagnating sector, (1-y(0)K(t), plus what is
needed to make up for depreciation of capital in the stagnating sector, OK(t). Capital in
the stagnating sector that is freed by the diffusion of technological change is transformed
into capital that embodies technological change. We thus have:

(1-y(®)K + 8Ky(1) = sSNOf(kg(1)), )

where f(k;) = F(kg,1) denotes output per capita. Note that because technological change is
embodied, no additional investment is made by firms which have already innovated, nor
is depreciated capital replaced.

We shall transform (7) in order to make it tractable. First we divide both sides of (7)
by N(t) and then use the auxiliary transformation y = Ky/N and (6) to get:

(1-yOw) + @ + 1-y)y
= sf((L-y(@®)y(t) + e-@+)t ’ | eBOy(8)y(0)do). ®8)
<t

Next we perform an integral transformation in order to convert the integro-differential
equation (8) into a differential one. We define:
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J(t) = e 0481 e£ eB+n)By(8)7(8)d0. ®)
<t

From (9) by differentiating we obtain an expression for y(:) in the terms of J(-):

v = YOO + @+3)I(1),

where Y (t) = (1/y(t)eB-9)t), a known function.
Furthermore,

Y® = YOI® + @+8)I(®) + YO () + (0+3) (1)).

J(-) plays here the same role as aggregate capital per capita in vintage capital models (c.f,,
Dixit op.cit.). It is now clear that (8), the equation of motion of the system, may be
transformed into a second-order differential equation in J(t) with non-linear coefficients:

1-yOYOT® +[A-yO)n+)Y(®) + L-y®)¥(®
+ (8 + (1-y)nB® + [+ YO (1-y(®) + B + (L-y(t))n]I(r)
= STI(1-yO)YOI(®) + (1-y())Y O 0+3) + DI®)]. (10

‘We have thus obtained a generalization of the law of motion in the neoclassical model
of economic growth when the diffusion of technological change is not instantaneous (c f.,
Dixit, op.cit.., 91-94). This equation is expressed in terms of an aggregator for the
capitals of different vintages, where the aggregation is weighted by the efficiency factors,
multiplied by the speed of innovation diffusion. The fact that the law of motion is a
second-order rather than a first-order differential equation is, of course, entirely due the
non-instantaneous diffusion of technological change. Therefore, it could, in principle,
give rise to much more complicated dynamics than the standard neoclassical growth
model. This differential equation, however, is rather difficult to solve because it is not
linear in terms of the derivatives of J(t).

It would be interesting to compare the above solution with the case where technological
change is disembodied. Unfortunately, as it is clarified in the Appendix, this case is
intractable. Therefore in the following section we restrict ourselves to a comparison with
the textbook case of embodied technological change, that is when diffusion is
instantaneous.

The differential equation (10) is linear only if f(-) is linear in its argument. This may
occur only if F(K,N) = AK + BN, where A and B are constants. In that case, (10)

becomes:

(L-y@)YOJ ®) + {[(1-y®)@+8-5A) + & + (1-y®)m)]Y(®)

+ (LyO)YON® + [(0+3)(A-yO)Y® + dn+8)Y(1)

+ (n-sA)(1-y®))(n+8)Y(1)1J(t) = sB. (109
For particular specifications of y(t), this second-order differential equation which

describes the law of motion of the system may be solved in closed form. (10') is a linear

second-order differential equation with non-linear coefficients.
It is easy to see that the long-run rate of growth of aggregate capital depends upon the
specification of the process which describes the diffusion of technological change.
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However, it can be shown, by working with (10), that both for the logistic as well as the
negative exponential class the asymptotic growth rate of aggregate capital per capita is
independent of the propensity to save. This demonstration is rather tedious and
uninteresting and is thus deleted here. It involves assuming a long-run rate of growth for
capital per capita and substituting in (10) so as to compute the unknown asymptotic
growth rate.

8.2.3 Embodied Technological Change and Instantaneous Diffusion

In order to assess the impact of the slow diffusion and adoption of technological change,
we compare with the vintage capital model when the diffusion occurs uniformly
throughout the economy. The equation of motion for the putty-putty model with
embodied technological change is:

W(t) = sfJ(v), an

where y(t) = I()/N(t) denotes investment per capita, and J(t) is defined as:

J(t) = e-(3+n)t | e(m+B)8ys(0)de.
o<t

J(t) is, again, an aggregate measure of capital per capita across vintages. As we mentioned
earlier, such an aggregation is possible because technological change is capital-
augmenting. Working as before, we obtain the equation of motion in terms of J(t):

J(® + +3)J(t) = eNsfI(D)). (12)

Equation (12) is the counterpart of Equation (8. It is again easy to solve (12) for a variety

of specifications of the aggregate production function. If F(-,-) is Cobb-Douglas, then

(12) may be solved as a Bernoulli equation. Specifically, if f(J) = J, then by multiplying

both sides of (12) by (1-a)J-® we obtain a linear differential equation in terms of

u = J1-® which may then be solved in closed form.
By working in this fashion we have:

u(t) + (1-o)(n+8)u(t) = (1-o)sem. (13)
The general solution of (13) has the form:

t
u(® = -0 [k +s ({ eMe(1-0)(n+d)tdr Je-(1-0)m+B)t,

which yields the aggregate capital per capita as

S

JoO = -0V~ | o —
) = (- [ v+(1-a)(n+3)

+ se(1-)@+MNt]1/1-a _(n+S)t. (14
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It readily follows from (14) that the asymptotic rate of growth of aggregate capital per
capita does not depend on the savings rate.

Therefore we conclude that the complicated dynamics characterizing the growth model
with slow diffusion of embodied technological change are entirely due to our assumption
about how innovations spread in the economy.

APPENDIX
Disembodied Technological Change

It is somewhat surprising that the case where technological change is disembodied and
diffusion of technological changes is not instantaneous is intractable. To show this,
consider that technological progress is implemented as soon as news of it reaches firms.
Any additional investment made after the innovation has been adopted also benefits from
it. The assumption means that the adoption of technological change augments capital by a
factor e¥t-0), where 0 is the point in time when the innovation was adopted. Let L(t) and
L;(6,t) denote the quantities of labor employed by a stagnant and an innovating firm,
respectively. For equilibrium in the labor market, it is required that the marginal product
of labor be equalized across both kinds of firms. Thus we have:

_ K  eM-0K(6,
k= Ty = T o0 12 6. (A.1)
and
N® = (1-y(@®)Lg(®) + " i : Y(8)Li(8,1)do. (A2)

As before, we assume that firms convert their capital into a form suitable for production °
after the innovation has been adopted:

K;(t,t) = Kq(t). (A.3)

For the total amount of capital in efficiency units we have:

K*() = (1-y)K®) + [ y(8)eYE-OK;(0,0d0 = k(t)N(t). (A4)
o<t :

As for the amount of physical capital we have

K(t) = (1-y()K(t) + . !tKi(e,t) y(6)de. (A.5)

The equation of motion for the system is obtained by equating savings per unit of time
to additional investment needed by the stagnating sector, (1-y(t))K4(t) - y()Kq(1), plus
new investment in the innovating sector, y(t)K(t), plus what is need to make up for
depreciation. That is:
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9K;(8,1)
22D

(1-y@)K (1) + 0'[ y(8)d8 + SK(t) = sSN(f(k(t)). (A.6)
<t

If the dynamics of this model could be analyzed in a simple manner, then we could
analyze the economic value of flexibility which is implied by disembodied technological
change relative to embodied. To the extent that the value of flexibility is positive, it would
be interesting to require that firms could costlessly implement the embodied technology
but would have to incur an extra cost in order to adopt the disembodied technology.
Unfortunately, the only tractable way in which disembodied technological change may be
handled is to assume that the technological change capital-augmenting factor for firms
which have adopted the innovation takes the form e!. Consequently, factor use by such
firms is independent of the point in time in the past when they adopted the innovation.
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