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ENDOGENOUS SOCIAL NETWORKS AND INEQUALITY IN

AN INTERGENERATIONAL SETTING

1 Introduction

In a world where individuals interact in myriads of ways, one wonders how the benefits of

one’s social connections with others combine with those conferred by individual character-

istics to affect the acquisition of human capital. It is particularly interesting to be able to

distinguish between consequences of connections that are the outcome of deliberate decisions

by individuals and of connections being given exogenously and beyond individuals’ control.

Individuals may seek to form social links with others, as an objective in its own right, in order

to enrich their social lives and avoid social isolation. Social links provide conduits through

which benefits from interpersonal exchange can be realized. Social isolation excludes them.

The paper explores the consequences for inequality of the joint determination and evo-

lution of social networking and human capital investments. It embeds inequality analysis

in intergenerational models of endogenous social network formation in dynamic settings.

The novelty of the model lies in its joint treatment of human capital investment and social

network formation in dynamic settings, while distinguishing between the case of impact on

human capital from endogenous as opposed to exogenous social networking. Exogenous so-

cial networks admit a natural interpretation as social immobility. The present paper aims at

a deeper understanding of the consequences of social networking for inequality. For example,

endogenous social networking may even decrease inequality, in general, in human capitals

relative to exogenous one.

It is straightforward to recognize the difficulty of modeling social networking. For a given

number of individuals I, there are 2
I(I−1)

2 different possible networks connecting them. Thus,

to a typical social group of I = 100 there correspond 250×99 ≈ 104950 network configurations,

some of which are not topologically distinct. As Blume, Brock, Durlauf and Jayaraman

(2015) argue, there is really no general theoretical model of network formation. Relatedly,

as Jackson (2014), p. 14, points out, studying endogenous network formation continues
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to be an important priority. One needs to be specific in order to be able to go in depth

in linking differences in individual characteristics to differences in decisions and outcomes,

when individuals interact socially and may have been influenced by the characteristics and

decisions of those they end up being in social contact with. Jackson (2019, Ch. 6), provides

numerous insights on how social network considerations are essential in understanding the

contributions to inequality of the coupling of decisions and opportunities accorded by social

networks.

This paper extends the static framework of Cabrales, Calvó-Armengol, and Zenou (2011),2

CC-AZ from now on, to allow for intergenerational links in the form of intergenerational

transfers of wealth jointly with those of social connections. This extension highlights the

importance of endogenous setting of social connections for the cross-sectional distribution

of human capital and allows us to explore how social connections may magnify the impact

of the dispersion in cognitive as well as social skills coefficients on inequality. When social

networking efforts are endogenous multiple equilibria become possible. At the steady state

solutions associated with either high or, alternatively, low networking efforts, the distribu-

tion of human capital mirrors that of the cognitive skills coefficients. It may be arbitrary

otherwise, if social networking is exogenous. There is a long-standing empirical literature

on interdependence of skills with their intergenerational transmission. They are key to

modeling assumptions employed by the paper. I review them briefly further below after I

establish first the relation of this paper to the literature. Canen, Jackson and Trebbi (2020),

who emphasize legislative activity and formation of social networks in the United States

Congress, also extends CC-AZ dynamically, but is unrelated to the present paper’s focus on

intergenerational transfers and inequality.

1.1 Relation to the Literature

Starting from Becker and Tomes (1979) and on with Loury (1981), a number of articles have

linked intergenerational transfers and the cross-section distributions of income and of wealth.

Most recently, Lee and Seshadri (2019) model human capital accumulation in the presence
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of intergenerational transfers, while allowing for multiple stages of investment over the life

cycle, such as investment during childhood, college decision and on-the-job human capital

accumulation. They allow for complementarity between early and later child investments,

inter alia, by using a model of many overlapping generations (78!), with infinitely lived

altruistic dynasties. They show, using numerical simulation methods, that investment in

children and parents’ human capital have a large impact on the equilibrium intergenerational

elasticities of lifetime earnings, education, poverty and wealth, while remaining consistent

with cross-sectional inequality. That is indeed one of very few papers that take seriously

Heckman’s forceful suggestion [Cunha and Heckman 2007; Heckman and Mosso 2014] to

allow for multiple stages of investment over the life cycle. They do not allow for social

interactions.

The treatment of dynamics in the paper proceeds from a dynastic, in the style of Ramsay-

Cass-Koopmans, extension of CC-AZ, which facilitates the treatment of dynamics, to models

with two overlapping generations, and even more than two. Specifically, the paper also ex-

amines a variation of the two-overlapping generations model with two subperiods in order to

allow for individuals to invest in augmenting the cognitive skills coefficients of their children.

The impact of availability of such investments on the dynamics of evolution of human capital

investments and social connections has a factorial structure, and reflects additional ampli-

fication effects via social networking on outcomes for children from their parents’ decisions

whenever they occur.

In addition to enriching the two workhorses of modern macroeconomics, the Ramsay-

Cass-Koopmans and overlapping-generations models, by means of endogenizing the interac-

tions among agents and predicting the evolution of inequality, the following specific results

are noteworthy. The distribution of human capitals when social connections are exogenous

can exhibit heavy tails. One such instance emanates from a generalization of the evolu-

tion of human capitals when cognitive and social skills coefficients are stochastic within the

Ramsay-Cass-Koopmans dynastic model and pertains to the joint distribution of human

capitals. A second instance follows again when social connections are exogenous but within

the context of the overlapping-generations dynastic model when cognitive skills coefficients
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are stochastic. Those heavy tails results obtain for different reasons. In the former case,

the assumptions made ensure that although the evolution of human capitals looks like a

contraction, there is no collapse at the lower end while there is a contracting effect at the

higher end of the joint distribution. In the latter case, the result pertains to the anonymized

distribution of human capitals, when the stochastic evolution of human capitals is construed

in a cross-sectional sense, and rests on a little known property of mixtures of normal den-

sities (indeed of the family of exponential densities), namely that they have heavier tails

than mean-matched univariate ones. Another noteworthy result is that when parents are al-

lowed to invest in improving their children’s cognitive abilities, technically in their children’s

cognitive skills coefficients, even when social connections are exogenous, social networking

generates an amplification effect, which has not been recognized in the literature. Finally,

the case of exogenous social connections while individuals can still invest in their human

capitals may be interpreted as social immobility: individuals cannot change their own-social

circumstances, that is whom they interact with, influence them and be influenced by them.

The paper also shows that inequality associated with an arbitrary social network may be

reduced if individuals are allowed to choose the intensity of interactions with others. Both

models, the Ramsay-Cass-Koopmans and the overlapping generations, display similar dy-

namics, but the latter makes it possible to distinguish between inequality over the life cycle

within a generation from intergenerational inequality.

A preview of the remainder of this paper is as follows. Section 2, Proposition 1, presents

the joint evolution of human capital and social connections by means of a dynastic model.

The stability properties of the two non-autarkic equilibria, namely the local instability of

the higher one and the local stability of the lower one, are established and so is the social

multiplier property in dynamic settings. The section also discusses an assortative network-

ing property of the equilibrium solution. With given, that is arbitrary social connections

cross-sectional inequality may be greater relative to the endogenous case, because exogene-

ity introduces an additional source of inequality, whose impact may not be influenced by

individual actions. Intuitively, this may be interpreted as an instance of the LeChatelier

Principle. Section 2.3 moves to overlapping generations models. Proposition 2 summarizes
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the results with endogenous human capitals and social connections. Specific results obtained

include a dynamic generalization of the social multiplier property, which is the same across

all individuals but varies over time and across first- and second-period human capitals, which

are proportional to the respective cognitive skills coefficients. Section 3 provide a number of

extensions and applications of the model, all aimed at clarifying how parents’ circumstances

may influence their children’s wealth endowments via transfers, social networking, as well as

possibly via persistence in cognitive and social skills coefficients.

Section 3.1 reports a result of relevance to the literature on intergenerational income

mobility, known as “The Great Gatsby Curve:” higher earnings inequality is empirically as-

sociated with lower intergenerational mobility. The elasticity of intergenerational mobility,

interpreted as that of intergenerational transfers, is increasing in the inequality of parents’

human capital. Proposition 3, subsection 3.2 and additional results, reported in subsec-

tion 3.4, employ a Bayesian Nash formulation of the network interaction game to allow for

stochastic shocks to cognitive skills coefficients and social skills coefficients, respectively.

Results reported in section 3.3 pertain to a salient feature of empirical income and wealth

distributions, namely thick upper tails.The cross-sectional distribution of human capitals is

characterized, with a key role played by the intergenerational correlation in cognitive skills

coefficients. It is shown, inter alia, that the stochastic steady state distribution might ex-

hibit thicker tails than normal and might not be unimodal. A different thick tails result is

obtained for the joint density of human capitals. Another notable result, reported in section

3.5, affirms that if parents may invest in improving their children’s cognitive skills, such

investments are amplified by social networking. Indeed, all of the dynamic models devel-

oped in the paper share amplification features involving both the means and the variances.

These emanate from the multiplier properties of endogenous and exogenous network effects.

Section 4 outlines testable predictions of the paper. All details of derivations along with

supplementary material are provided in an Online Appendix. Section 5 concludes.
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1.2 Review of Relevant Empirical Findings from the Literature

This brief review limits itself to closely related studies in a large literature, starting from

parental investments and social interactions, where Agostinelli (2018) and Agostinelli, Doepke,

Sorrenti and Zilibotti (2020) stand out. Agostinelli (2018) studies the effects of social in-

teractions on the dynamics of children’s skills using Add Health data.3 It focuses on child

development by acknowledging endogenous peer group formation and allowing for parental

investments to react to the child’s social interactions. Agostinelli (2018) finds that endoge-

nous formation of peer groups is crucial. In contrast, in the present paper it is parents’ de-

cisions that shape their children’s social environment. Large general equilibrium effects that

Agostinelli reports are conceptually similar to multiplier effects in my setting. In Agostinelli

(2018) they originate in large-scale changes in peer group composition. Agostinelli et al.

(2020) go beyond Agostinelli (2018) by allowing for parents to influence their children’s peer

groups. By allowing for interactions of parenting style and peer effects while children’s skill

accumulation depends on both parental inputs and peers, Agostinelli et al. obtain estimates

that can inform policy simulations. Their findings about the impact of interventions that

move children to more favorable neighborhoods, namely that the powerful effects predicted

by Agostinelli (2018) may be offset by parents’ equilibrium responses, are particularly inter-

esting.

Regarding the intergenerational transmission of skills, I eschew tackling in detail the

massive literature and simply refer to Adermon et al. (2021). Their extraordinary data

set includes the entire Swedish population, links four successive generations, and maps the

extended family by identifying parents’ siblings and cousins, their spouses, and spouses’ sib-

lings. It enables the authors to show that traditional parent-child estimates underestimate

the long-run intergenerational persistence in terms of several alternative human capital mea-

sures by at least one-third. Controlling for outcomes for more distant ancestors, they show

that almost all of the persistence is captured by the parental generation. The breadth of

the coverage of this study confers to it an overarching, oversize role within the universe of

studies based on Scandinavian data and would likely encourage similar research in different

institutional settings. Although their endogenous variables contribute to intergenerational
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inequality, they do not depend explicitly on inequalities in the respective social contexts.

Social skills are together with cognitive skills important structural features of the model

of Abbott et al. (2019). Both types of skills also play a prominent role in the threshold

regression model in Durlauf, Kourtellos and Tan (2017) that defines status traps.4

2 Dynamic Model of Human Capital Investment and

Networking

This section presents a dynamic extension of the model in CC-AZ, whereby productive

investments in their setting are interpreted here as human capital investments which are

optimized jointly with socialization efforts, interpreted here as social networking. I define a

dynastic intertemporal objective function for individuals in the style of the Ramsey–Cass–

Koopmans formulation and extend key results in dynamic settings, unlike the static case of

CC-AZ. An alternative model, based on an overlapping-generations model that allows for

intergenerational transfers of wealth and social connections, confers additional demographic

richness that allows for some additional contrasts, is taken up in section 2.3 below. Both

dynamic extensions are, to the best of my knowledge, novel in the context of the literature.5

2.1 Joint Evolution of Human Capital and Social Connections in

a Ramsey-Cass-Koopmans Model

Let us consider that each decision making unit i is a dynasty that values the total discounted

utility of its typical member, when utility per period is given by:

(2.1) Ui,t(st−1; sit;kt−1, kit) := bitkit + a

I∑
j=1,j ̸=i

gij(st−1)kitkjt−1 − c
1

2
k2it −

1

2
s2it,

where st = (s1t, . . . , sit, . . . , sIt) denotes the full vector of networking efforts, whose costs are

incurred at time t but yield benefits at time t + 1, and kt = (k1t, . . . , kit, . . . , kIt), those of

human capitals. The weights of social interaction gij, the elements of a social interactions
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(or social adjacency) matrix G, may be defined in terms of networking efforts in a number

of alternative ways. The simplest case, with the weights being obtained axiomatically by

CC-AZ, are as follows:

(2.2) gij(s) =
1∑I

j=1 sj
sisj, if ∀si ̸= 0; gij(s) = 0, otherwise.

I interpret the coefficient a of the interactive summation term in definition (2.1) as the social

synergy, or social skills coefficient.6 I refer to coefficient bit as the cognitive skills coefficient.

Networking effort may be interpreted as time spent on deliberate efforts to seek out others.

For brevity, I refer to CC-AZ for numerous ways to motivate this formulation as socialization.

Note that the quantity
∑I

j=1
sisj∑I
j=1 sj

= si is the weighted network counterpart of network

degree. In this interpretation, individuals choose their weighted network degrees. Time

lags in the effects both of human capitals of one’s social contacts and of social networking

confer dynamic richness. Numerous activities that may be undertaken by parents, such

as sports, religious, cultural and community events, and participating in parent-teacher

events (common in the U.S. for parents of primary and secondary school students) may

be interpreted as having social networking consequences for their children. Analytically,

the social interaction weight gij(st−1) at time t in (2.1) expresses the notion that the current

human capital investment confers benefits that depend on social networking in the preceding

period. However, human capital kit at t still yields benefits in the form of income reflecting

own cognitive skills, but both human capital investment kit and networking effort sit incur

adjustment costs in the form of utility loss when they are actually implemented at time t.

Period t utility is concave with respect to kit, and increasing provided that variables

assumes appropriate values, basically that the sum total of cognitive and non-cognitive

effects is large enough; it is linear with respect to kj,t−1, j ̸= i, and increasing concave with

respect to si,t−1 and decreasing and concave with respect to sit.

In a standard dynastic interpretation, infinitely lived dynasty i avails itself of a sequence

of cognitive effects {. . . , bit, . . . }∞t=0, and chooses sequences of human capital investment and
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networking efforts {kit}∞t=0 , {sit}
∞
0 , so as to maximize

(2.3)
∞∑
t=0

ρtUi,t(st−1; sit;kt−1, kit),

taking as given all other dynasties’ contemporaneous decisions {k−it}∞0 , {s−it}∞0 , where

ρ, 0 < ρ < 1, discounts for altruism. The dynamic analysis is summarized in Proposi-

tion 1, which follows next. The proofs of Parts A, B and E are immediate; those of Parts C

and D are given in the Online Appendix, section A.1.

Proposition 1. Agents’ choices of sequences of human capital investment and networking ef-

forts {kit}∞0 , {sit}∞0 , that maximize (2.3 ) taking as given all other agents’ contemporaneous

decisions {k−it}∞t=0 , {s−it}∞t=0 , 0 < ρ < 1, must satisfy, when expressed in vector form:

Part A. the system of difference equations with endogenous time-varying coefficients

(2.4) kt =
1

c
bt +

a

c
G(st−1)kt−1;

(2.5) st = aρ[diag kt+1]
∂G(st)

∂st
kt,

where [diag kt+1] denotes an I×I matrix with the elements of kt+1 along the main diagonal,

gij(st) is as defined by (2.2), and ∂G(st)
∂st

denotes a matrix with the terms
∂gij(sit)

∂st
as its ith

row.

Part B. If the vector of cognitive skills coefficients bt is time-invariant, then the steady state

values of the system (2.4–2.5) (k∗i , s
∗
i ) obey:

(2.6) k∗i = ϑbi, s
∗
i = ϖϑbi,

where the scalars (ϖ,ϑ) satisfy the system of algebraic equations:

(2.7) ϑ = ã(b)−1ϖ;
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(2.8) ϑ =
1

c−ϖ2
,

and ã(b) is defined as ã(b) := ρa
∑

i b
2
i∑

i bi
, and may be rewritten as:

(2.9) ã(b) = ρab̄
[
1 + (CVb)

2] ,
where b̄ denotes the average of the components of b and CVb their coefficient of variation.

The system of Equations (2.7)–(2.8) admits two sets of positive solutions, (ϑ∗, ϖ∗;ϑ∗∗, ϖ∗∗),

with superscript ∗∗ denoting algebraically larger quantities than those with superscript ∗,

provided that:

(2.10) 2
( c
3

) 3
2 ≥ ã(b).

To these solutions, there correspond two sets of steady state solutions for human capitals

and networking efforts, {k∗i , s∗i ; k∗∗i , s∗∗i }Ii=1. The zero solutions of (2.7–2.8) correspond to the

autarky case, that is no social links.

Part C. The dynamic evolution of (kt, st) is given separably for each of its elements by:

(2.11)
ki,t+1

bi
=

1

c− ρ(ã(b))2
k2i,t
b2i

;
sit
bi

=
1

ã(b)

ρa2

c
kit
bi

1− ρa2

c
a2

ã(b)2
k2it
b2i

i = 1, . . . , I.

where ã(b) is defined in (2.9).

Part D. The low non-autarkic steady state, (k∗, s∗), is locally dynamically stable, and the

high one, (k∗∗, s∗∗), dynamically unstable. It follows that the stable (unstable) steady state

values of human capital and social networking increase (decrease) with average cognitive

skills and their coefficient of variation.

Part E. If human capital does not fully depreciate and instead is subject to partial depreci-

ation at rate δk, human capital kit evolves according to

ki,t+1 = kf,it + (1− δk)kit,
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=si/ki

=ki/bi

c - ]-1

= ã b

Figure 1: Solution of System (2.7–2.8) for (ϖ,ϑ)

where kf,it denotes the flow investment in period t, and the adjustment costs of investment in

Equation (2.1) become (c/2)k2f,it. Optimizing with respect to the sequence of flow investments

{kf,it}∞t=0 leaves Equation (2.5) unaffected, but Equation (2.4) hold with the modification

that (1− δk)I is added to its RHS.

Part F. If the utility per period (2.1) is modified so as the adjustment cost for networking

effort becomes (ς/2)s2it, then we have (a/ς) instead of a in Equation (2.5) and the remainder

of the analysis is adjusted accordingly.

Remarks. Proposition 1, Part C shows that the dynamic evolution of kit is autonomous,

but that of sit depends on kit. Part D, corrects a claim of CC-AZ, namely that both non-
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autarkic equilibria of their static model are stable. See also Canen et al. (2020, p. 35,

fn. 52), who also offer an analytical argument to demonstrate the instability property of the

numerically larger steady state equilibria.7 Figure 2.1 depicts the solutions for (ϖ,ϑ).

For the consequences of the convexity of the time map of human capital with respect

to kit, see Becker, Kominers, Murphy and Spenkuch (2018). Part C above predicts that

human capital of the child ki,t+1 increases, in view of (2.9), with the mean and the coefficient

of variation of the cognitive skills of individuals in their social environment, and so does

social networking sit. Both effects work via the adjusted social skill coefficient ã(b) in the

RHS of Equation (2.11) above. That the dispersion also matters follows directly from the

complementarity associated with the synergistic effect in (2.1). This prediction is reminiscent

of findings of Agostinelli (2018), most recently; ibid., section 3.4. Also, Equation (2.11)

implies that the child’s human capital also increases with the human capital of the parent.

Part F aims at making up partially for not formally allowing for actions and socialization

efforts to be subject to a constraint, which is unfortunately analytically intractable, as shown

in the Online Appendix A, section A.1. By introducing instead an additional parameter, ς, in

the adjustment cost of the networking effort, (ς/2)s2it in (2.1), we may think of competition

for resources with human capital investment being handled by means of changes in ς vs.

changes in c, both of which are parameters. This modification affects only Equation (2.7),

which becomes

(2.12) ϑ = ςã(b)−1ϖ.

Comparative statics readily follow from Proposition 1, as the new parameter ς has effects in

the opposite direction than the social skills coefficient a. A smaller value of ς, as for example

one would associate with the proliferation of information and communication technologies

(ICT), increases the optimal stable solutions for (ϑ∗, ϖ∗) and reduces the unstable ones,

(ϑ∗∗, ϖ∗∗). Both changes accord with intuition. If human capital is interpreted as schooling,

the increased costs of educational services (the “Baumol effect”) may be proxied by increasing

c whereas increased ICT adoption by decreasing ς, the effects on the optimal solutions for the
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auxiliary variables (ϑ,ϖ) and therefore on optimal human capital and socialization efforts go

in opposite directions. A lower such cost ς increases the effective value of synergy resulting

in both human capitals and networking efforts to increase at the steady state.

A variation of the steady state version of this theory is consistent with an empirical

finding of Agostinelli (2018, p. 35) who confirms strong homophily results. Since the social

network is a weighted one, I transform the connection weights so as to interpret them as

connection probabilities. By normalizing the connection weights by the sum of all weights

for each individual gij(s) yields ḡij =
gij(s)∑
j ̸=i gij

=
sj∑
j ̸=i sj

. In view of Part B above, namely

that the steady state values of social networking are proportional to the respective bi’s, these

optimal normalized networking weights, ḡij, are given by:

(2.13) ḡij =
bj∑
j ̸=i bj

.

Thus individual i is relatively more likely to be connected with individual j the greater her

relative cognitive skills coefficient,
bj∑
j ̸=i bj

. This implies assortative networking, in effect a

form of homophily : those with greater cognitive skills coefficients are more influential.

2.2 Dynamics of the Evolution of Human Capitals with Exogenous

Social Connections

Assuming that social connections are exogenous leads to novel results. Exogenous social

connections may also be interpreted as social immobility: individuals may not choose their

social milieus. The evolution of human capital, given social connections, allows us to contrast

with, as well as highlight, the properties with endogenous connections. Assuming that {st}∞t=1

is taken by all agents as exogenous and given, and taking {k−i,t}∞t=1 , as given, individual i

chooses {ki,t}∞t=1 so as to maximize lifetime utility according to (2.1). Under the assumptions

of Nash equilibrium, human capitals satisfy the system of difference equations (2.4). To see

this clearly let us assume that both st and bt are time-invariant, s and b. Then, for a large

13



number of agents (2.4) admits a steady state, given by:

(2.14)
[
I− a

c
G(s)

]
ck = b.

Since a
c
G(s) is symmetric and positive, all of its eigenvalues are real. It has a maximal

simple eigenvalue, which is positive, and larger in absolute value than all its other eigenvalues.

Then, by Debreu and Herstein (1953, Theorem III),
[
I− a

c
G(s)

]−1
exists and is positive,

if and only if the maximal eigenvalue of a
c
G(s) is less than 1. The maximal eigenvalue of

a
c
G(s) is given in closed-form by a

c
x2(s)
x(s)

and corresponds to s as an eigenvector of a
c
G(s) [c.f.

CC-AZ, Lemma 3, p. 353]. Thus, the condition on the maximal eigenvalue becomes:

(2.15)
ã(s)

c
< 1,

where ã(s) is defined by (2.9), with s taking the place of b. That is, ã(s) := ρax2(x)
x(x)

, with

the auxiliary functions x2(s) and x(s) defined as:

(2.16) x(x) := I−1
∑
i

xi, x2(x) := I−1
∑
i

x2i .

This feasibility condition limits the value of the social skills coefficient a, as adjusted by

the coefficient of variation of the given networking efforts across agents, s, relative to the

investment cost parameter. If (2.15) is not satisfied, no positive steady state exists for the

human capitals because spillovers are too strong.

Furthermore, if (2.15) holds,
[
I− a

c
G(s)

]−1
= I+ a

c
1

1−a
c

x2(s)
x(s)

G(s). and therefore the unique

steady state solution of (2.4) becomes:

(2.17) k∗ =
1

c
b+

a

c2
1

1− ã(s)
c

s · b s∑
i si

.

The mean human capital, k̄∗ readily follows:

(2.18) k̄∗ =
1

c
b̄+

a

c2
1

1− ã(s)
c

s · b
I
.
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Human capitals at the steady state are given as the sums of two components: the first is the

autarkic term; the second reflects the effects of social interactions by being proportional to

the relative networking effort s∑
i si

and scaled by the term a
c2

1

1− ã(s)
c

s·b
I
, which is common to

all individuals. The larger is the social skills coefficient, or the more dispersed networking

efforts are, the larger is x2(s)
x(s)

(provided that the feasibility condition (2.15) is satisfied), the

larger is the second term in (2.17). These effects are reflected in the expression for the

variance8 of human capitals at the steady state that readily follows from (2.17):

(2.19)

Vark∗ =
1

c2
Varb +

1

c2

(
a
c

1− ã(s)
c

b̄[Corrb,s + 1]

)2

Vars +
2

c2
1

1− ã(s)
c

b̄[Corrb,s + 1]CoVarb,s.

Equation (2.19) implies that the variance of human capitals, holding s̄,CoVarb,s and

Corrb,s constant, is increasing in the variance of s, which enters the expression via ã(s).

Working in like manner, we obtain the following expression for the covariance of human

capital and social networking CoVark,s:

(2.20) CoVark,s =
1

c
CoVarb,s +

1

c
s̄b̄

ã(s)
c

− a
c

1− ã(s)
c

.

When the social networking efforts are exogenous, their given values contribute directly

to the dispersion of human capitals across the population in the form of additional and

indeed arbitrary terms that involve the covariance and correlation between the cognitive

effects coefficients and the networking efforts, and the variance of the socialization efforts.

In contrast, it is optimizing also over networking efforts, which in view of homogeneity of the

weights of social networking functions, defined in (2.2), that renders both human capitals

and social networking efforts proportional to the respective b’s, thus limiting the dispersion

of human capitals. In other words, the consequence of social immobility is proxied by the

last two terms in RHS of (2.19). However, the exact comparison involves the magnitude of

the endogenous quantity ϑ, according to Proposition 1, Part B: in the fully optimal case, the

variance of human capitals is equal to ϑ2Varb, which exceeds the autarkic one, the first term

in the RHS of (2.19) because ϑ > c−1. Furthermore, from Proposition 1, ϑ is increasing in
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CVb. With the vector of networking efforts s being arbitrary (but subject to the feasibility

condition (2.15)), one can find, in general, a vector of networking efforts such as Vark∗ exceed

the fully optimal value ϑ2Varb.

The effect of optimizing networking efforts on the dispersion of human capitals and

possibly in an unanticipated direction has an intuitive interpretation as an instance of the

LeChatelier Principle [Samuelson 1960; Milgrom 2006]. When networking efforts are given,

human capital investments are less responsive to the respective cognitive skills coefficients,

than when they are optimized. The respective partial derivatives are ϑ and c−1, where

ϑ > c−1. As an analogy, consider cost functions when returns to scale are constant. If an

input is held fixed, say capital, the marginal cost function is increasing in output. If all inputs

may vary, then it is constant, which corresponds to infinite output supply elasticity.The

elasticity of ki,t with respect to bit at the steady state is equal to 1, and thus greater than

its counterpart elasticity from (2.17), which is clearly less than 1.

Without optimization over social networking, Equation (2.5) are not part of the first-

order conditions, Equation (2.4) does not reduce to (2.11), and no equilibrium multiplicity

arises. Given social networking efforts, human capitals are uniquely defined on the transi-

tion to and at the steady state under exogenous social connections weights. Allowing for

heterogeneity in parameter a, the social competence or social skills coefficient, or for its

stochastic dispersion across the population, which I explore in section 3.4 further below,

adds an additional exogenous source of dispersion in the evolution of human capitals.

Another perspective on exogenous social connections is to recognize that the adjacency

matrix G(s) may be specified so as to study the consequences of implementing social or

educational policy. E.g., the interaction weights may express education “tracking,” where

students with greater cognitive skills are more likely to interact with other students with

high cognitive skills, or in numerous other ways by specifying the terms in Equation (2.2) as

general functions of b. This could of course be at variance with individually optimized social

networking, which would be the intention of the design. Yet one can imagine designing a

system that recognizes individuals’ decision making and provides them with incentives to

bring about a desirable outcome.
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2.3 A Two-Overlapping Generations Model of Intergenerational

Transfers and Social Connections

Overlapping-generations models facilitate linking generations via intervivos transfers while

allowing via their richer demography to distinguish between the evolution of an individual’s

human capital over her own life cycle and that of her descendant’s in each successive gen-

eration. A dynamic programming formulation using value functions that follows makes the

model fully forward-looking, unlike formulations that simply include transfers as variables

in the flow utility function.

Specifically, let subscripts y, o refer to individuals when they are young, old, respectively,

and let time subscripts refer to when the respective quantity is operative. Member i of the

generation born at t receives a transfer ky,i,t from her parent when young; she herself benefits

at time t from social connections chosen by her parent’s generation: so,t. Her cognitive skills

coefficients are given: (by,i,t, bo,i,t+1). She chooses human capital investment and networking

effort (ko,i,t+1, sy,i,t); she and her own generation benefit from sy,t in time t+1. She chooses an

endowment to her child in the form of human capital, ky,i,t+1, and networking effort, so,i,t+1,

from which her child benefits in the first period of her life at time t + 1. The distinction

between ky,i,t and ko,i,t+1 is not possible within the Ramsay-Cass-Koopmans model of section

2.1, nor is it possible to distinguish between inequality over the life cycle within a generation

from intergenerational inequality.9

I assume that the resource cost of investment ko,i,t+1 is incurred in period t, but the

adjustment costs is incurred in t + 1 (when the benefits are also realized); consistently,

the resource cost of ky,i,t+1 is incurred in period t + 1, but the parent anticipates that the

adjustment costs are incurred by the child in t+ 1.

It is important to clarify the relevant peer groups underlying this formulation. With two

overlapping generations, I may define the peer groups for young generation t at time t as the

members of the preceding generation who were born at t− 1 and are old at time t. In other

words, the members of generation t benefit in period t from the human capitals ko,t and the

social networking efforts of their parents’ generation, so,t. When they themselves are old in
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period t+1 they benefit from the human capitals and social networking efforts the members

of their own generation themselves decided on, ky,t, sy,t. In their first-period decisions about

social connections, individuals are aware of the fact that they themselves would benefit

from their own social networking efforts when they are old; in their second-period decisions

about social connections, they are aware of the fact that their children would benefit from

their own second-period social connections when their children are young. Therefore, both

types of second-period decisions are in effect intergenerational transfers of capital and social

connections. In the absence of uncertainty, all decisions are of course made simultaneously,

but being explicit about “timing” of networking efforts would be crucial with sequential

resolution of uncertainty, when such uncertainty is introduced, as in section 3.2 below.

The overlapping generations formulation of the life cycle optimization problem confers

the advantage of readily accommodating the distinction between altruism and paternalism

in discounting intergenerational linkages. Specifically, modifying the discount factor ρ of

V [t+1]
i in Equation (2.21) below, which individuals use to discount the lifetime utility of their

offspring, allows them to distinguish it from the discount factor that they themselves apply

to their own second-period utility, in a way which would be in line with the formulation of

altruism by Abbott et al. (2019). Expressing paternalism in a manner identical to that of

Abbott et al. is harder. Still, intuitively our modeling of transfer ky,i,t that an individual

receives from her parent may be interpreted as a paternalistic intervivos transfer.

The pattern of interactions allowed by the model can distinguish between vertical and

oblique transmission of a social environment. Networking effort so,i,t+1 by parent i when she

is old at time t + 1 confers benefits to her child at time t + 1, which may be interpreted

as vertical transmission; it enters the social component in her child’s utility function when

the child is young at t + 1. It also functions as oblique transmission; it enters the social

component of the utility functions of the members of her child’s generation, via the terms

gji(so,t+1).

In sum, the decision problem for a member of generation t, born at time t, is to choose

{ko,i,t+1, ky,i,t+1; sy,i,t,, so,i,t+1}, given {ky,i,t,ko,t, so,t}, namely human capital an individual re-

ceives at birth, the vector of human capitals of her parents’ generation, and their networking
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efforts, all in time period t. I obtain first-order conditions for each generation’s decision vari-

ables by first defining the value functions and using the envelope property. The results are

summarized in Proposition 2; the proof is in the Online Appendix, section A.2.

Proposition 2.

Part A. The value function for individual i as of time t, V [t]
i (ky,i,t,ko,t, so,t), which involves

the value function for her child as of time t + 1, V [t+1]
i (ky,i,t+1,ko,t+1, so,t+1), is defined as

follows:

(2.21) V [t]
i (ky,i,t,ko,t, so,t)

= max
{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}

{
by,i,tky,i,t + a

∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

+ρ

[
bo,i,t+1ko,i,t+1 + a

∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

]

+ ρV [t+1]
i (ky,i,t+1,ko,t+1, so,t+1)

}
;

with the respective one for her child as of time t + 1, V [t+1]
i (ky,i,t+1,ko,t+1, so,t+1) following

by analogy (see Online Appendix for details), allow us to obtain first-order conditions with

respect to (ky,i,t+1, ko,i,t+1), which once rewritten in vector form are:

(2.22) ky,t+1 =
a2

c2
G(sy,t)G(so,t+1)ky,t + b∗

y,t+1 +
a

c
G(so,t+1)b

∗
o,t+1;

(2.23) ko,t+1 =
a2

c2
G(so,t)G(sy,t)ko,t + b∗

o,t+1 +
a

c
G(sy,t)b

∗
y,t,

where the adjusted cognitive skills coefficients vectors, defined as

b∗
y,t ≡

1

c

(
by,t −

1

ρ
1

)
, b∗

o,t ≡
1

c

(
bo,t −

1

ρ
1

)
,

are positive provided that bo,t+1 − 1
ρ
1 > 0,by,t+1 − 1

ρ
1 > 0.
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The first order conditions with respect to (sy,i,t,, so,i,t+1) are:

(2.24) sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij(sy,t)

∂sy,i,t
ky,j,t;

(2.25) so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij(so,t+1)

∂so,i,t+1

ko,j,t+1.

Part B. The optimal paths for the human capitals (ky,t,ko,t) are given by:

(2.26) ko,t+1 =
1

1− a2ρ
c
Υ2

y,t

b∗
o,t+1, ky,t+1 =

1

1− a2ρ
c
Υ2

o,t+1

b∗
y,t+1,

and for the networking efforts (sy,t, so,t) by:

(2.27) sy,t = aρ
Υy,t

1− a2ρ
c
Υ2

y,t

b∗
o,t+1, so,t = aρ

Υo,t

1− a2ρ
c
Υ2

o,t

b∗
y,t+1,

where the auxiliary variables (Υy,t,Υo,t+1),

Υy,t ≡
sy,t · ky,t

Ix̄(sy,t)
; Υo,t+1 ≡

so,t+1 · ko,t+1

Ix̄(so,t+1)
,

encapsulate the dynamic counterpart of the social multiplier.

Part C. Sufficient conditions for the invertibility of I− a2

c2
G(so)G(sy) and thus for the exis-

tence of meaningful steady state values (ky,ko) of (2.22–2.23) are: the product of
(
a
c

)2
and

of the largest eigenvalues of each of the positive matrices G(so),G(sy) be less than 1:

(2.28)
1

c2
ã(sy)ã(so) < 1.

Part D. The steady state solutions of (2.22–2.23) may be written out in closed form because

(2.29)

[
I−

(a
c

)2
G(sy)G(so)

]−1

= I+
1
c2
ã(sy)ã(so)

1− 1
c2
ã(sy)ã(so)

G(sy; so),

20



with the matrix G(sy; so) being defined via its (i, j) element as:

(2.30) G(sy; so)ij =
sy,i∑
ℓ sy,ℓ

so,j∑
ℓ so,ℓ

∑
ℓ

sy,ℓso,ℓ.

Part E. If the vectors of cognitive skills coefficients are time-invariant, (b∗
y,b

∗
o), and not too

asymmetric a system of algebraic equations in two auxiliary variables that define the steady

state values of (ky,i, ko,i) and (sy,i, so,i) as proportional to (b
∗
y,i, b

∗
o,i) and (b∗o,i, b

∗
y,i), respectively,

admit up to two sets of positive solutions. These define high-level and a low-level equilibria,

from which the steady state values of human capitals and social networking efforts readily

follow.

The system of linear difference equations (2.22–2.23) is uncoupled with respect to (ky,t,ko,t),

given (sy,t, so,t, so,t+1). Their steady state solutions are thus easily characterized, in terms of[
I− a2

c2
G(so)G(sy)

]−1

. Since the largest eigenvalue of a2

c2
G(so)G(sy) is bounded upwards by

the product of the largest eigenvalues of a
c
G(so) and

a
c
G(sy) [Debreu and Herrstein (1953);

Merikoski and Kumar (2006), Thm. 7, 154–155], the inverse exists, provided that the prod-

uct of a2

c2
with the largest eigenvalues of G(so) and of G(sy) is less than 1. These eigenvalues

exist in close form, just as in section 2.2 above.

A notable feature of the solutions from (2.29)–(2.30) for the values along the steady state

of human capitals that individuals are endowed with in the first period of their lives and they

themselves decide for the second period of their lives, (k∗
y,k

∗
o), are made up of components

that involve the autarkic value, augmented by a common social multiplier, the coefficient of

G(sy; so) in the RHS of (2.29) above, adjusted by a term that is common to all,
∑

ℓ sy,ℓso,ℓ,

times the product of the relative networking efforts employed by young and old agents, the

term
sy,i∑
ℓ sy,ℓ

so,j∑
ℓ so,ℓ

in the RHS of (2.30) above. That is, the relatively better connected an

individual throughout the life cycle, the more the autarkic values are amplified. Finally, the

approach of section 2.2 above may again be employed to show that optimizing over social

connections may reduce inequality in human capitals.

Remarks. Proposition 2, Part A suggests that the model is amenable to stability analysis

along the lines of Proposition 1, Part C, above. Intuition suggests that the results would be
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similar, with the lower level equilibria being stable and the higher level ones being unstable.

Still, the algebra is more involved, as the first-period and second-period decisions are likely

to be coupled.

Proposition 2, Part B shows that the optimal human capital paths track their respective

adjusted cognitive skill vectors, (b∗
y,t,b

∗
o,t), by time-varying factors of proportionality that

are functions of all of the parameters of the model. These factors retain the interpretation of

the solutions as social multipliers, now dynamic and being applied to the autarkic solutions,

where the latter are now defined in terms of the adjusted cognitive skills coefficients. The

time paths for the networking efforts similarly track the adjusted cognitive skills coefficients

vectors but with different factors of proportionality. Unfortunately it is not possible to obtain

further details on the determinants and time evolution of the auxiliary variables that define

the dynamic social multipliers. Substituting from the above solutions into (2.22)–(2.23) gives

a system of algebraic equations in (Υy,t,Υo,t) which are much too complicated to solve.

It is straightforward to relax the assumption of full depreciation of human capital an

individual receives from his parent in the first period of his life: ky,i,t vanishes after ko,i,t+1 is

produced, as shown in Proposition 1, Part E, above. Also, population growth may also be

introduced by modifying the intergenerational utility functions (2.21) and stipulating that

the total amount of the transfer be distributed among all descendants accordingly.

2.3.1 More than Two-Overlapping Generations

This section briefly considers richer demographic structures. A minimum of three overlap-

ping generations will be necessary to express Heckman’s concern about allowing for at least

two periods of investment in a child’s cognitive and social skills. It is critical [see Cunha and

Heckman 2007, and Cunha, Heckman and Schennach 2010] for the acquisition of cognitive

and social skills coefficients to interact — there is dynamic complementarity among them

— and investments at certain ages are more critical then at other ages. Moreover, these

come earlier for cognitive capabilities, later for social capabilities, and vary depending on

the particular biological capability. Three-overlapping generations is the minimum number
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of overlapping generations that allows for direct effects between grandparents and grandchil-

dren. Heckman and Mosso (2014) emphasize, however, that there have to be at least four

periods in individuals’ lifetimes, with two periods for a child who makes no economic deci-

sions but who benefits from parental investment in the form of goods, and two periods for

the individual as a parent. I heed these points by first noting the analytics of the model can

accommodate more than two generations. Further below in section 3.5 I allow for parents

to invest in their children’s cognitive skills coefficients.

In the case of three-overlapping generations,10 that is when children coexist with their par-

ents and their grandparents, an additional set of first-order conditions for the respective mag-

nitudes associated with youth, adulthood and old-age, (ky,i,t, ka,i,t+1, ko,i,t+2; sy,i,t, sa,i,t+1, so,i,t+2)

will be derived. An individual born at t, will take as given (ky,i,t, sy,i,t) and choose

(ka,i,t+1, ko,i,t+2, ky,i,t+3; sa,i,t+1, so,i,t+2, sy,i,t+3).

Intuitively, one would expect that the additional first-order conditions would introduce ad-

ditional multiplicative terms to the matrix defining the dynamical system and additional

terms multiplying the respective cognitive skills coefficients vectors. That is, the endowment

of cognitive skills coefficients in each period of the life cycle introduce life cycle effects into

the model, being weighted by the respective social interactions matrix, as in 1
c
a
c
G(sy,t)by,t

in Equation (2.23) above. Given the pattern of recurrence, one can guess what the counter-

part of (2.23) should look like. Since the respective endowments are not equal across time,

steady state values for human capitals differ at different stages of the life cycle. It is there-

fore interesting that complicating the demographic structure of the model leaves tractable

the structure that determines the dynamics of the model. Working through the derivations

formally in order to derive the counterpart of (2.23) confirms, in fact, this intuition. More

complex demographic structures would allow in principle for direct transfers from grandpar-

ents to grandchildren, a factor that Mare (2011) deems important for deeper understanding

of intergenerational inequality.
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3 Applications and Extensions

The demographic features of the model of the previous sections would become considerably

richer if individuals’ life cycles consist of additional periods and individuals were allowed

to move across neighborhoods in the beginning of every period. One may associate each

period in an individual’s life cycle with a different site, each of which is characterized by a

different social interactions matrix Gℓ, ℓ = 1, . . . , L. Each agent’s i contribution to the social

interactions matrix of each site consists of a row and of a column. Row i, gij, j ̸= i, expresses

the interactions effects from other agents; column i, gji, j ̸= i, expresses the interactions

effects on all other agents. Endogenous choice of neighborhoods could easily be incorporated

in the dynamic programming formulation of Proposition 2. The multiplicative structure of

(2.22), where agents moving across sites is reflected on the coefficient of ky,t, which would

now be made up of the product of the respective social interactions matrices, reflecting the

effect of the three overlapping generations, and accordingly for many generations.

The models of the previous sections have several applications and extensions. Proposition

2 implies a prediction about social effects in the intergenerational wealth transfer elasticity

imply an effect in the style of the Great Gatsby Curve: intergenerational wealth transfers

are increasing in the inequality in the distribution of parents’ human capital. The model of

section 2.3 may be adapted to allow for random shocks in cognitive skills and social skills

coefficients. One notable result is that the anonymized cross-section distribution of first-

period human capital at the steady state may be characterized fully and shown to exhibit

thick tails. A different thick tails result, namely one that applies to the joint distribution of

human capitals, is obtained by means of additional assumptions about the components of

the model of section 2.2. Both those thick tails results are presented in section 3.3. Finally,

when Proposition 2 in section 2.3 is generalized to allow parents to invest in their children’s

cognitive skills an additional social multiplier emerges. I discuss these next.
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3.1 Social Effects in Intergenerational Wealth Transfer Elasticities

and the Great Gatsby Curve

Intergenerational wealth elasticities have attracted empirical attention. Englund et al.

(2013) report estimated intergenerational wealth elasticities ranging between 0.296 and 0.410,

based on regressions of log five-year average child’s wealth against the log of five-year aver-

age parents’ wealth for different age groups [ibid., Table A.3], and 0.497 and 0.530, based on

linear regressions [ibid., Table 3]. Landersø and Heckman (2016) report locally linear regres-

sion estimates (for log incomes weighted with absolute incomes) showing intergenerational

income elasticity increasing in parental income [ibid., Figures 1 and 2].

Social effects on the elasticity of intergenerational wealth transfers are present when

social networking is either endogenous or exogenous. They are generally not examined by

the literature, with the exception of Durlauf and Sheshadri (2018). These authors focus on

the residential community as the source of spillovers for human capital and skill formation.

They argue that social influences on children create a nonlinear relationship between parental

income and offspring income, so that increases in inequality, by altering the ways in which

family income determines and interacts with social influences, reduce mobility.

I investigate next the predictions of the model for social effects in intergenerational wealth

transfer elasticities. I obtain a Great Gatsby Curve-type result: the elasticity of intergener-

ational transfers is increasing in the inequality of human capitals of parents.

Working from Proposition 2, Equations (2.22), the elasticity of ky,i,t+1, the transfer that

an individual born at t makes to his child when the child is born at t + 1, with respect to

ky,i,t, the transfer that the individual himself received from his own parent, is defined as:

EL
ky,i,t+1

ky,i,t
=
∂ky,i,t+1

∂ky,i,t

ky,i,t
ky,i,t+1

.

However, it is also interesting to consider the cross elasticity of ky,i,t+1 with respect to the

human capitals of others:

EL
ky,i,t+1

ky,j,t
|j ̸=i =

∂ky,i,t+1

∂ky,j,t

ky,j,t
ky,i,t+1

.
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It is easiest to see the effect under the assumption that social networking is given. From

(2.22) and (2.23),
∂ky,i,t+1

∂ky,i,t
= a2

c2
[G(sy,t)G(so,t+1)]i,i . This expresses a trade off between the

resource cost of the transfer, which is incurred by the parent in period t + 1, the increase

in utility the parent enjoys from the benefit to the child when the transfer is received in

period t+1. This is why both adjacency matrices, G(sy,t) and G(so,t+1), are involved in the

expression for
∂ky,i,t+1

∂ky,i,t
.

From (2.22), applied for time t, I have that an individual with higher first-period cognitive

skills coefficients by,i,t receives a larger transfers from his parent,
ky,i,t
by,i,t

= 1
c
. This in turns

induces a change in his own transfer to his child, along the lines of the effects I just derived.

Working in like manner I have that an increase in the parent’s own second period cognitive

skills coefficients bo,i,t+1 leads from (2.22) to ∂ky,t+1

∂bo,i,t+1
= a

c2
G(so,t+1)col i, which leads in turn to

a change in so,1,t+1, exactly as I analyzed earlier.

The properties of the intergenerational wealth elasticity are summarized by Proposition

.3, whose complete statement and proof are given in the Online Appendix, section A.3.

The expression for the intergenerational elasticity when networking efforts are endogenous,

ELii,en, from Proposition A.3, Part D, reproduced here for convenience,

ELii,en =
a2

c2
[
G(s∗y)G(s∗o)

]
ii
=
a2

c2
s∗y,is

∗
o,i∑

h s
∗
y,h

∑
h s

∗
o,h

∑
h

s∗y,hs
∗
o,h,

readily leads to a Great Gatsby curve type of result, if we were to assume that the invariant

cognitive effects coefficients are also equal to one another: b∗ := b∗
y = b∗

o. Then, if ϱ∗

denotes the common coefficient of proportionality according to Proposition 2, Part E, that

is s∗,i = s∗o,i = ϱ∗b∗i , then the own intergenerational elasticity from (A.25) and in view of (2.9)

becomes

ELii,en =
a2

c2
ϱ2

(b∗i )
2

Ib̄
ã(b) =

a2

c2
ϱ2(b∗i )

2I−1a[1 + CV 2
ky
],

where I used the fact that because of proportionality, CVk = CVb. Therefore, the elasticity

of intergenerational mobility, interpreted as that of intergenerational wealth transfers (via

human capital) from parents to their children when they are young, is increasing is the

inequality of parents’ human capitals, as measured by its coefficient of variation.11 This
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finding is in the spirit of the literature on the Great Gatsby curve12 [Krueger (2012); Corak

(2013)]. However, it pertains to the prediction for the relationship between own intergener-

ational wealth transfer elasticity and inequality. A similar result may be obtained about the

cross-elasticity.

The Great Gatsby curve shows that across countries the intergenerational earnings elas-

ticity increases with inequality. In particular, Corak (2013, Figure 1), plots the intergener-

ational elasticity of earnings, against the Gini coefficient of earnings (after taxes and trans-

fers), for a number of OECD countries. It shows that the greater the inequality of earnings

the greater the intergenerational elasticity and therefore the less the mobility in terms of

earnings.

Because fits reported by the literature are not particularly tight, despite the curve’s

popularity, it is quite possible that a host of other effects are present.13 The evidence on

the Great Gatsby Curve is normally reported from direct estimations of elasticities from

regressions in terms of log of incomes. In that case, working with the logs of transfers in

terms of the logs of cognitive effects would require a reformulation of the basic model but is

likely to strengthen the results in favor of a stronger effect along the lines of the Great Gatsby

curve. This finding is also akin to the spirit of other findings that have been motivated by

the Great Gatsby curve literature. E.g., Narayan et al. (2018) explore several cases of

intergenerational mobility, like pertaining to income, education, etc.

3.2 Human Capital and Intergenerational Transfers with Shocks

to Cognitive Skills Coefficients and Exogenous Social Connec-

tions

The evolution of human capitals when the vectors of cognitive skills, (by,t,bo,t), are assumed

to be stochastic and social connections are exogenous may be studied as a linear-quadratic

dynamic programming problem under uncertainty as the solution to an underlying Bayesian

Nash game. This is a special case of the static model in Blume et al. (2015).14 The

introduction of stochastic shocks to skills coefficients fits nicely a point made by James
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Heckman on the importance of distinguishing between heterogeneity and uncertainty in the

determination of inequality.15 Parents’ attempts to deal with uncertainty determines vertical

transmission, and also results in oblique transmission via spillovers, as discussed above in

section 3.1. This extension leads to a thick tails result for the “anonymized” cross-sectional

distribution of human capitals at the stochastic steady state.

Individual i born at time t realizes cognitive skills coefficients by,i,t, an exogenous random

state variable, and a wealth transfer from her parent ky,i,t, an endogenous state variable

whose evolution is described in detail below. Individual i avails herself of social interactions

in exactly the same way as in the deterministic model above, so by the old, and sy by the

young.

Given the realizations of (by,i,t, ky,i,t), individual i’s own second-period cognitive skills,

bo,i,t+1, a random variable to be realized in period t + 1, is distributed, conditional on by,i,t,

according to N(bm,o,i +
σo

σy
ρo(by,i,t − bm,y,i), σ

2
o(1 − ρ2o)). The cognitive skills coefficients of

individual i’s child, denoted by by,i,t+1 and realized in period t + 1, is assumed to follow an

AR(1) process,

(3.1) by,i,t+1 = b̄y,i + ρbby,i,t + ϵy,i,t+1,

where b̄y,i is constant, and the stochastic shock ϵy,i,t+1 is IID across i, t with distribution

N(0, σ2
ϵ ). The unconditional distribution of by,i,t is N(bm,y,i, σ

2
b ), where σ

2
b = 1

1−ρ2b
σ2
ϵ . Thus,

conditional on by,i,t, by,i,t+1 is distributed according to N((1 − ρb)bm,y,i + ρbby,i,t, σ
2
ϵ ), where

bm,y,i = 1
1−ρb

b̄y,i. Let bm = (bm,y,bm,o), with (bm,y,i, bm,o,i), as the components of the re-

spective vectors. The unconditional variance-covariance matrix of by,t is σ
2
b I. Therefore, the

conditional expectations E [bo,i,t+1|by,i,t] and E [by,i,t+1|by,i,t] are known once by,i,t is realized,

and are sufficient to characterize the individual’s decision problem, which admits a standard

dynamic programming with a linear-quadratic utility per period under uncertainty. The

utility per period is a special case of the basic model of a Bayesian Nash social interaction

game in Blume et al. (2015, Theorem 1).

Proposition 3. Individual i chooses second period human capital and transfer to her child,
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(ko,i,t+1, ky,i,t+1), given the realization of by,i,t, and subject to uncertainty with respect to her

own second period cognitive skills coefficients and her child’s first period skills, (bo,i,t+1, by,i,t+1),

so as to maximize her expected utility.

Part A. Reformulating the individual’s decision problem of Proposition 2 under shocks to

cognitive skills coefficients yields first-order conditions for ky,t,

(3.2) ky,t+1 =
a2

c2
G(sy)G(so)ky,t +

1

c
E [by,t+1|t] +

a

c2
G(so)E [bo,t+1|t]−

1

cρ

[
I+

a

c
G(so)

]
1,

and expected steady state means,

(3.3)

k∗
y =

1

c

[
I+

c−2ã(so)ã(sy)

1− c−2ã(so)ã(sy)
G(sy; so)

] [
1

c
bm,y +

a

c2
G(so)bm,o −

1

cρ

[
I+

a

c
G(so)

]
1

]
.

The deviations ∆ky,t = ky,t − k∗
y, obey multivariate normal stationary limit distributions

with means 0 and variance covariance matrix Σy,∞:

(3.4) Σy,∞ =

[
I+

(
a
c

)2 · ã(sy)2ã(so)2
1−

(
a
c

)2
ã(sy)2ã(so)2

G(sy; so)

]
1

c2

[
ρbI+ ρo

σo
σb

a

c
G(so)

]
,

where the matrix G(sy; so) is defined in (2.30) via its (i, j) element. The evolution of ko,t,

and that of ∆ko,t = ko,t − k∗
o, are obtained in like manner.

Part B. The “anonymized” cross-sectional distribution of first-period human capitals at the

stochastic steady-state, the ky,i’s, that is when individuals’ identities are not distinguished, is

given by a mixture of univariate normals, with weights equal to I−1, the relative proportion

of agent types in the population, with mean and variance given, respectively, by:

(3.5) Meanky =
1

I

∑
i

k∗y,i, Varky =
1

I

(∑
i

k∗y,i

)2

−
∑
i

(k∗y,i)
2

+
1

I
trace (Σy,∞) .

The respective anonymized cross-sectional distribution of second-period human capitals as

well as that of the joint distribution of the first-period human capital individuals receive and

the transfer they make to their children are obtained in like manner.16
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Remarks. The conditional expectations on the RHS of Equation (A.27) are expressed

in terms of by,t, and are thus known once the by,i,t’s are realized. This allows us to solve

out for these expectations and rewrite (A.27) in the form of (A.29). By using the envelope

theorem in the derivations of Part A, the cognitive skill of an individual’s child, by,i,t+1,

enters via its expectation only, while the inheritability parameter does enter the derivations.

Online Appendix A, section A.4, provides additional details and a full statement and proof

of Proposition 3, stated as Proposition A.4.

It is straightforward to generalize the above results if different individuals’ first- and

second-period cognitive skills coefficients are not independent and identically distributed

draws from the same distribution. Even if the components of (by,bo) are independent and

identically distributed random variables, the variance covariance matrices of human capitals

display a lot of richness, because of the exogenous social interactions structure. It is also

interesting to examine the dependence of the cross-section distribution of human capitals on

the inheritability of cognitive skills coefficients.

3.3 Two Thick Tails Results

A salient feature of observed income and wealth distributions is that they exhibit thick

upper tails. It is interesting to note that the “anonymized” cross-sectional distribution of

first-period human capitals at the stochastic steady state, the ky,i’s, may be seen as a convex

mixture of normal densities. It thus exhibits heavier tails than normal17, when compared

with a mean-matched unicomponent distribution, and would not be unimodal if the means

of the constituent distributions differ. Note, again, that the term in brackets above reflects

the relative networking efforts of agents when they are young and old. Therefore, both

the mean and variance increase with heterogeneity in social connection efforts, as measured

by x2(so)
x(so)

· x2(sy)

x(sy)
, other things being equal. But the expression for the variance includes an

additional effect, the correlation of first- and second-period social interactions efforts in the

numerator of the above expression. Thus, the greater this correlation, cet. par., the greater

the variance of the cross-sectional distribution at the steady state. Also, the greater is the
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social effects coefficient a, the larger are the elements of Σy,∞, according to (A.35) above.

A different thick tails result may be obtained for the joint distribution of human capitals.

Under suitable assumptions, it obeys a multivariate Pareto law. The details of this result are

presented in Online Appendix B, and rest on appropriate limiting stochastic assumptions

about each of the two terms in the RHS of (2.4) above. That is, rewriting that system of

difference equations as

(3.6) k̃t = Ψt + G̃(Φt)k̃t−1, t = 1, . . . ,

admits the interpretation that the first term denotes the direct effect of stochastic cogni-

tive skills coefficients, while the matrix coefficient the second term, G̃(Φt), represents the

stochastic effect of social networking. Online Appendix B establishes that under appropriate

assumptions, the upper tails of the joint limit distribution of human capitals obey a Pareto

law. The significance of the result lies in that a power law is obtained for a random vector,

a novel result (to the best of my knowledge), and not for just a random scalar, as in the

voluminous Pareto law literature.

The rough intuition of the result is that given a non-trivial initial value for the cognitive

shocksΨ1 in (3.6) and an arbitrary initial value for human capitals, k̃0, the dynamic evolution

of human capital according to (3.6) keeps positive the realizations of human capital, while

the impact of spillovers is having an overall contracting effect that pushes the realizations and

thus the joint distribution of human capitals, too, towards 0. The distribution is prevented

from collapsing at 0 by the properties of the contemporaneous cognitive shocks, Ψt, and from

drifting to infinity by the contracting effect of the spillovers.18

The persistence of nontrivial dispersion results from the joint effect of two key require-

ments. First, it is assumed that there exists a positive constant κ0, such that the expectation

of the minimum row sum of the social interactions matrix raised to the power of κ0 grows

with the number of agents I faster than
√
I, roughly speaking; and second, the geometric

mean of the limit of the sequence of norms of the social interactions matrix is positive but

less than 1. The former condition ensures that there are sufficiently strong spillovers on each

31



agent from all others and therefore no collapse occurs at the lower end of the distribution.

The latter condition ensures the presence of a contracting effect at the upper end of the

distribution.

3.4 Human Capital and Intergenerational Transfers under Shocks

to Social Skills Coefficients and Exogenous Social Connections

The social competence, or social skills coefficient a, weights the value an individual at-

taches to social interactions, whose value reflects personality traits. I review next the re-

sults obtained by individualizing coefficient a and allowing it to differ over the life cycle,

ait = (ay,i,t, ao,i,t+1), and treating them as random variables. The full analytical details are

in the Online Appendix A, section A.5, in the form of Proposition A.5.

Accordingly, I redefine the value functions of Proposition 2, Part A, when choosing

(ko,i,t+1, ky,i,t+1), and consequently the individual treats as random the value that she would

derive from ko,i,t+1 in her second period of her own life and the value accruing to her child

from the transfer ky,i,t+1. The former depends on the human capitals of others, ky,j,t, j ̸= i,

which are known when she makes the decision at time t, but the effect depends on the real-

ization of ay,i,t+1. The latter depends on the cognitive skills coefficients of the child at time

t + 1 and the realization of the social interactions effect ao,i,t+2 at time t + 2. The proof is

immediate.

Allowing for randomness in ait := (ay,i,t, ao,i,t+1|) does not change substantially the first-

order conditions. In the special case when only the conditional means enter, the difference

from the deterministic case is noteworthy only if the random variables ai,t were not IID

over individuals and time. E.g., if ai,t is serially correlated over time, the system of first-

order conditions becomes stochastic. It is also conceptually straightforward to allow for

correlation between between ai,t and first-period cognitive skills, by,i,t, and therefore with

(by,i,t+1, bo,i,t+1), as well. Such a generalization may be accommodated by the tools employed

by Proposition A.5, Online Appendix, section A.5. Although the derivations would not be

trivial extensions of Proposition 5, they would still be tractable. The steady state means and

32



variance covariance matrix would reflect the stochastic dependence parameters. Although

solving the system of first-order conditions for the steady states is no longer so straightfor-

ward as before, the three sources of variation are clear. For (ky,i, ko,i), the respective period

autarkic solution 1
c
bo,i is augmented by means of a component that reflects social interactions

in both periods multiplicatively, adjusted by the mean social skills, and a component that

reflects 1
c
bo,i, adjusted by the social interactions weights associated with the second period

in individuals’ lifetimes, and by the mean social skills coefficients. Thus, individuals’ social

skills coefficients have spillovers on other individuals’ behavior.

The stochastic structure for the (ay,t, ao,t+1) may be generalized to allow for persistent

heterogeneity in addition to period-specific randomness. This would allow one to compare

the empirical performance of such extensions of the model with alternative formulations that

allow for amplification of social interactions effects either intergenerationally, as suggested

by the results of Lindahl et al. (2015), or within and across social groups, as elaborated

by Calvó-Armengol and Jackson (2004) and Ioannides and Loury (2004). A glimpse of the

likely results from such extensions may be obtained by using the first-order conditions to

predict how changes in the parameter values at time t would affect the future paths of the

human capitals. Finally, endogenizing social connections in the presence of stochastic shocks

to skills, either cognitive, social or both, would lead to a refinement of the social multiplier

results. The endogenous social multipliers would likely reflect portfolio considerations in

social networking. This deserves attention in future research.

3.5 Parents Investing in their Children’s Cognitive Skills Coeffi-

cients

The models examined so far take cognitive and social skills coefficients as given. However,

research by James Heckman and others has established that early age interventions may

improve both types of skills. I examine the possible impact of such interventions by refor-

mulating the model to allow individuals to invest in the cognitive skills coefficients of their

children. This leads to a novel social multiplier effect associated with parents’ investment in
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their own children’s cognitive skills coefficients.

I modify the overlapping generations structure to assume that youth and adulthood last

for two subperiods each, early youth and youth, and adulthood and old age, respectively.

With t indexing subperiods, an adult at time t, who was born at time t − 2 and is in

her third subperiod of her life, gives birth to a child. The child lives for four subperiods,

t, t+1, t+2, t+3, during the first two of which she overlaps with her parent who is still alive,

and then lives on for two more subperiods. She in turn gives birth to her own child at time

t+2, when she herself is an adult. Individuals make decisions affecting the household only in

adulthood and old age. For a child born at time t, her cognitive skills coefficients when she

become an adult at time t+2 are determined as a linear function, a special case of Heckman

and Mosso (2014), of the given input at birth, by,i,t, and of investments (ιc1,t, ιc2,t+1):

(3.7) by,i,t+2 = bo,i,t+3 = β0by,i,t + β1ιc1,t + β2ιc2,t+1,

where β0, β1, β2 are positive parameters. The resource costs of these investments, which are

decision variables, are incurred contemporaneously with the respective adjustment costs, in

time periods t, and t + 1, 1
2
γ1ι

2
c1,t, and

1
2
γ1ι

2
c2,t+1, respectively. The technical details of this

formulation are stated as Proposition A.6, Online Appendix A, section A.6. See Agostinelli

(2018) for empirical results along similar lines.

Optimal parental investments (ιc1,t, ιc2,t+1) turn out to be linear functions of ky,i,t+2 +

ρko,i,t+3. This in turn implies that the first order condition for ko,t+3 involves the matrix

a

ρ∗c
G(sy,t+2)

[
I+

â

c

1

1− â
ac
ã(sy,t+2)

G(sy,t+2)

]
a

ρ̃ccs
G(so,t+2),

where ρ∗ ≡ 1− ρ2ρβ
c
, ρ̃ ≡ 1− ρρβ

ccs
, ccs ≡ c− ρρβ, and â ≡ aρ2ρβ

ρ∗ρ̃ccs

(
1− ρ3ρ2β

ρ∗ρ̃cccs

)−1

are constants.

It follows that the first-order condition for ky,i,t+2 must reflect the influence that decision

has, as implied by the optimization problem, on by,i,t+2. Since by,i,t+2 = bo,i,t+3 the utility

per period from the last two subperiods of the child’s lifetime contribute to the first-order

conditions.
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I note a key role for social networking, that has so far not been recognized, benefiting indi-

viduals when young. The productG(sy,t+2)G(so,t+2) is augmented by
[
I+ â

c
1

1− â
ac

ã(sy,t+2)
G(sy,t+2)

]
.

Intuitively, the option parents have to optimize their children’s cognitive skills coefficients

produces an amplification of the effects of social networking when the child is young and in

the first subperiod of the child’s life, which are expressed via G(so,t+2), magnified by

â

c

1

1− â
ac
ã(sy,t+2)

G(sy,t+2).

In contrast to Agostinelli (2018), it does not depend on social network endogeneity. A similar

but equally hitherto unexplored effect would likely obtain if a parent may invest in improving

her child’s social skills coefficient. It is tempting to interpret the multiplier effects identified

by this section as conceptually related to multiplier effects by Agostinelli et al. (2020).

The latter effects are best seen as general equilibrium effects emanating from counterfactual

experiments involving non-marginal changes in policy parameters. I see theirs and my results

being in principle compatible.

4 Testable Implications

Social networking plays an important role in the paper as a determinant of inequality of

human capital outcomes, but is hard to measure. It does vary across cultures, ethnic groups

and nations, and to the extent that it could be analyzed by means of proxies for social

structure, its impact on human capital accumulation may be assessed. The paper does

suggest several testable propositions.

Human capital accumulation is affected by the properties of the social structure at several

stages over the life cycle. The paper predicts that reduced frictions in social networking

may reduce inequality in human capital and make it more sensitive to the endowment of

cognitive skills. In other words, greater influence over “whom you know” may leverage the

consequences of “what you know.” The simple model of networking may be augmented in

numerous ways that may account for richer dependence of inequality on social interactions.
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A particularly promising route is to model neighborhood choice, with different concepts of

neighborhood being allowed, as a way to control for a component of social networking. The

importance of variations in the quality of the residential neighborhood of upbringing and of

the intensity of exposure to neighborhood effects appear to differ across countries. They are

not as important in Sweden [Adermon et al. (2021)], but very important in the U.S. [e.g.,

Chetty and Hendren (2018)]. The total effect of the extended family, horizontally as well as

vertically construed, may also be distinguished from that of the residential neighborhood, as

patterns of familial living arrangements differ markedly across countries.

It is straightforward to test the predictions of Proposition 1, Part C, that children’s human

capital child ki,t+1 increases not only with the mean but also the coefficient of variation of

the cognitive skills of individuals in their social environment. The potential impact on social

networking sit could also be explored.

Another prediction of the paper is about the determinants of the elasticity of intergenera-

tional transfers with respect to inequality in underlying parameters. Data exist, such as from

the Panel Study of Income Dynamics, that would allow linking intergenerational transfers to

a wide range of individual and contextual social effects. Earlier research, e.g. Altonji et al.

(1997), has examined the determinants of inter vivos transfers but not the particular effects

suggested by the present paper.

The paper predicts that social multipliers are relevant not only for human capital ac-

cumulation but also for interventions aimed at improving skills, cognitive as well as social,

when they take place. Existing research on such interventions could be seen through such

a lens as well as extended accordingly. Such a role of the social context deserves special

attention.

Thick tails in the distribution of income and wealth have received attention, but their

presence has not been linked to social interactions. While most such studies aim at univariate

distributions, the particular finding of the paper that pertains to joint distributions may be

examined with data for entire social groups made up of identifiable individuals.

Lastly, in the context of empirical investigations, it is worth mentioning that exogeneity of
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social connections is not a serious drawback when social networking is not set in anticipation

of magnitudes, like labor market outcomes and the like, when associated magnitudes are the

objects of empirical study. This point is made by Blume et al. (2015). This also applies

when such exogeneity proxies for social immobility.

5 Conclusions

The dynamic models analyzed by this paper offer a novel view of the joint evolution of human

capital investment, intergenerational transfers and social networking. In the dynamic models

with overlapping generations, each individual receives a transfer from their parents in the

first period of their lives and avail themselves of the social connections that their parents

have chosen for the second period of their own lifetimes. They in turn choose their own

second-period human capital, own second-period social connections, and transfer to their

own children. The endogeneity of the social structure makes that analysis much richer. Still,

the tools of the paper do allow us to study the underlying steady states for individuals’ life

cycle accumulation, intergenerational transfers, and social connections for themselves and

for their children in great detail. The elasticity of the intergenerational transfer received by

an individual is increasing in the intergenerational transfer received by the parent, exhibits

rich dependence on social effects, and is positive and less than 1. It is also increasing in the

inequality of parents’ human capitals, a Great Gatsby curve type of result.

The paper thus offers a novel view of the consequences for inequality of the joint evolution,

endogenous or exogenous, of social connections and human capital investments. It allows

for intergenerational transfers of both human capital and social networking endowments in

dynamic and steady-state settings of dynastic overlapping-generations models of increasing

demographic complexity. The paper highlights the separable effects on human capital of

dispersion of social networking efforts alone, when they are exogenous, as distinct from when

they are jointly optimized with human capital. To the best of my knowledge, clarification

of the significance of this simple decomposition is a new finding.

Indeed, the consequences for inequality of the endogeneity of social connections are un-
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derscored by examining outcomes when social connections are assumed to be exogenous. In

that case, individuals’ human capital reflect an arbitrarily more general dependence on so-

cial connections across individuals. The dependence highlights both the relative importance

of “whom you know” as opposed to “what you know” in the determination of individual

human capitals and their steady-state distribution. When individuals optimize over their

social connections, their actions make up for the arbitrariness of outcomes and thus reduce

dependence to a smaller set of fundamentals. Endogeneity of social connections ushers in

multiplicity of equilibria, with low-level equilibria being stable and high-level ones unstable.

Several aspects of the present paper deserve further attention in future research. To

name a few, it would be interesting to develop more general stochastic formulations, and, in

addition, to fully explore the interfaces between social networking and neighborhood choice,

where one must also account for clustering into different types of neighborhoods; another

would be to allow individuals to learn from others’ social competence; yet another would

be to examine how the network formation process might be influenced by public policy.

In this context, it would be particularly fruitful to explore introducing homophily, perhaps

in the style of Canen et al. (2020). Modeling explicitly the acquisition of social jointly

with cognitive skills is also interesting. Although no general theory of network formation is

available, endogenous networks may be defined for those different classes of problems, all of

which bear upon the emergence and persistence of inequality via the social structure.
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1 Many generous comments by the referees and the editor, Iourii Manovksii, are gratefully acknowl-

edged. And so are numerous comments received during presentations at Tufts, JNT@55, Cornell, AUEB,

C.R.E.T.E., the University of Barcelona, the Royal Economic Society, the Urban Economics Associa-

tion, Clark University, University of Bern, University of Glasgow, the New Economic School, Moscow,

the ASSA/Econometric Society meetings, the Chinese University of Hong Kong, Waseda University, the

Workshop on Inequality, Intergenerational Mobility, and Organized Crime, and the Network Science and

Economics Conference, and by Larry Blume, Steven N. Durlauf, Laura Gee, Ben Golub, Camille Hémet,

Mamoru Kaneko, Andros Kourtellos, Hervé Moulin, and Konstantin Sorokin on earlier versions, and techni-

cal suggestions by Spyros Skouras, Aris Spanos, Jeff Zabel, and especially Vassilis Hajivassiliou are gratefully

acknowledged. Thanks also go to Antonio Cabrales for a suggestion and to Liuyi Ye for patient research

assistance. All errors are mine.

The paper is dedicated to the memory of Toni Calvó-Armengol and Linda Datcher Loury. Linda’s

and Toni’s untimely deaths were a huge loss not only to their families and friends, but also to the global

scholarly community. Their path-breaking research will continue to guide us.

Disclosure. Tufts University is the only source of support for this paper.

2Albornoz, Cabrales, and Hauk (2014) develop a conceptually similar use of the Cabrales et al. model,

but in a static context.

3https://addhealth.cpc.unc.edu/data/

4Abbott, Gallipoli, Meghir and Violante (2019) specify the intergenerational transmission of noncognitive

skills by means of probabilities of transitioning into social terciles, conditional on mother’s education and

on the child’s cognitive skills [ibid., section 3.3]. However, the data reported by Abbott et al. (2019, Table

G.4), which originate in the NLSY97 data set, make a powerful case for the joint effect of cognitive and

noncognitive skills on college graduation rates.

5 An important adaptation of CC-AZ by Canen et al. (2020) to the study of legislative activity does

propose a dynamic model in the style of best-response.

6The term noncognitive skills would be more inclusive; see Deming (2017, p. 1601), who considers social

and leadership skills in noncognitive skills. This modeling is also consistent with the formulation of wage

regression equations by Heckman, Stixrud and Urzua (2006, T.1, p. 418).

7I was unaware of the Canen et al.’ s argument, which is indeed set in a dynamic model of legislative

activity and social interactions. I thank Antonio Cabrales who directed my attention to it after I had shared

with him my own finding. Canen et al. work with an extension of the Cabrales et al. that allows for
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homophily. Relatedly, I thank the editor, Iourii Manovskii, for bringing to my attention Merlino (2019),

who also establishes the instability property of the numerically larger steady state and the stability of the

numerically smaller, the Pareto-dominated one.

8This derivation relies on elementary and intuitive steps here, but it is an instance of anonymizing the

cross-sectional distribution of a vector of random variables; see Proposition A.5, Part B, Online Appendix

A, and section 2.6.3, Ioannides (2013). Relatedly, I note that for the purpose of the equations immediately

below, I have abused notation to avoid proliferation of symbols and use Var, CoVar, CV, Corr as pertaining

to components of the respective vectors as individual data samples.

9 The assumption that individuals benefit when they are young from the social interactions environment

that has been chosen by their parents is consistent with Agostinelli et al. (2020), who allow for parents to

restrict whom their children can interact with through their parenting style decisions.

10In fact, Samuelson (1958) itself is cast in terms of three-overlapping generations.

11The term I−1 should be interpreted broadly as denoting as the share of a large number of identical

types.

12The Great Gatsby curve plots the intergenerational income elasticity, that is, the elasticity of the child’s

income with respect to that of the parent, against a country’s cross sectional income inequality. As Krueger

puts it, “the points cluster around an upward sloping line, indicating that countries that had more inequality

across households also had more persistence in income from one generation to the next.” The naming is ironic,

if not euphemistic, as Gatsby, the character in J. Scott Fitzgerald’s novel, rises from low to high social status.

13Corak (2013, Figures 2 and 3) shows that in the United States, sons raised by top and bottom decile

fathers are more likely to occupy the same position as their fathers. For sons of top (bottom) earning decile

fathers, the probability that their sons’ income fall in different deciles increases (decreases) with the income

decile.

14There is an obvious interpretation of this formulation as individuals’ seeking to form optimal risk port-

folios, when the risks come from exposure to social networking. In this context, optimizing with respect

to social connections, too, would yield an unconstrained portfolio problem, at the cost of giving up the

attractive linear-quadratic formulation of the problem. This angle is not pursued further here. The model

could be generalized in the style of Blume et al. (2015).

15 See Heckman’s presentation in the Lindau-Nobel 2017 Meetings: https://tinyurl.com/nmpprkzk

16I thank Vassilis Hajivassiliou for his help with the proof of Proposition A.4, Part E, Online Appendix.

17This claim rests on Shaked (1980) and applies to two-parameter exponential families of distributions, of

which the normal is a member.
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18The scalar counterpart of the conditions of Kesten’s theorems have been extensively invoked in the

economics literature. See Gabaix (1999, pp. 761–762), whose approach can be the starting point for linking

the magnitude of the Pareto exponent approximating the upper tail to the parameters of the underlying

distribution of interest.
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Online Appendix to

ENDOGENOUS SOCIAL NETWORKS AND INEQUALITY IN AN INTER-

GENERATIONAL SETTING

Yannis M. Ioannides

A Appendix A: Proofs of Propositions 1, 2 and 3, and

Additional Supplementary Material

A.1 Proposition 1. Part C and D. Proof

Part C.

Condition (2.5) of Proposition 1 in the main text, when when taken at the limit of I → ∞,

may be written as:

(A.1) sit = aρki,t+1
st · kt

Ix̄(st)
.

By using (2.4) to substitute for ki,t+1, and defining the auxiliary variable

(A.2) Υt :=
st · kt

Ix̄(st)
,

(A.1) yields:

sit =
aρ

c
biΥt +

a2ρ

c
sitΥ

2
t .

Solving for sit yields:

(A.3) sit = bi

aρ
c
Υt

1− a2ρ
c
Υ2

t

.

1



Similarly, for ki,t+1 from (A.1) and (A.3) we have:

ki,t+1 =
aρ

c
bi +

a2ρ

c
Υ2

tki,t+1.

Solving for
ki,t+1

bi
yields:

(A.4)
ki,t+1

bi
=

1
c

1− a2ρ
c
Υ2

t

.

Thus, using the definition of Υt, (A.2), we obtain the law of motion for Υt:

(A.5) Υt =
1

ac
ã(b)

1

1− a2ρ
c
Υ2

t−1

.

Since the slope of the time map rises from being equal to 0, at Υt−1 = 0, to tending to

infinity as Υt−1 → c
a2ρ
, it follows that if there exist two positive steady states, the slope of

the time map is less than 1 at the lower steady state, and greater than 1 at the higher one.

Clearly, if two distinct positive steady states for Υt exist, (Υ
∗,Υ∗∗), they satisfy

Υ ≤
(

c

a2ρ

) 1
2

.

They correspond to the two positive roots of the cubic equation resulting by taking the law

of motion at a steady state. A sufficient condition for existence may be obtained in the same

way as in the static case. That is, the slope of the tangent from (0, 0) to the time map must

have slope less than 1. The condition (2.10) is modified trivially, where instead of just ã we

have ρã.

The analysis of stability of the steady state for human capitals and socialization efforts,

normalized by the respective cognitive effect,
(

kit
bi
, sit

bi

)
, rests on the respective property

of Υt. By linearizing Equations (A.3) and (A.4) around a steady state, we may write the

deviations of these variables from their steady states in terms of the deviation of Υt from its

2



steady state. That is:

∆

(
si,t+1

bi

)
=
∂
(

si,t+1

bi

)
∂Υt+1

|{Υt+1=Υ∗}∆Υt+1;

∆

(
ki,t+1

bi

)
=
∂
(

ki,t+1

bi

)
∂Υt

|{Υt=Υ∗}∆Υt.

Since the RHS of (A.3) and (A.4) are increasing functions of Υt, the derivatives in the RHS

of the linearized laws of motion for
si,t
bi

and
ki,t
bi

above are positive and finite at the fixed

points. It is thus clear that the dynamics of the evolution of
si,t
bi

and
ki,t
bi

depend entirely on

that of ∆Υt. From the discussion following Equation (A.5) above, the low steady states are

stable and the high ones unstable. Q.E.D.

Part D.

We express the RHS of (A.5) in terms of ki,t+1 by using (A.4). So, (A.5) becomes:

Υt =
ã(b)

abi
ki,t+1.

Applying this for t− 1 and using it back in (A.4) yields a time-invariant difference equation

in ki,t alone:

(A.6)
ki,t+1

bi
=

1

c− ρã2
k2i,t
b2i

.

Its dynamics are fully determined; see Proposition 1, Part C.

Finally, from (A.5) and (A.3) the dynamic evolution of sit is entirely determined by

that of Υt. The low non-autarkic steady state s∗ is dynamically stable and the high one s∗∗

dynamically unstable. However, the algebra of deriving the time map is more complicated.

Whereas from (A.3), sit is a well-defined function of Υt, inverting it in order to express Υt in

terms of sit leads to identifying it as the positive root of the associated quadratic equation

in Υt. So, substituting back into (A.5) leads to a fourth-degree equation. Its properties may

be examined by means of the implicit function theorem.

3



Imposing a constraint for actions and networking efforts is intractable unfortunately.

Suppose, for example, that individual i is endowed with one unit of labor, of which si which

may be allocated to networking effort and pkki to producing human capital. The individual’s

problem is otherwise the same except that it is subject to a constraint: pkki + si = 1.

Adjoining the constraint by means of a Lagrange multiplier λi leads to first-order conditions

which now include the λi’s. Working in the usual way to solve for the λi’s leads to a linear

equation for Λ, the vector of λi’s, which unfortunately does not imply a simple solution like in

our treatment above and therefore does not simplify to allow us to derive useful conclusions.

A simplification fails to occur because the formulation does not yield homogeneous equations

which lead to solutions for human capitals and efforts as proportional to the cognitive skills

coefficients. Specifically, the equation for Λ becomes:[
2I+

a

c

1

1− ã(s)
c

G(s)

]
Λ =

[
I+

a

c

1

1− ã(s)
c

G(s)

]
· 1
c
b+ a

s · k
Ix̄(s)

k− 1,

which is impossible to solve in closed form.

A.2 Proposition 2. Proof

The decision problem for a member of generation t, born at time t, is to choose

{ko,i,t+1, ky,i,t+1; sy,i,t,, so,i,t+1},

given {ky,i,t, so,t}. We express the first-order conditions by first defining the value functions

V [t]
i (ky,i,t, so,t),V [t+1]

i (ky,i,t+1, so,t+1), associated with an individual’s lifetime utility when he

is young at t and when he is old at t+ 1. That is:

V [t](ky,i,t, so,t)

= max
{ko,i,t+1,ky,i,t+1;sy,i,t,,so,i,t+1}

{
by,i,tky,i,t + a

∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

4



+ρ

[
bo,i,t+1ko,i,t+1 + a

∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1

]
+ ρV [t+1]

i (ky,i,t+1, so,t+1)

}
.

Correspondingly,

V [t+1]
i (ky,i,t+1, so,t+1)

= max
{ko,i,t+2,ky,i,t+2;sy,i,t+1,,so,i,t+2}

{
by,i,t+1ky,i,t+1 + a

∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1 − ko,i,t+2

+ρ

[
bo,i,t+2ko,i,t+2 + a

∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2

]
+ ρV [t+2]

i (ky,i,t+2, so,t+2)

}
.

Part A readily follows. The first-order conditions with respect to (ko,i,t+1, sy,i,t,; ky,i,t+1, so,i,t+1)

are, respectively:

(A.7) ko,i,t+1 =
1

c
bo,i,t+1 +

a

c

∑
j ̸=i

gij(sy,t)ky,j,t −
1

cρ
;

(A.8) sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij
∂sy,i,t

(sy,t)ky,j,t;

−ρ+ ρ
∂V [t+1]

i

∂ky,i,t+1

(ky,i,t+1, so,t+1) = 0;

−ρso,i,t+1 + ρ
∂V [t+1]

i

∂so,i,t+1

(ky,i,t+1, so,t+1) = 0.

Using the envelope property, the partial derivatives of the value function above,

∂V [t+1]
i

∂ky,i,t+1

(ky,i,t+1, so,t+1),
∂V [t+1]

∂so,i,t+1

(ky,i,t+1, so,t+1)

are equal to the partial derivatives of the respective utility per period. That is, using the

envelope property, the last two equations become:

(A.9) ky,i,t+1 =
1

c
by,i,t+1 +

a

c

∑
j ̸=i

gij(so,t+1)ko,j,t+1 −
1

cρ
;

5



(A.10) so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1.

We can summarize the first-order conditions for the k’s in matrix form as follows.

(A.11) ko,t+1 =
1

c
bo,t+1 +

a

c
G(sy,t)ky,t −

1

cρ
1;

(A.12) ky,t+1 =
1

c
by,t+1 +

a

c
G(so,t+1)ko,t+1 −

1

cρ
1,

where 1 is a I− vector of 1’s. From these we may obtain two single first-order difference

equations: first in ky,t, by substituting for ko,t+1 from (A.11) in the RHS of (A.12), and then

in ky,t, by substituting for ky,t from (A.12) in the RHS of (A.11). That is, (2.22 – 2.23) in

the main text follow, reproduced here as well for clarity:

(A.13) ky,t+1 =
a2

c2
G(sy,t)G(so,t+1)ky,t+

1

c
by,t+1+

a

c2
G(so,t+1)bo,t+1−

1

cρ

[
I+

a

c
G(so,t+1)

]
1.

(A.14) ko,t+1 =
a2

c2
G(so,t)G(sy,t)ko,t +

1

c
bo,t+1 +

a

c2
G(sy,t)by,t −

1

cρ

[
I+

a

c
G(sy,t)

]
1.

Part B. The proof of Proposition 1 motivates the definitions of the following auxiliary

variables:

Υy,t ≡
sy,t · ky,t

Ix̄(sy,t)
; Υo,t+1 ≡

so,t+1 · ko,t+1

Ix̄(so,t+1)
.

Using these definitions, (2.24–2.25) are simplified as follows:

sy,i,t = aρko,i,t+1Υy,t, so,i,t+1 = aρky,i,t+1Υo,t+1.

Substituting back into (A.11–A.12) yields:

(A.15) ko,t+1 =
1

1− a2ρ
c
Υy,t

b∗
o,t+1, ky,t+1 =

1

1− a2ρ
c
Υo,t+1

b∗
y,t+1.

6



Part C. Since the largest eigenvalue of G(so)G(sy) is bounded upwards by the product

of the largest eigenvalues of G(so) and G(sy) [Debreu and Herrstein (1953); Merikoski and

Kumar (2006, Theorem. 7, 154–155)], the inverse exists, provided that the product of a2

c2

with the largest eigenvalues of G(so) and of G(sy) is less than 1. A sufficient condition for

this is that the products of a
c
and each of the largest eigenvalues of G(so),G(sy) are less

than 1.

Part D. We follow the line of proof in Cabrales et al. (2011, Lemma 3, p. 353), and

explore whether
[
I−

(
a
c

)2
G(sy)G(so)

]−1

may be written in close form. Writing out the

generic element of the matrix product G(sy; so) yields

G(sy; so)i,j =

∑
ℓ sy,ℓso,ℓ
Ix(so)

sy,iso,j
Ix(sy)

.

For the higher powers ofG(sy)G(so) we use the symmetry of each of the matricesG(sy),G(so)

and the result in ibid. to write for the generic element of G(sy) (and similarly for G(so)) as

follows:

[G(sy)]
2
i,j =

x2(sy)

x(sy)
[G(sy)]i,j.

Thus by trivial induction and provided that condition (2.28) in the main text holds, the

power expansion for the above matrix converges and is given by (2.29) in the main text.

Part E. By applying equations (A.11), (A.42), (A.12), and (A.43) we have:

(A.16) cko,i = b∗o,i + asy,i
∑
j ̸=i

sy,jky,j∑
i sy,i

;

(A.17) sy,i = ρako,i

I∑
j=1,j ̸=i

sy,jky,j∑
i sy,i

;

(A.18) cky,i = b∗y,i + aso,i
∑
j ̸=i

so,jko,j∑
i so,i

;

7



(A.19) so,i = ρaky,i

I∑
j=1,j ̸=i

so,jko,j∑
i so,i

.

We define a pair of auxiliary variables, ψy, ψo,

(A.20) ψy =
1

c− ρa2ψ2
o

b∗
y · b∗

o

Ix(b∗
o)
;

(A.21) ψo =
1

c− ρa2ψ2
y

b∗
y · b∗

o

Ix(b∗
y)
,

where b∗
y · b∗

o =
∑
b∗y,ib

∗
o,i does not depend on i. From (A.16) and (A.17), and (A.19) and

(A.19), we have:

ρko,i(cko,i − b∗o,i) = s2y,i = ρ2a2ψ2
yk

2
o,i;

ρky,i(cky,i − b∗y,i) = s2o,i = ρ2a2ψ2
ok

2
y,i.

We may thus solve for ky,i, ko,i, and then by using the definitions of ψy, ψo, for sy,i, so,i, we ob-

tain solutions for ky,i, ko,i and sy,i, so,i in terms of (ψy, ψo) and (by,i, bo,i). Finally, substituting

back into the definitions of ψy, ψo, yields third-degree equations in ψy, ψo, (A.20–A.21).

Equations (A.20–A.21) have at most two solutions in (ψy, ψo), provided that

b∗
y · b∗

o

Ix(b∗
y)
<
c

a

(
c

ρ

) 1
2

;
b∗
y · b∗

o

Ix(b∗
o)
<
c

a

(
c

ρ

) 1
2

.

Q.E.D.

Equations (A.20–A.21) have at most two solutions in (ψy, ψo), which may be characterized

easily but not solved for explicitly. The steady state values of all endogenous variables then

follow. Note that the life cycle model is crucial for the result: ψy and ψo would be equal to

one another, were it not for the fact that, by,i ̸= bo,i; first-period and second-period cognitive

skills coefficients are in general not equal to one another. Similarly, interesting complexity

and accordant richness follow if cognitive skills coefficients may be influenced by means of

investment, which I explore in section 3.5 of the main text.

8



If we were to assume, as in section 2.2, that the social networking efforts are given

exogenously, whose counterparts in the present case are those of young and of old agents,

with values not necessarily coinciding with the steady state ones, then a number of additional

results are possible. E.g, under the assumption that the social networking efforts are constant

over time, (sy, so), the system of equations (2.22–2.23) implies that a single equation for

aggregate capital kt = ky,t + ko,t, may be obtained. The dynamics are exactly the same as

in each of the two systems and no further discussion is necessary.

Such results may be strengthened in the following way. Intuitively, as the number of

overlapping generations increases, the matrix for human capitals in the laws of motion (2.22),

(2.23), becomes the product of increasing number of factors. In the limit, as the number of

overlapping generations tends to infinity, the product of stochastic matrices may be handled

by means of standard techniques for products of matrices.

A.3 Proposition A.3

Proposition A.3 supplements section 3.1.

Proposition A.3. The own elasticity of the transfer to a child, ky,i,t+1, with respect to the

transfer the parent herself received from her own parent, ky,i,t, is given by

Part A.

(A.22) EL
ky,i,t+1

ky,i,t
=
a2

c2
[G(sy,t)G(so,t+1)]ii

ky,i,t
ELKi,t(by,i,t+1)

,

where: ELKi,t(by,i,t+1)

≡ a2

c2
[G(sy,t)G(so,t+1)]row i ky,t+

1

c
by,i,t+1+

a

c2
[G(so,t+1)]row i bo,t+1−

1

cρ

[
1 +

a

c
G(so,t+1)row i1

]
.

Part B. The cross elasticity of the transfer to a child, ky,i,t+1, with respect to the transfer

9



someone else’s parent herself received from her own parent, ky,j,t, j ̸= i, is given by

(A.23) EL
ky,i,t+1

ky,j,t
(by,i,t+1) =

a2

c2
[G(sy,t)G(so,t+1)]ij

ky,j,t
ELKi,t(by,i,t+1)

.

Part C.

(A.24)

a : 0 < EL
ky,i,t+1

ky,i,t
< 1,

∂

∂ky,i,t
EL

ky,i,t+1

ky,i,t
> 0; b : 0 < EL

ky,i,t+1

ky,j,t
< 1,

∂

∂ky,j,t
EL

ky,i,t+1

ky,j,t
> 0.

The ratio of the own to the cross elasticity is given by:
ky,i,t
ky,j,t

[G(sy,t)G(so,t+1)]ii
[G(sy,t)G(so,t+1)]ij

.

Part D. If the elasticity
∂ky,i,t+1

∂ky,i,t

ky,i,t
ky,i,t+1

is evaluated in terms of deviations from the steady

state of ky,i,t, then (A.22) leads to simple expressions for both the cases of endogenous and

exogenous social connections when the cognitive effects coefficients are time invariant:

(A.25) ELii,en =
a2

c2
[
G(s∗y)G(s∗o)

]
ii
=
a2

c2
s∗y,is

∗
o,i∑

h s
∗
y,h

∑
h s

∗
o,h

∑
h

s∗y,hs
∗
o,h;

(A.26) ELii,ex =
a2

c2
[G(sy)G(so)]ii =

a2

c2
sy,iso,i∑

h sy,h
∑

h so,h

∑
h

sy,hso,h.

Part A readily follows from the derivations in the main text and the following derivation,

for the total effect of an increase in first period wealth on the transfer to the child. That is,

from (2.22) and (2.25) we have:

d ky,i,t+1

d ky,i,t
=
∂ky,i,t+1

∂ky,i,t

[
1 + ρa

I∑
j=1,j ̸=i

∂gij
∂so,i,t+1

(so,t+1)ko,j,t+1
∂so,i,t+1

∂ky,i,t+1

]
,

where the partial derivative of ky,t+1 with respect to so,i,t+1 is given by:

a2

c2
G(sy,t)

∂

∂so,i,t+1

G(so,t+1)ky,t +
∂

∂so,i,t+1

G(so,t+1)

[
a

c2
bo,t+1 −

a

ρc2
1

]
,

10



with

∂

∂so,i,t+1

G(so,t+1) =


0 0 . . . so,1,t+1∑

j ̸=1 so,1,t+1
. . . 0

so,1,t+1∑
j ̸=i so,j,t+1

so,2,t+1∑
j ̸=i so,j,t+1

. . . 0 . . .
so,I,t+1∑
j ̸=i so,j,t+1

0 0 . . .
so,I,t+1∑
j ̸=I so,j,t+1

. . . 0

 .

Part B follows by inspection of (A.22), and provided that the sufficient conditions for the

positivity of (ky,t,ko,t) in Part B, of Proposition 3, hold. Q.E.D.

Parts C and D readily follow from the definitions.

A.4 Proposition A.4

This section provides, in the from of Proposition A.4, the full statement and proof of Propo-

sition 3 in the main text. The assumptions stated in the beginning of section 3.2 continue

to hold.

Proposition A.4. Individual i chooses second period human capital and transfer to her child,

(ko,i,t+1, ky,i,t+1), given the realization of by,i,t, and subject to uncertainty with respect to her

own second period skills coefficients and her child’s first period skills, (bo,i,t+1, by,i,t+1), so as

to maximize her expected utility.

Part A. Defining the individual’s decision problem of Proposition 3 under uncertainty yields

the first-order conditions in vector form, the stochastic counterpart of (2.22–2.23):

(A.27) ky,t+1 =
a2

c2
G(sy)G(so)ky,t +

1

c
E [by,t+1|t] +

a

c2
G(so)E [bo,t+1|t]−

1

cρ

[
I+

a

c
G(so)

]
1;

(A.28) ko,t+1 =
a2

c2
G(so)G(sy)ky,t +

1

c
E [bo,t+1|t] +

a

c2
G(sy)E [by,t|t]−

1

cρ

[
I+

a

c
G(so)

]
1.

Part B. Given social connections (G(sy),G(so)), the state of the economy is described by

11



the stochastic system for (ky,t,by,t), where (ky,t,ko,t) evolve according to

(A.29) ky,t+1 =
a2

c2
G(sy)G(so)ky,t +Gadj,y(so)by,t +Cy,

(A.30) ko,t+1 =
a2

c2
G(sy)G(so)ky,t +Gadj,o(sy)by,t +Co,

where:

Gadj,y(so) =
1

c

[
ρbI+ ρo

σo
σb

a

c
G(so)

]
;

(A.31) Cy =
1

c

[
(1− ρb)I−

a

c
ρo
σo
σb

G(so)

]
bm,y +

a

c2
G(so)bm,o −

1

cρ

[
I+

a

c
G(so)

]
1;

Gadj,o(sy) =
1

c

[
σo
σy
ρoI+

a

c
G(sy)

]
;

(A.32) Co =
1

c

[
bm,o −

a

c
ρo
σo
σb

bm,y

]
− 1

cρ

[
I+

a

c
G(so)

]
1;

and by,t is an exogenous vector stochastic process, denoting first-period cognitive skills,

introduced above.

Part C. Under the additional assumption that the vector of means and the variance-covariance

matrix are time invariant, the stationary steady state is given by:

(A.33)

k∗
y =

1

c

I+ (
a
c

)2 · x2(so)
x(so)

· x2(sy)

x(sy)

1−
(
a
c

)2 x2(so)
x(so)

· x2(sy)

x(sy)

G(sy; so)

[1
c
bm,y +

a

c2
G(so)bm,o −

1

cρ

[
I+

a

c
G(so)

]
1

]
.

The deviation ∆ky,t = ky,t −k∗
y has a multivariate normal stationary limit distribution with

mean 0 and variance covariance matrix Σy,∞ that satisfies:

(A.34) Σy,∞ =
a4

c4
G(sy)G(so)Σy,∞G(so)G(sy) +Gadj,y(so)σ

2
b IG

T
adj,y(so).

12



A necessary and sufficient condition for the existence of a positive definite matrix Σ∞ is that

the matrix a2

c2
G(sy)G(so) be stable, for which by Proposition 2, Part C, a sufficient condition

is that a2

c2
times the product of the largest eigenvalue of G(sy) and of G(so) be less than 1.

For the special case of (2.2) this condition is identical to (2.28).

If a2

c2
G(sy)G(so) is stable, then:

Σy,∞ =

[
I−

(a
c

)4
G(sy)

2G(so)
2

]−1

Gadj,y(so)G
T
adj,y(so)σ

2
b

(A.35) =

I+ (
a
c

)4 · x2(so)
x(so)

· x2(sy)

x(sy)

1−
(
a
c

)4 [x2(so)
x(so)

· x2(sy)

x(sy)

]2G(sy; so)

Gadj,y(so)G
T
adj,y(so)σ

2
b ,

where the matrix G(sy; so) is defined via its (i, j) element in (2.30).

Part D. Under the above assumptions the vector the stationary steady state for ko,t satisfies

(A.36)

k∗
o =

I+ (
a
c

)2 · x2(so)
x(so)

· x2(sy)

x(sy)

1−
(
a
c

)2 x2(so)
x(so)

· x2(sy)

x(sy)

G(sy; so)

[k∗
y +

1

c

[
bm,o +

a

c
G(sy)bm,y −

1

ρ

[
I+

a

c
G(so)

]
1

]]
.

The deviation ∆ko,t = ko,t − k∗
o has a multivariate normal stationary limit distribution with

mean 0 and variance covariance matrix Σo,∞ that is given by an expression as in (A.35), with

Gadj,o, defined in (A.32), in the place of Gadj,k. where σ
2
oI denotes the variance covariance

matrix of bo. A necessary and sufficient condition for the existence of a positive definite

matrix Σ∞ is that the matrix a2

c2
G(sy)G(so) be stable, for which by Proposition 3, Part C,

a sufficient condition is that a2

c2
times the product of the largest eigenvalue of G(sy) and of

G(so) be less than 1. For the special case of (2.2) this condition is (2.28). If a2

c2
G(sy)G(so)

is stable, Σo,∞ is given by the counterpart of (A.35) with σ2
o in the place of σ2

y.

Part E. The cross-sectional distribution of first-period human capitals at the stochastic

steady-state, the ky,i’s, when we do not distinguish individuals’ identities, is given by a

mixture of univariate normals, with weights equal to I−1, the relative proportion of agent

13



types in the population, with mean and variance given by:

(A.37) Meanky =
1

I

∑
i

k∗y,i, Varky =
1

I

∑
i

(k∗y,i)
2 +

1

I
trace (Σy,∞)−

(
1

I

∑
i

k∗y,i

)2

.

The respective cross-sectional distribution of second-period human capitals as well as that

of the joint distribution of the first-period human capital individuals receive and the transfer

they make to their children is obtained in like manner.19

Proposition A.4. Proof

Part A. Transforming the individual’s decision problem in the obvious way allows us to

derive first order conditions, the stochastic counterpart of (2.22)–2.23). They are as follows:

(A.38) ky,i,t+1 =
1

c
E [by,i,t+1|by,i,t; t] +

a

c

∑
j ̸=i

gij(so)E [ko,j,t+1|i, t]−
1

cρ
;

(A.39) ko,i,t+1 =
1

c
E [bo,i,t+1|by,i,t; t] +

a

c

∑
j ̸=i

gij(sy)E [ky,j,t|i, t]−
1

cρ
.

These conditions may be rewritten readily as in the main text.

For Part B, from the stochastic assumptions we have that:

E [bo,i,t+1|by,i,t] = mo,i +
σo
σy
ρo(by,i,t − bm,y,i); E [by,i,t+1|by,i,t] = (1− ρb)bm,y,i + ρbby,i,t.

These expressions are used to write (A.27)–(A.28) by defining Gadj,y(so),Gadj,o(sy), in the

form of (A.29)–(A.30).

Parts C and D readily by Proposition 4.1 of Bertsekas (1995): ∆ky,t = ky,t − k∗
y has a

multivariate normal limit distribution with mean 0 and variance covariance matrix Σ∞ that

satisfies (A.33) in the main text. The explicit solutions for Σy,∞,Σo,∞ follow by iterating

(A.33), if the matrix a2

c2
G(sy)G(so) is stable.

For Part E, consider the discrete random variable J taking values in {1, 2, . . . , I − 1, I},

with equal probabilities I−1, and define the random vector D = (d1, d2, . . . , di, . . . , dI), with
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di = 1, iff i = J ; di = 0, iff i ̸= J. We assume that the shocks introduced in the main part of

Proposition 3 are statistically independent of the random index J and of the corresponding

dummy random vector D. Finally, consider the univariate random variable Zt that consists

of randomly selecting elements the human capital vector, that is “anonymizing” this vector:

Zt = DT∆ky,t =
∑
i

Di∆ky,i,t.

In this representation, one and only one of the Di binary random variables will take the value

1 and all the others will be 0, so Zt = ∆ky,i,t with equal probability I−1. Since the Di’s are

fully independent of the ∆ky,i,t’s, and eachDi takes the value 1 with equal probability I−1, the

expressions in (A.37) in the main text follow. The full probability density and distribution

functions of Zt follow directly from its definition. They are a mixture of univariate normal

distributions. It is important to note that since only one of the ∆ky,i,t is realized at any

one time, the covariance/correlation structure between the ∆ky,i,t is irrelevant. Only the

individual variances matter. Still, the results reported in (A.37) reflect the social structure

and, in addition, ensure a much richer outcome, as the cross-sectional distribution might no

longer be unimodal and will in general exhibit thick tails. For the general case, see Shaked

(1980); for conditions on the mixing distribution, see Antonov and Koksharov (2017).

Similar derivations readily follow for ko,i,t and the joint distribution of (ky,i,t, ky,i,t+1), the

latter being the stochastic counterpart of Social Effects in Intergenerational Wealth Transfer

Elasticities, discussed in section 3.1 of the main text. This involves deriving an expression

for the covariance of (∆ky,i,t+1,∆ky,i,t) as:

Covar(∆ky,i,t+1,∆ky,i,t) = E [ky,i,t+1ky,i,t]− (k∗y,i)
2,

which involves elementary but tedious derivations. Q.E.D.
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A.5 Proposition A.5

I redefine the individual’s decision problem to individualize a as (ay,i,t, ao,i,t+1) and assume

them to be random variables. Accordingly, I redefine the value functions of Proposition 3,

Part A, when choosing (ko,i,t+1, ky,i,t+1), and consequently the individual treats as uncertain

the value that she would derive from ko,i,t+1 in her second period of her own life and the value

accruing to her child from the transfer ky,i,t+1. The former depends on the human capitals

of others, ky,j,t, j ̸= i, which are known when she makes the decision at time t, but the effect

depends on the realization of ay,i,t+1. The latter depends on the cognitive skills coefficients

of the child at time t + 1 and the realization of the social interactions effect ao,i,t+2 at time

t+ 2.

The value function for individual i as of time t and for her child as of time t+ 1 readily

follow as in Proposition A.4, Part A.

V [t](ky,i,t, so,t; ay,i,t)

= max
E{ky,i,t+1,ko,i,t+1;sy,i,t,,so,i,t+1}

E

by,i,tky,i,t + ay,i,t
∑
j ̸=i

gij(so,t)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1

+ρ

bo,i,t+1ko,i,t+1 + ao,i,t+1

∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+1


+ρV [t+1]

i (ky,i,t+1, so,t+1; ay,i,t+1)|ai,t
}
;

V [t+1]
i (ky,i,t+1, so,t+1; ay,i,t+1)

= max
{ky,i,t+2,ko,i,t+2;sy,i,t+1,,so,i,t+2}

E

by,i,t+1ky,i,t+1 + ay,i,t+1

∑
j ̸=i

gij(so,t+1)ky,i,t+1ko,j,t+1 −
1

2
ck2y,i,t+1 −

1

2
s2y,i,t+1

−ko,i,t+2 + ρ

bo,i,t+2ko,i,t+2 + ao,i,t+2

∑
j ̸=i

gij(sy,t+1)ko,i,t+2ky,j,t+1 −
1

2
ck2o,i,t+2 −

1

2
s2o,i,t+2 − ky,i,t+2


+ρV [t+2]

i (ky,i,t+2, so,t+2; ay,i,t+2)|ay,i,t+1

}
.

The results are summarized by Proposition A.5, which follows next.
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Proposition A.5. Under the assumption that the social interactions coefficients in the prob-

lem defined by Proposition A.4, Part A, are random variables, (ay,i,t, ao,i,t+1), the definitions

of the value functions, the counterparts of those in Proposition 3, for individual i as of time

t and for her child as of time t + 1, V [t]
i (ky,i,t, so,t; ai,t), V [t+1]

i (ky,i,t+1, so,t+1; ai,t+1), that are

associated with an individual’s lifetime utility when he is young at t and when he is old at

t+ 1, are modified accordingly.

Part A. The first-order conditions with respect to the human capital decisions (ky,i,t+1, ko,i,t+1)

are given by:

(A.40) ρE

[
ay,i,t+1

∑
j ̸=i

gij(so,t+1)ko,j,t+1 |ay,i,t

]
= ρ+ ρcky,i,t+1;

(A.41) ρbo,i,t+1 + ρE

[
ao,i,t+1

∑
j ̸=i

gij(sy,t)ky,i,t |ay,i,t

]
= 1 + cko,i,t+1.

The first-order conditions with respect to the socialization efforts (sy,i,t, so,i,t+1) are:

(A.42) sy,i,t = ρE

[
ao,i,t+1ko,i,t+1

I∑
j=1,j ̸=i

∂gij(sy,t)

∂sy,i,t
ky,j,t |ay,i,t

]
;

(A.43) so,i,t+1 = ρE

[
ay,i,t+1ky,i,t+1

I∑
j=1,j ̸=i

∂gij(so,t+1)

∂so,i,t+1

ko,j,t+1 |ay,i,t

]
.

Part B. The first-order conditions for human capitals (ky,i,t+1, ko,i,t+1), under the assumptions

that the networking efforts are constant, sy,t = sy, so,t = so, and the parameters (ay,i,t, ao,i,t+1)

are approximated by their means, then conditions (A.40)–(A.41) may be written in vector

form as:

(A.44)

ky,t+1 =
Āy,t+1Āo,t+1

c2
G(sy)G(so)ky,t+

1

c
by,t+1+

Āy,t+1

c2
G(so)bo,t+1−

1

cρ

[
I+

Āy,t+1

c
G(so)

]
1;
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(A.45) ko,t+1 =
Āy,t+1Āo,t+1

c2
G(so)G(sy)ko,t+

1

c
bo,t+1+

Āy,t

c2
G(sy)by,t−

1

cρ

[
I+

a

c
G(sy)

]
1,

where Āy,t+1, Āo,t+1 denote the diagonal matrices composed of the conditional means

E [ay,i,t+1|t], E [ao,i,t+1|t].

Part C. If the means of parameters (ay,i,t, ao,i,t+1) are time invariant, so are the vectors

denoting their means, Āy,t, Āo,t, and sufficient conditions for the existence of meaningful

steady state values of (ky,ko) amount to sufficient conditions for the invertibility of

(A.46) I− c−2ĀyĀoG(so)G(sy),

namely that the product of the largest
āy,iāo,i

c2
times the largest eigenvalues of each of the

matrices G(so),G(sy) be less than 1.

Proposition A.5. Proof

Part A. Proof. The first-order conditions (A.40)–(A.41) and (A.42)–(A.43) readily follow by

differentiation and application of the envelope property along with the principle of optimality.

Part B. Proof. This follows readily, as in Proposition A.4, Part B.

Part C. Proof. This follows readily, as in Proposition A.4, Part D.

A.6 Proposition A.6

Proposition A.6 supplements Section 3.5, which allows for parents to invest in their children’s

cognitive skills coefficients. This is handled by extending the demographic structure as per

Section 3.5.

Proposition A.6. For an individual born at t, her cognitive skills coefficients and human

capital in period t are given, (by,i,t, ky,i,t); she benefits from the networking efforts of the

parents’ generation, so,t−1, who are in the third subperiod of their lives. She chooses at time

t her own second subperiod human capital and the first subperiod transfer to her own child
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at time t + 2, respectively {ko,i,t+1, ky,i,t+2}; and the first and second subperiod networking

efforts, {sy,i,t,, so,i,t+1}, respectively. She benefits herself in her own second subperiod and

her child benefits when the child is in her own first subperiod of her life and the parent

herself in her third subperiod of her life. The adjustment costs for decisions {sy,i,t,, ko,i,t+1}

are incurred in period t. The optimization problem treats the cognitive skills, by,i,t+2, of the

individual’s child and the transfer she receives when she becomes an adult, ky,i,t+2, as being

determined simultaneously.

Part A. The first order conditions for (ιc1,t, ιc2,t+1) yield:

(A.47) by,i,t+2 = bo,i,t+3 = β0by,i,t + ρρβ[ky,i,t+2 + ρko,i,t+3]− ρβ,

where parameter ρβ is defined as ρβ ≡
(
ρβ1

γ1
+ β2

γ2

)
.

Part B. The first-order conditions with respect to (ky,t+2,ko,t+2) yield a first-order linear

difference system in ko,t+2:

(A.48) ko,t+3 = beff +
a

ρ∗c
G(sy,t+2)

[
I− â

c
G(sy,t+2)

]−1
a

ρ̃ccs
G(so,t+2)ko,t+2,

where ρ∗ ≡ 1− ρ2ρβ
c
, ρ̃ ≡ 1− ρρβ

ccs
, ccs ≡ c− ρρβ, and â ≡ aρ2ρβ

ρ∗ρ̃ccs

(
1− ρ3ρ2β

ρ∗ρ̃cccs

)−1

, and beff are

constant. The optimal ky,t+2 follows from ko,t+2 according to:

(A.49) ky,t+2 =

[
I− â

c
G(sy,t+2)

]−1 [
b′
eff +

a

ρ̃ccs
G(so,t+2)ko,t+2

]
,

where b′
eff is a constant.

Part C. The stability of (A.48) rests on the spectral properties of

(A.50)
a

ρ∗c

a

ρ̃ccs
G(sy,2)G(so,2)

I+ â

c

1

1− â
c

x2(sy,2)

x(sy,2)

G(sy,2)

 ,
provided that â

c

x2(sy,2)

x(sy,2)
< 1. A sufficient condition for the stability of (A.48) is that a

ρ∗c
a

ρ̃ccs

times the product of the maximal eigenvalue of G(sy,2) and of G(so,2) times 1 plus the
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maximal eigenvalue of â
c

1

1− â
c

x2(sy,2)

x(sy,2)

G(sy,2) be less than 1.

Proposition A.6. Proof

An individual born at t takes cognitive skills coefficients and human capital as given,

(by,i,t, ky,i,t), and benefits from the networking efforts of the parents’ generation, so,t−1, who

are in the third subperiod of their lives when she is born. She chooses at time t the sec-

ond subperiod human capital and the first subperiod transfer received by the child at time

t + 2, respectively {ko,i,t+1, ky,i,t+2}; and the first and second subperiod networking efforts,

{sy,i,t,, so,i,t+1}, respectively. These benefit herself in the second subperiod of her life, and

benefit her child too, when the child is in her first subperiod of her life and she herself in her

third subperiod of her life. For analytical convenience, I assume that the adjustment costs

for decisions {sy,i,t,, ko,i,t+1} are both incurred in period t. The optimization problem implies

that the cognitive skills, by,i,t+2, of the individual’s child and the transfer she receives when

she becomes an adult, ky,i,t+2, are determined simultaneously. The definition of the value

function for the problem now changes to:

V [t](ky,i,t, so,t−1) = max
{ko,i,t+1,ky,i,t+2;ιc1,t,ιc2,t+1;sy,i,t,,so,i,t+1}

{
ρ2V [t+2](ky,i,t+2, so,t+1)

+by,i,tky,i,t + a
∑
j ̸=i

gij(so,t−1)ky,i,tko,j,t −
1

2
ck2y,i,t −

1

2
s2y,i,t − ko,i,t+1 − ιc1,t −

1

2
γ1ι

2
c1,t+

ρ

[
bo,i,t+1ko,i,t+1 + a

∑
j ̸=i

gij(sy,t)ko,i,t+1ky,j,t −
1

2
ck2o,i,t+1 −

1

2
s2o,i,t+1 − ky,i,t+2 − ιc1,t+1 −

1

2
γ1ι

2
c1,t+1

]}
.

The first order conditions for ι1,t, ι2,t+1 are:

−1− γ1ιc1,t + ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

[
∂by,i,t+2

∂ιc1,t
+
∂bo,i,t+3

∂ιc1,t

]
= 0;

−ρ[1− γ2ιc2,t+1] + ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

[
∂by,i,t+2

∂ιc2,t+1

+
∂bo,i,t+3

∂ιc2,t+1

]
= 0.

Using the envelope property we rewrite the partial derivation of the value function above
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and get:

−1− γ1ι1,t + ρ2β1 [ky,i,t+2 + ρko,i,t+3] = 0;

−1− γ2ι2,t+1 + ρβ2 [ky,i,t+2 + ρko,i,t+3] = 0.

Solving for ι1,t, ι2,t+1 yields:

ι1,t =
1

γ1
(ρ2β1[ky,i,t+2 + ρko,i,t+3]− 1); ι2,t+1 =

1

γ2
(ρβ2[ky,i,t+2 + ρko,i,t+3]− 1).

This in turn yields condition (A.47) in the main text:

(A.51) by,i,t+2 = bo,i,t+3 = β0by,i,t + ρρβ[ky,i,t+2 + ρko,i,t+3]− ρβ,

where the auxiliary parameter ρβ is defined as ρβ ≡
(
ρβ1

γ1
+ β2

γ2

)
. For some of the analysis

below we assume that by,i,t is constant, so that cognitive skills coefficients do not necessarily

steadily increase. Of course, such a feature could be incorporated.

It follows that the first-order condition for ky,i,t+2 must reflect the influence that decision

has, as implied by the optimization problem, on by,i,t+2. Since by,i,t+2 = bo,i,t+3 the utility

per period from the last two subperiods of the child’s lifetime contribute to the first-order

conditions. The first order conditions are:

−ρ+ ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂ky,i,t+2

+ ρ2
∂V [t+2](ky,i,t+2, so,t+1)

∂by,i,t+2

∂by,i,t+2

∂ky,i,t+2

= 0.

After using the envelope property and (A.51), this yields the following:

−1 + ρ

[
by,i,t+2 + a

∑
j ̸=i

gij(so,t+1)ko,j,t+2 − cky,i,t+2

]
+ ρ2ρβky,i,t+2 + ρ3ρβko,i,t+3 = 0.

This condition is rewritten as:

(A.52) ky,i,t+2 =
1

ccs
by,i,t+2 +

a

ccs

∑
j ̸=i

gij(so,t+1)ko,j,t+2 +
ρ2

ccs
ρβko,i,t+3 −

1

ρccs
,

where the auxiliary variable ccs is defined as: ccs ≡ c− ρρβ. This condition may be rewritten
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by using (A.51) to eliminate by,i,t+2 by expressing it in terms of (ky,i,t+2, ko,i,t+3).

In addition, the first-order conditions for ko,i,t+1, sy,i,t,, so,i,t+1 are as follows:

(A.53) ko,i,t+1 =
1

c
bo,i,t+1 +

a

c

∑
j ̸=i

gij(sy,t)ky,j,t −
1

cρ
;

(A.54) sy,i,t = ρako,i,t+1

I∑
j=1,j ̸=i

∂gij(sy,t)

∂sy,i,t
ky,j,t;

(A.55) so,i,t+1 = ρaky,i,t+1

I∑
j=1,j ̸=i

∂gij(so,t+1)

∂so,i,t+1

ko,j,t+1.

Conditions (A.54) and (A.55) are similar, respectively, to (2.24) and (2.25) and thus may be

manipulated at the steady state in like manner to the steady state analysis in Proposition

A.4, Part E above. It is more convenient to write Equation (A.53) by advancing the time

subscript as follows:

(A.56) ko,i,t+3 =
1

c
bo,i,t+3 +

a

c

∑
j ̸=i

gij(sy,t+2)ky,j,t+2 −
1

cρ
.

By using (A.47) to write for bo,i,t+3 in terms of its solution in terms of (ky,i,t+2, ko,i,t+3) and

rewriting the conditions for (ky,i,t+2, ko,i,t+3) in matrix form, we have:

(A.57) ko,t+3 =
β0
ρ∗c

b− ρβ
ρ∗

i+

[
ρρβ
ρ∗c

I+
a

ρ∗c
G(sy,t+2)

]
ky,t+2,

where ρ∗ ≡ 1− ρ2ρβ
c
, and

(A.58) ky,t+2 =
β0
ρ̃ccs

b− 1

ρ̃ρccs
i+

a

ρ̃ccs
G(so,t+2)ko,t+2 +

ρ2ρβ
ccs

ko,t+3,

where ρ̃ ≡ 1− ρρβ
ccs
. However, by substituting from (A.57) for ko,t+3 in the RHS of (A.58), we
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have: [(
1−

ρ3ρ2β
ρ∗ρ̃cccs

)
I− aρ2ρβ

ρ∗ρ̃cccs
G(sy,t+2)

]
ky,t+2

= β0

[
ρ2ρβ
ρ̃ρ∗cccs

+
1

ρ̃ccs

]
b−

[
1

ρ̃ρccs
+

ρ2ρ2β
ρ̃ρ∗ccs

]
i+

a

ρ̃ccs
G(so,t+2)ko,t+2.

By dividing through by 1− ρ3ρ2β
ρ∗ρ̃cccs

and denoting

â ≡ aρ2ρβ
ρ∗ρ̃ccs

(
1−

ρ3ρ2β
ρ∗ρ̃cccs

)−1

,

we may solve the previous equation with respect to ky,t+2 as follows:

ky,t+2 =

[
I− â

c
G(sy,t+2)

]−1 [
b′
eff +

a

ρ̃ccs
G(so,t+2)ko,t+2

]
,

where b′
eff is the resulting new constant. By substituting into the RHS of (A.57), we obtain

a single first-order linear difference system in ko,t+2:

(A.59) ko,t+3 = beff +
a

ρ∗c
G(sy,t+2)

[
I− â

c
G(sy,t+2)

]−1
a

ρ̃ccs
G(so,t+2)ko,t+2,

where beff denotes the resulting constant. Thus, this equation depends on both networking

efforts by the young and the old in two successive periods, G(sy,t+2),G(so,t+2).

In a notable difference from the previous models, we now see a key new role for the social

networking that individuals avail of when young. The product G(sy,t+2)G(so,t+2) is adjusted

by
[
I− â

c
G(sy,t+2)

]−1
. Intuitively, this effect acts to reinforce the effects of social networking

when young. This readily follows from (A.57) and (A.57) above. Feedbacks are generated

due to the investment in cognitive skills. Mathematical results invoked upon earlier can

still be used to determine the stability of (A.59). That is,
[
I− â

c
G(sy,2)

]−1
admits a simple

expression, following steps similar to those employed above, provided that the maximal

eigenvalue of â
c
G(sy,2) is less than 1, that is:

â

c

x2(sy,2)

x(sy,2)
< 1.
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Thus: [
I− â

c
G(sy,2)

]−1

= I+
â

c

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2).

Thus, the stability of (A.59) rests on the spectral properties of

a

ρ∗c

a

ρ̃ccs
G(sy,2)G(so,2) +

a

ρ∗c

â

c

a

ρ̃ccs

x(sy,2)

x(sy,2)− â
c
x2(sy,2)

G(sy,2)
2G(so,2).

By Theorem 1, Merikoski and Kumar (2004, pp. 151–152), the maximal eigenvalue of the sum

of two real symmetric matrices is bounded upwards by the sum of the maximal eigenvalues

of the respective matrices. Thus, a condition for the stability of (A.59) readily follows and

involves (sy,2, so,2) along with the other parameters of the model. Q.E.D.

B Appendix B: A Multivariate Pareto Law for the

Joint Distribution of Human Capitals

Under the assumption of stochastic cognitive and social skills coefficients I can obtain a

multivariate Pareto law for the upper tail of the distribution of human capitals at a stochastic

steady state. In order to do so I specify that cognitive skills coefficients are stochastic

by assuming that the (column) vectors Ψt = (ψ1,t, . . . , ψI,t)
T are defined to represent the

full cognitive effect, where ψi,t = 1
c
bi,t, with Ψt being a random column vector that is

independently and identically distributed over time. That is, the sequence of {Ψ0, . . . ,Ψt}T

is assumed to be a stationary vector stochastic process. In addition, I assume that networking

efforts are exogenous but random. That is, the social networking efforts are denoted by

Φt = (ϕ1,t, . . . , ϕI,t)
T , so that instead of (2.4) I now have:

(B.1) k̃t = Ψt + G̃(Φt)k̃t−1, t = 1, . . . ,

with a given k̃0. For the purpose of analytical convenience and without loss of generality, I

assume that the social interactions matrix G̃t = G̃(Φt) is defined to include the diagonal

terms too. Although the source of randomness in networking efforts represented by Φt is not
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specified here, it could originate in randomness in parameter a; see Proposition A.5 above.

Proposition B.1 establishes a thick upper tail of the joint distribution of human capitals.

The proof, which adapts Theorems A and B, Kesten (1973), and all associated conditions,

follows next.

Proposition B.1. Let the pairs
{
G̃t,Ψt

}
be independently and identically distributed ele-

ments of a stationary stochastic process with positive entries, where G̃t are I × I matrices

and Ψt are I− vectors. Under the additional conditions of Theorems A and B, Kesten (1973;

1974) and the assumption of the function ||m|| = max|y|=1 |ym|, where y denotes an I row

vector, and m denotes an I × I matrix, as the matrix norm || · || for I × I matrices, and | · |

denotes the Euclidian norm, then:

Part A. The series of I−vectors

(B.2) K ≡
∞∑
t=1

G̃(Φ1) · · · G̃(Φt−1)Ψt

converges w.p. 1, and the distribution of the solution k̃t of (B.1) converges to that of K,

independently of k̃0.

Part B. For all elements x on the unit sphere in IRI , under certain conditions, there exists a

positive constant κ1, and

(B.3) lim
v→∞

vκ1Prob {xK ≥ v}

exists, is finite and for all elements x on the unit sphere of IRI and for all the elements on

the positive orthant of the unit sphere is strictly positive.

Proposition B.1. Proof

I assume that the pairs
{
G̃t,Ψt

}
are independently and identically distributed elements

of a stationary stochastic process with positive entries. Adopting as matrix norm || · || for

I × I matrices the function ||m|| = max|y|=1 |ym|, where y denotes an I row vector, and m
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denotes an I × I matrix, where I adopt the notation ln+, ln+ x = min{lnx, 0.} If

E ln+ ||G̃(Φ1)|| < 0,

then

(B.4) Lim1 := lim
(
ln ||G̃(Φ1) · · · G̃(Φt)||

1
t

)
exists, is constant and finite w.p. 1. If I assume that the G̃’s are such that Lim1 < 0, then

||G̃(Φ1) · · · G̃(Φt)|| converges to 0 exponentially fast. If |Ψ1|κ < ∞ for some κ > 0, that is

if the starting shock is not too large, with the norm | · | being defined as the Euclidian norm,

then the series of the vectors of human capital

K ≡
∞∑
t=1

G̃(Φ1) · · · G̃(Φt−1)Ψt

converges w.p. 1, and the distribution of the solution k̃t of (B.1) converges to that of K,

independently of k̃0. This is simply a rigorous way to establish the limit human capital

vector.

In particular, from (B.4), if Lim1 < 0, then the norm of the product of t successive

social interactions matrices, raised to the power of t−1, is positive but less than 1. In that

case, Kesten (1973) shows that the distribution of K can have a thick upper tail. That is,

according to Kesten (1973, Theorem A), if in addition to the above conditions there exists

a constant κ0 > 0, for which

(B.5) E

{
1

I
1
2

min
i

(
I∑

j=1

G̃1i,j

)}κ0

≥ 1, and E
{
||G̃1||κ0 ln+ ||G̃1||

}
<∞,

then there exists a κ1 ∈ (0, κ0] such that

(B.6) lim
v→∞

Prob

{
max
n≥0

|xG̃1 · · · G̃n| > v

}
∼ X(x)v−κ1 ,

26



where 0 ≤ X(x) < ∞, with X(x) > 0, where the (row) vector x belongs to the positive

orthant of the unit sphere of IRI , exists and is strictly positive. If, in addition, the components

of Ψ1 satisfy:

Prob {Ψ1 = 0} < 1, Prob {Ψ1 ≥ 0} = 1, E|Ψ1|κ1 <∞,

then for all elements x on the unit sphere in IRI , then condition (B.3) follows. That is, the

upper tail of the distribution of xK,

(B.7) lim
v→∞

vκ1Prob {xK ≥ v}

exists, is finite and for all elements x in the positive orthant of the unit sphere in IRI is

strictly positive.

The intuition of condition (B.5) is that if there exists a positive constant κ0, for which the

expectation of the minimum row sum of the social interactions matrix raised to the power

of κ0, grows with the number of agents I faster than
√
I, roughly speaking, but does not

grow too fast so as to blow up, then the contracting effect of the social interactions system

does not send human capitals to zero, when the economy starts from an arbitrary initial

condition, such as when, for example, all initial human capitals are uniformly distributed.

The intuition of condition (B.4) is that the geometric mean of the limit of the sequence of

norms of the social interactions matrix is positive but less than 1. Q.E.D.

Discussion of Proposition B.1

Proposition B.1, Part A establishes properties of the limit of the vector of human capitals.

Part B relies on these properties to establish a Pareto (power) law for the upper tails of the

joint distribution of human capitals, characterized by (B.3). Its significance lies in that a

power law is obtained for a sequence of random vectors, not just a scalar random variable,

as in the previous literature. Its intuition is straightforward. This argument is reminiscent

of arguments explaining the emergence of power laws elsewhere in the economics literature.

See for the city size distribution case Ioannides (2013), Ch. 8. Given a non-trivial initial

value for the cognitive shocks, Ψ(1), and an arbitrary initial value for human capitals, k̃0,

the dynamic evolution of human capital according to (B.1) keeps positive the realizations

27



of human capital, while the impact of spillovers is having an overall contracting effect that

pushes the realizations and thus the distributions of human capital, too, towards 0. The

distribution is prevented from collapsing at 0 by the properties of the contemporaneous

cognitive shocks, Ψt, and from drifting to infinity by the contracting effect of the spillovers.

The contracting effect results from the combination of two key requirements: First, condition

(B.5) above requires that there exists a positive constant κ0, such that the expectation of

the minimum row sum of the social interactions matrix raised to the power of κ0 grows with

the number of agents I faster than
√
I, roughly speaking; and second, the geometric mean of

the limit of the sequence of norms of the social interactions matrix is positive but less than

1. The convergence in distribution of
{
G̃(Φ1) · · · G̃(Φt), t→ ∞,

}
to a non-zero matrix

is of independent interest and may be ensured under appropriate and not very restrictive

conditions. See Kesten and Spitzer (1984). The former condition ensures no collapse at the

lower end of the distribution. The latter condition ensures the presence of a contracting

effect at the upper end of the distribution.

Thus, the upper tail of the joint distribution of xK satisfies Prob {xK ≥ v} ∝ v−κ1 . That

is, for all elements on the unit sphere of IRI , the upper tail of xK is thickened by the combined

effect of the contracting spillovers and tends to a power law, ∝ v−κ1 , with a constant exponent

κ1 > 0. This result is sufficient for the distribution of human capital in the entire economy

to also have a Pareto upper tail. Let fki denote the limit distribution of ki, i = 1, . . . , I.

Then, the economy-wide distribution of human capitals is given by
∑

i #{i}fki(k), where

#{i} denotes the relative proportion of types i agents. Following Jones (2014) (who deals

with the univariate case), one may approximate the value of the Pareto exponent κ1 in terms

of the parameters of the distribution of {G̃,Ψt}.
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