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Abstract

The paper reviews the evolution of trading structures by examining two
pertinent strands in the literature on economies with interacting agents, one,
works that presume a specified topology of interactions among agents, and
two, works that let random mechanisms determine that topology. The paper
reviews interactive discrete choice models in isotropic settings and proposes
extensions within certain stylized anisotropic settings which are particularly
interesting for economists. In particular, circular patterns of interaction high-
light the role of money and credit; tree-type settings depict Walrasian interac-
tions. The paper suggests that the random topology of interaction approach,
which has employed random graph theory to study evolution of trading struc-
tures, may go beyond analyses of sizes of trading groups and thus exploit the
full range of possible topological properties of trading structures.
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The paper proposes an integration of those approaches which is intended
to exploit their natural complementarities. In the simplest possible version,
our synthesis involves individual decisions and expectations, randomness,
and nature combining to fix an initial “primordial” topology of interaction.
The dynamics of interaction move the economy from then on. The evolu-
tion of trading structures depends critically upon multiplicity and stability
properties of equilibrium configurations of the interaction model. The paper
addresses a number of additional topics, including matching models, spa-
tial aspects of the evolution of trading structures and issues of statistical
inference.
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1 Introduction

The notion that economic transactions are driven by the gains that indi-
viduals and other decision-making units expect to make through exchanging
goods and services lies at the heart of economics. Much of the theoretical
structure of modern economics assumes a given physical and institutional
infrastructure, through which trades take place. At the same time, modern
economics has neglected another equally important prerequisite for trade,
namely the ways that agents find out about each other’s availability and
willingness to engage in transactions.

In the most general setting, the present paper addresses a very broad
topic. It looks at spatial, temporal and informational aspects of trading
structures, that is, when do transactions take place, to what extent do agents
who are geographically separated have to come into physical contact in order
to transact, and the informational, what information is available to and used
by different potential traders?

The casual observer of economic life and activity, whether a historian,
geographer, anthropologist, or economist, would notice that transactions take
place in fairly well-defined time periods, that some economic activity may
be evenly distributed over part of the economically-exploited space, such as
agriculture, but that most people live in cities or towns, areas of relatively
high population density, and most manufacturing also occurs in high-density
areas. Economic activity regularly utilizes space. Electricity is produced
in specific sites and transported over long distances by means of physically
fixed infrastructure, cereals and minerals are transported in barges and ships.
Information moves over space in the form of voice, numerical or visual data.
The laws of physics, chemistry, and biology define the technologically feasible
choices available to the individual members of the economy at any given point
in time. Within these constraints, it is the decisions that individuals make
which in turn determine how constraints will evolve in the future. The nature
and identity of decision makers can change and the infrastructure that defines
the environment of trade structures is endogenous.

The Arrow-Debreu model deals with these problems by defining a set of
commodities and by taking as given the corresponding set of markets. It
is a feature of the Arrow-Debreu model that commodities, defined in terms
of physical characteristics, are indexed in terms of points in time, location
in space and contingent events. Evstigneev’s extension of the Arrow-Debreu
model, which we discuss below, generalizes this notion by endowing the index

3



set with the topology of a directed graph, rather than the tree of events in
the Arrow-Debreu model. Many of the questions we raise may be considered
as special cases of incomplete markets, where the pertinent contingencies in-
volve the likelihood that agents can or will be connected in order to trade.
The paper sets out to exploit the insight that may be gained by considering
broad features of economies which consist of large numbers of agents who
can be connected in a variety of ways. We use this approach to integrate our
knowledge of trade structures, with a fairly broad view of such structures,
and address the largely unresolved issue of the endogeneity of markets and
institutions which mediate trades. Research under the rubric of economics of
information has addressed aspects of strategic release and processing of infor-
mation, the transmission of information via market signals and the search for
trading partners. The emergence of the full topology of the modern economy
as consequence of preferences and prevailing communication technologies is
however an important unresolved issue in current research. We adopt an
approach for most of the paper which is intended to allow us to understand
the emergent properties of the economy. We abstract from the vast complex-
ity of the problem by restricting ourselves to graph topologies that roughly
describe interconnections between agents and markets.

The importance of the topology of interactions may be underscored by ref-
erence to Schelling’s theory of residential segregation, which evolves from spa-
tial dependence. The following spatial example, also from Schelling (1978),
makes the point succinctly: “If everybody needs 100 watts to read by and a
neighbor’s bulb is equivalent to half one’s own, and everybody has a 60-watt
bulb, everybody can read as long as he and both his neighbors have their
lights on. Arranged on a circle, everybody will keep his lights on if every-
body else does (and nobody will if his neighbors do not); arranged in a line,
the people at the ends cannot read anyway and turn their lights off, and the
whole thing unravels” [ibid. p. 214].

The remainder of the paper is organized as follows. Section 2 introduces
the basic intuition of our approach and defines the two broad classes of
models. Those which involve a prespecified topology of interaction among
agents are discussed first in Section 3, and those which do not are discussed
in Section 4. Both those sections also contain some original syntheses of the
existing literature. Some of those new ideas are pursued further in Section 6,
where a prototype equilibrium model of interactions with endogenous links
is developed. A number of other topics, notably including spatial models,
issues of statistical inference and matching models, are reviewed in Section

4



5. Section 7 concludes.

2 Economies with Interacting Agents

Modelling trade links is easiest in a setting like with two initially isolated
agents where strategic considerations are simple to express [Haller and Ioan-
nides (1992)]. In more complicated settings, intermediation possibilities will
affect the likelihood that trade links between two individuals will open up [
Kalai, Postlewaite and Roberts (1978) ]. A moment’s reflection suggests that
aggregating individual decisions into a pattern of links in a large economy is
an inherently very difficult problem to tackle.

Walrasian equilibrium prices are obtained by solving for the zeroes of a
system of Walrasian excess demands. Excess demands are defined as addi-
tive with respect to the index of agents participating in each Arrow-Debreu
market. We are interested in exploring patterns of dependence across agents
which depending upon agents’ preferences may imply non-additive aggre-
gation. When aggregation is additive, it is appropriate to invoke powerful
statistical theorems to ensure that small risks in large markets may cause
uncertainty, in the guise of individual heterogeneity, to have negligible con-
sequences in-the-large. A large number of agents responding to feedback
from one another may cause individual, mutually independent, sources of
randomness to reinforce and thus result in non-additive aggregation.

The first demonstration that in complex patterns of trade feedback to
external shocks may be responsible for non-additive aggregation of individual
characteristics is due to B. Jovanovic [Jovanovic (1984; 1985)]. He shows that
individual mutually independent shocks affecting a large number of traders
who because they are interlinked in the form of a circle are subject to sizable
fluctuations in per capita endogenous variables. Such phenomena are, as we
shall see, inherent in cyclical patterns of interaction.

The structure of interconnections is crucial for another, relatively unex-
plored, area of the economics of information, namely how economic news
travels in large economies. A prototype investigation here is the work by
Allen on the diffusion of information about technological innovation that de-
rives the logistic law from a model based on Markov random fields [ Allen
(1982a; 1982b) ].1 The appropriate concept for random topology of interac-

1For tractable treatments of Markov random fields, see Spitzer (1971), Preston (1974),
and Kindermann and Snell (1980).
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tion models is that of connectivity, which discuss in Section 4 below.
It may be argued that in an era of nearly ubiquitous communication sys-

tems involving telephone, fax, electronic mail, beepers, alarms and superfast
communication networks few communication problems should remain. In
practice, much ambiguity and uncertainty remain having to do with coordi-
nation, resolution of ambiguities, and failure to provide complete information.
The other side of this is that contracts have to be incomplete. Problems of
imperfect communication have also been addressed by engineers. It is known
that decision-making in decentralized environments in the presence of im-
perfect information, delays, and lack of central control gives rise to complex
dynamics. Such dynamics have concerned computer scientists [ Huberman
(1988); Huberman and Hogg (1988) ].2 It is also known that large commu-
nication networks are susceptible to inherent dynamic behavior, as lagged
responses tend to build up [Bertsekas (1982)].

Most macroeconomic theorizing in the 1970’s and the 1980’s rested on
some very special models, such as variants of the Samuelson overlapping
generations model, which are characterized by stylized restrictions on trading
patterns and have been used to motivate the holding of money. The coex-
istence of a national currency with numerous often geographically restricted
credit arrangements (credit cards versus personal credit versus money) pro-
vokes further investigation. It is interesting to ponder general results regard-
ing particular patterns of interaction, defined in terms of time-space events,
which combine with appropriate endowments and preferences to give rise to
a national currency. It is also interesting to study money (and other assets)
as emergent properties of an economy.

2.1 Models of Communication in Economies with In-
teracting Agents

Two distinct approaches have developed in the literature on economies with
interacting agents since Fölmer (1974) formally introduced the term.3 The
older approach, proposed by Kirman (1983), involves the use of random
graph theory to model the topology of interconnections as random. Kirman

2The challenges created by interconnected computer systems have been addressed in
the popular press. For example, see Markoff (1990) and Wintsch (1989) for the impact on
scientific thinking, and Sanger (1986), for the impact on financial markets.

3Kirman (1995) provides a different review of this literature.
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et al. (1986), Ioannides (1990) and Durlauf (1994a) are the key contributions
in this approach. This literature provides a better understanding of trade
among a large number of traders when links among traders are random (and
thus the number of links per trader varies). Most of this literature has ad-
dressed properties of trade that depend only on the number of interlinked
agents and ignore the actual topology, that is, graph topology,4 of intercon-
nections. The second, and newer, approach is predicated on a given topology
of interconnections. Markov random field theory has been employed as a
natural modelling device there.

We review in the paper the accomplishments of both those approaches.
We also propose to synthesize them by introducing the notion of a “grand”
compound event of trade outcomes. The likelihood of a particular realization
of trade outcomes associated with a given topology of interconnections may
be obtained in terms of the probability law that describes the evolution of
different patterns of interaction. This concept is new, in the context of this
literature, and will be used to analyze the endogenous evolution of patterns
of interconnections as an outcome of equilibrium interactions. We shall see
that certain stylized anositropic topologies of interaction lend themselves to
particularly interesting economic applications.

3 Specified Topology of Interaction: Markov

Random Fields

The pioneering work in the modern approach to a class of economies with in-
teracting agents is due to Durlauf [ Durlauf (1989a,b; 1991a,b; 1993b; 1994a)
]. Several of Durlauf’s papers share the same analytical core, which involves
Markov random field models defined over a countable infinity of agents lo-
cated in the two dimensional lattice of integers Z2. 5 We first summarize
some basic analytical features of the theory and then turn to its applications
to modelling interactions in problems with lattices as well as more general
graph topologies.

Let ωi,j,
∼
ω, and Ω denote, respectively, the activity of each of a continuum

of identical agents located in point (i, j) of the lattice Z2, the vector denot-

4Unless otherwise indicated, the term topology in this paper is meant in the sense of
graph topology. Other topologies are still pertinent; see Haller (1990; 1994).

5The development of Markov random fields originated in lattices [ Dobrushin (1968a)],
but was later extended by Preston (1974) to general graphs.
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ing the joint level of activity of agents in all sites, and the set of all possible
states. The vector

∼
ω is typically referred to as a configuration. In a typical

application, the set S of all possible values of ωi,j is assumed to be finite.
It is assumed, for simplicity, that the choice set is binary, S = {0, 1}. For
example, ωi,j = 1 (0) means the agent produces (does not produce). Alterna-
tively, it may denote that an agent is (is not) informed [cf., Allen, op. cit.].
The literature proceeds by making assumptions about local interactions and
derives global properties of equilibrium distributions. For example, Durlauf
assumes that activity by individual ι located in site (i, j) of Z2 is affected by
activity in all neighboring sites, that is {ωi−1,j, ωi+1,j, ωi,j−1, ωi,j+1}.

We now briefly outline the extension of the model that allows for more
general patterns of interactions. Let I be a finite set of individuals, ι ∈ I,
which are identified with the vertices of a graph. Interactions in an economy
are defined in terms of a graph G(V,E), where: V is the set of vertices,
V = {v1, v2, . . . , vn}, an one-to-one map of the set of individuals I onto
itself – the graph is labelled; n = |V | = |I| i s the number of vertices
(nodes), which is known as the order of the graph; E is a subset of the
collection of unordered pairs of vertices; q = |E| is the number of edges,
which is known as the size of the graph. In a typical application in this
literature, nodes denote individuals, and edges denote potential interaction
between individuals. It will be useful to define the set of nearest neighbors
of individual ι ∈ I, ν(ι) = {j ∈ I|j ̸= ι, {ι, j} ∈ E}. We define an individual
ι’s environment as the state of all other individuals, formally as a mapping
ηι : I − {ι} → {0, 1} × . . .× {0, 1}︸ ︷︷ ︸

n−1

.

Interactions across individuals are defined in terms of probability distri-
butions for the state of individual ι conditional on her environment, πι(ωι|ηι).
The collection of these distribution functions,V = {πι}ι∈I is known as a local
specification. We say that V is a nearest neighbor specification if it implies
that the state of individual ι depends only upon the state of her neighbors.
A probability measure πι()̇ is said to define a Markov random field if its local
specification for ι depends only on knowledge of outcomes for the elements of
ν(ι), the nearest neighbors of ι. This definition of a Markov random field con-
fers a spatial property to the underlying stochastic structure, which is more
general than the Markov property. We normally impose the assumption that
regardless of the state of an individual’s neighbors her state is non-trivially
random.

Random fields are easier to study in a state of statistical equilibrium.
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While in most of our own applications we have a finite number of agents in
mind, a countable infinity of agents is also possible [Preston (1974); Allen
(1982a,b)]. It is an important fact that for infinite graphs there may be more
than one measure with the same local characteristics. When this happens the
probabilities relating to a fixed finite set will be affected by the knowledge
of outcomes arbitrarily far (or, just quite far, if infinity is construed as an
approximation for large but finite sets) from that set. Existence of more
than one measure with the same local characteristics is known as a phase
transition.6

We say that a measure µ is a global phase for model (G,S,V) if µ is
compatible with V in the sense that µ{ωι = s|ηι} = πι(s|ηι), s ∈ S, where
πι(s|ηι) is agent ι’s environment. A result from the literature on Markov
random fields states that if the set of nodes (individuals) is finite and V is
a strictly positive nearest neighbor specification, then there exists a unique
global phase which is consistent with the local specification V . The global
phase is a Markov random field. The literature has established [ Griffeath
(1976) ] that every Markov random field is equivalent to aGibbs state for some
unique nearest neighbor potential. The equivalence between Gibbs states and
Markov random fields is responsible for an enormous simplification in the
formal treatment of Markov random fields. 7 We proceed with definitions
for these terms.

A set of vertices κ in an graph G(V,E), κ ⊂ V, is a clique, or simplex, if
every pair of vertices in κ are neighbors. A potential D is a way to assign a
number DA(

∼
ω) to every subspecification

∼
ωA of

∼
ω= (ω1, . . . , ωι, . . . , ωn). A

potential D is a nearest neighbor Gibbs potential if DA(
∼
ω) = 0, whenever A

is not a clique. Let Π(·) be the probability measure determined on Ω by a
nearest neighbor Gibbs potential D, that is

Π(
∼
ω) =

1

ζ
exp[

∑
κ⊂V

Dκ(
∼
ω)], (1)

where the sum is taken over all cliques κ on the graph G(V,E) and ζ is a
normalizing constant. It turns out that the probability measure for the state

6See Kindermann and Snell (1980), for a simple statement, and Dobrushin
(1968a;1968b) and Preston (1974) for elaboration of conditions for the absence of phase
transitions. See also Ellis (1985) and Georgii (1988).

7In contrast, no such simplification is available if random fields are defined over directed
graphs, as in the applications pursued by Evstigneev (1988a,b; 1991), Evstigneev and
Greenwood (1992), and Evstigneev and Taksar (1992, 1993).
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of individual ι conditional on her environment ηι is given by:

πι(ωι|ηι) =
exp[

∑
κ⊂V Dκ(

∼
ω)]∑

∼
ω
′ exp[

∑
κ⊂V Dκ(

∼
ω
′
)]
, (2)

where
∼
ω
′
is any configuration which agrees with

∼
ω at all vertices except

possibly ι.8

The integration of spatial with temporal considerations, which Markov
random fields make possible, is a powerful modelling tool. In economic ap-
plications normally it is the long-run equilibrium properties of the model
which are of interest and depend upon the parameters of (G,S,D), or al-
ternatively, of (G,S,V). Unless these parameters are endogenous, the model
has equilibrium implications which are quite similar to those of stochastic
models indexed on time. For example, planting a rumor may change the
system’s initial conditions but not its global phase [ Allen (1982a) ]. The dy-
namic implications of Markov random field models are rather hard to study,
unless particular simplified assumptions are made, such assuming isotropic,
i.e. homogeneous settings. Allen (1982a) shows that if I is assumed to be
very large and G is defined as the complete graph – every individual is a
neighbor of every other individual, ν(ι) = I −{ι},∀ι ∈ I, – then the Markov
random field model of information diffusion in a homogeneous economy may
be treated as a birth-and-death model and implies a logistic growth pro-
cess for the diffusion of information: the rate of growth of the percentage
of people who are informed is proportional to the percentage of people who
are uninformed. It is also true that this literature is just starting to deliver
completely endogenous equilibria, where the parameters of the the stochastic
structure of the random fields are the outcomes of decisions. We return to
this below.

The birth-and-death approximation that Allen invokes is a more general
property which serves to illuminate the possibilities afforded by the Markov
random field model. Preston (1974) proves equivalence between Markov ran-
dom fields and equilibrium states of time reversible nearest neighbor birth-
death semi-groups. A time reversible nearest neighbor semi-group on P(V ),

8This crucial formula follows readily once one recognizes that for any clique κ that

does not contain ι, Dκ(
∼
ω ) = Dκ(

∼
ω
′
). Thus terms that correspond to cliques that do not

contain ι cancel from both the numerator and the denominator of (2) [Kindermann and
Snell (1980), p. 27].
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the set of subsets of V, may be used to express the dynamic evolution of
changes in configurations, which could potentially serve as the basis for mod-
elling general patterns of trade among a number of agents. One could use
a very large state space to describe detailed aspects of trade among a finite
number of agents. Pricing, market structure and many other issues (and in
particular, some of the issues taken up by interesting recent contributions to
the literature of economies with interacting agents [Bell (1994); Verbrugge
(1994)]) could be better understood as special cases in this more general
approach. We are currently working on such an approach.

3.1 Remarks

Modelling interactions in terms of Markov random fields requires that the
pattern of potential links are the routes through which dependence across
sites is transmitted. It is interesting to think of links between agents as
emerging endogenously as outcomes of individuals’ decisions. This paper
advocates an approach that would help bridge the distance between the ran-
dom graph and the Markov random field approaches. Such an approach is
outlined in Section 6.2 below.

Durlauf has successfully employed the specified topology of interaction
approach to a variety of settings. Durlauf (1989a; 1989b) explore the global,
or economy-wide consequences of local coordination failures. Durlauf (1993b)
considers the role of complementarities in economic growth. He shows that
local linkages across industries can create sequential complementarities which
build up over time to affect aggregate behavior. Also, industries industries
which trade with all other industries can induce takeoff to sustained industrial
production and thus may be considered as leading sectors in the sense em-
ployed earlier by the economic development literature on the significance of
growth through intersectoral linkages. Durlauf’s applications involve equilib-
ria which may be non-ergodic, and thus allow for different global probability
measures for economic activity to be consistent with the same microeconomic
characteristics of agents. Durlauf (1994b; 1994c) deals with an implicit spa-
tial interpretation to study the persistence of income inequality.

As Preston (1974) notes, the equivalence between Gibbs states and the
equilibrium states of Markov processes defined over graphs prompts the chal-
lenge to construct Markov processes whose equilibrium states are Gibbs
states with desirable properties, which may be expressed in terms of appropri-
ate potentials. Such a “reverse” approach especially when combined with the
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equivalence between Markov random fields and birth-and-death semi-groups
suggests that a technique of greater applicability than what we have seen to
date. Related to this and virtually unexplored is the economic interpretation
of the phenomenon of phase transitions.

3.2 Interactive Discrete Choice

Scholars 9 have been aware of the tantalizing similarity between the Gibbs
measure induced by the Gibbs potential, and the logit function, which was
used by McFadden (1981) to construct measures for discrete choice models.
Blume (1993) and Brock (1993) were the first to exploit the analytical sig-
nificance of this link. 10 Brock (1993) articulated what had been lacking
in the literature so far, namely a Nash equilibrium concept in a model of
“Manski-McFadden world of interconnected discrete choosers”[op. cit., p.
20]. Brock’s approach provides behavioral foundation for mean field theory,
whereby the Markov random field model may be simplified by replacing di-
rect interaction linkages between pairs of agents by interactions 11 between
agents and the “mean of the field”. This is discussed in more detail further
below in subsection 3.3. The interactive discrete choice model serves to pro-
vide a genuine economic interpretation of the local specification introduced
above, that is, the family of distribution functions for πι(ωι|ηι), under the
assumption that it constitutes a nearest neighbor specification. Below we use
the interactive discrete choice model in preliminary explorations of a number
anisotropic settings.

Let agent ι who chooses ωι, ωι ∈ S, enjoy utility U(ωι;
∼
ων(ι)), where

∼
ων(ι)

9Including this author; see Haller and Ioannides (1991), p. 17, fn. 1.
10We agree with Brock’s claim that “the linkage of [mean field theory] and discrete

choice theory presented below appears new to this paper.” Brock (1993), p. 20.
11It appears that Brock (1993) is the first use of the term “interactive” discrete choice.

Manski (1993) addresses the inference problem posed by the possibility that average behav-
ior in some group influences the behavior of the individuals that comprise the group (the
“reflection” problem). There exists great potential for interactive choice models, as Brock
and Durlauf point out, and there also exists great number of potential econometric appli-
cations that may disentangle endogenous effects, meaning the propensity of an individual
to behave in some way varies with the behavior of the group, from exogenous (contex-
tual) effects, where behavior varies with the exogenous characteristics of the group, and
correlated effects, where individuals in a group exhibit similar behavior because they have
similar individual characteristics or face similar institutional environments. See Ioannides
et al. (1995) for spatial applications.
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denotes the vector containing as elements the decisions made by each of agent
ι’s nearest neighbors. We assume that an agent’s utility function is additively
separable in her own decision, ωι, and in the impact of her neighbors’ de-
cisions upon her own,

∼
ων(ι). The specification of an agent’s utility function

definition of the set of all cliques that include agent ι as a member, K(ι),.
So we have:

Uι(ωι;
∼
ων(ι)) ≡ u(ωι) + ωι[

∑
j∈K(ι),j ̸=ι

Jιjωj] + hωι + γϵ(ωι), (3)

where γ is a parameter and ϵ(ωι) a random variable to be specified shortly
below. Agent ι’s choice is influenced by those of her nearest neighbors, j ∈
ν(ι), via the vector of interaction effects Jιj.

Following Brock (1993), in view of McFadden (1981), and under the addi-
tional assumption that ϵ(ωι) is independently and identically type I extreme-
value distributed12 across all alternatives and agents ι ∈ I, we may write
fairly simple expressions for the choice probabilities. Without loss of gener-
ality, let S, the range of the choice variable ωι, be binary. Then:

πι(ωι = 1| ∼
ων(ι)) = Prob

u(1)− u(0) +
∑

j∈K(ι),j ̸=ι

Jιjωj] + h ≥ −γ[ϵ(1)− ϵ(0)]

 ,

(4)
which may be written in terms of the logistic integral 13

πι(ωι = 1| ∼
ων(ι)) =

exp
[
β
(
u(1)− u(0) +

∑
j∈K(ι),j ̸=ι Jιjωj] + h

)]
1 + exp

[
β
(
u(1)− u(0) +

∑
j∈K(ι),j ̸=ι Jιjωj] + h

)] , (6)

where β, a positive parameter, is an additional behavioral parameter. β = 0
implies purely random choice. The higher is β the more concentrated is the
distribution. While the extreme value assumption for the ϵ’s is made for
convenience, there are several substantive arguments in its favor. First, the

12If two independent and identically distributed random variables have type I extreme-
value distributions, then their difference has a logistic distribution.

13When S is not binary then:

πι(ωι|
∼
ων(ι)) =

exp
[
β
[
u(ωι) + ωι[

∑
j∈K(ι),j ̸=ι Jιjωj ] + hωι

]]
∑

ωι∈S exp
[
β
[
u(ωι) + ωι[

∑
j∈K(ι),j ̸=ι Jιjωj ] + hωι

]] . (5)
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logistic integral is a fairly good approximation to the normal. Second, and
much less known, is the fact that the extreme value distribution is the asymp-
totic distribution, as n → ∞, for Yn = max1≤i≤n{X1, . . . , Xn} − ℓnn, where
X1, . . . , Xn are independently and identically distributed random variables
with zero mean, drawn from a fairly large class of distributions.14

The definition of an agent’s utility according to (3) along with the discrete
choice model implied by the assumption that the ϵ’s in (3) are extreme value
distributed leads naturally to an interpretation of the underlying Gibbs po-
tential D(

∼
ω) ≡ ∑

ι∈I u(ωι)+
∑

ι∈I ωι[
∑

j∈K(ι),j ̸=ι Jιjωj]+h
∑

ι∈I ωι. as a “social
utility function” [ cf. Brock (1993) ]. To this individual choice system, there
corresponds an “aggregate” choice mechanism in terms of the probability that
the aggregate state

∼
ω= (ω1, . . . , ωn) be chosen. As Brock (1993), p. 19, and

Brock and Durlauf (1995) note, choices by the n agents are not necessarily
social welfare maximizing. Welfare analysis is facilitated by recognizing that
expected social utility, defined as the expectation of the maximum, may play
the role of expected indirect utility in a discrete choice setting [Manski and
McFadden (1981), 198-272].15 Unfortunately, the convenience of the equiva-
lence between Gibbs measures and the logit model does not carry over in the
case of McFadden’s generalized extreme value model [McFadden (1978)].

3.3 Mean Field Theory

Brock (1993) and Brock and Durlauf (1995) attempt to simplify mean field
theory and offer some fascinating results. They specify an individual’s util-
ity (3) as depending in a number of alternative ways on interaction with
others. If it depends on the average decision of all others’, then we have:
Uι(ωι;

∼
ων(ι)) ≡ u(ωι) + ωιJm̄

e
ι , where m̄e

ι ≡ (|I| − 1)−1E[
∑

j ̸=ι ωj]. In a
Nash equilibrium setting, each individual takes others’ decisions as given

14This class is defined as follows. If F (x) and f(x) denote the probability distribution

and probability density functions of the X’s, and d
dx

1−F (x)
f(x) → 0, as x → ∞, then the

standardized variable Yn−an

bn
, with an = F−1(1− 1

n ), b
−1
n = nf(an), has an extreme value

distribution, i.e., its probability distribution function is given by exp[− exp[−y]]). It is
skewed, with a long upper tail, and a mode at 0; in its standard form, its mean is .57722

and its variance π2

6 . [Cox and Hinkley (1974), p. 473.] See also appendix 1, Pudney (1989),
293-300, and Lerman and Kern (1983).

15This function is a convex function of u(·), and its derivative with respect to u yields
the respective conditional choice probability. For a recent application, see Rust (1994), p.
136.
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and makes her own decisions subject to randomness that is due to indepen-
dent and identically distributed draws from an extreme-value distribution.
In the simplest possible model, one may take each individual’s expectation
of the mean to be common across all individuals: m̄e

ι = m̄, ∀ι ∈ I. Once
the probability structure has been specified, this condition leads to a fixed
point.16

Aoki (1994a; 1994b) and Weidlich (1991) are concerned with modelling
similar settings where from a single agent’s perspective the rest of the en-
vironment is construed as a uniform field. In contrast to Brock (1993) and
Brock and Durlauf (1995), these approaches rest on weaker behavioral moti-
vations. Aoki typically works with the so-called master equation, a version of
the Chapman- Kolmogorov equation that keeps track of the time evolution
of probability distributions in Markov chains. We eschew further discussion
here and refer to Aoki (1996).

3.4 Stylized Asymmetric Patterns of Interaction

We now turn to some globally anisotropic settings, which exhibit some “lo-
cal” symmetry. Retaining some symmetry not only lends itself naturally to
economic interpretation but also confers an advantage in making the model
amenable to Nash equilibrium analysis. That assumption is in contrast to the
globally symmetric settings underlying mean field theory. We consider, alter-
natively, the cases of first, of Walrasian star-shaped interaction, and second,
of completely circular interaction. The case of complete pairwise interactions
may serve as a benchmark case and is examined first.

3.4.1 Complete Pairwise Interaction

The isotropic case of complete pairwise interaction is obtained from the gen-
eral case of (1) and (2) by specifying that for each ι, ν(ι) = I − {ι}, and
Jco ≡ Jιj, ∀j ∈ I − {ι}. For the discrete choice model generated by (3) we
have:

Uι(ωι;ωI−{ι}) ≡ u(ωι) + ωιJ
co∑

j ̸=ι

ωj + hωι + γϵ(ωι); (7)

16To see that, note that the probability of a social state
∼
ω is given by the product prob-

ability Prob(
∼
ω |m̄e

ι ) =
exp[β(u(ωι)+ωιJm̄

e
ι )]∏

ι∈I

∑
ωι=0,1

exp[β(u(ωι)+ωιJm̄e
ι )]

. It follows that the denominator of

r.h.s. of this equation may be written as
∑

ω1=0,1 . . .
∑

ωn=0,1 exp[β(u(ωι)+ωιJm̄
e
ι )],which

agrees with (1) and (2) above.
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Prob{ωι|
∼
ων(ι)} =

exp
[
β[u(ωι)− u(0) + ωιJ

co∑
j ̸=ι ωj + hωι]

]
1 + exp

[
β[u(1)− u(0) + +Jco

∑
j ̸=ι ωj + h]

] . (8)

The probabilities associated with Nash equilibrium of the interactive dis-
crete choice system may be easier to obtain once we have computed the
equilibrium probabilities Prob{ω2, . . . , ωn}, and so on, of which there 2n−1.
Taking advantage of symmetry reduces vastly the number of the relevant
unknown probabilities down to n.

Instead of pursuing this further here, we note that the model bears a close
resemblance to that of Kauffman (1993), p. 192, the case of the “Grand
Ensemble”: a given number of nodes n is connected to every other node,
and each node is assigned a Boolean function at random from among the
maximum possible number of possible logical rules, 22

n
. It is interesting to

explore the intuition obtained from the literature related to Kauffman’s work,
which is discussed in ibid. This model may also be considered as an extension
of Allen (1982a), which allows us to explore some of the problems Allen takes
up in more general settings.

3.5 Walrasian Star-shaped Interaction

This is obtained from the general case above by treating agent 1 as located
at the center of a star, so that for ∀ι, ι ̸= 1, ν(ι) = {1}, and Jw ≡ Jι1, and
Jw ≡ Jιj, otherwise. Also, ν(1) = I−{1}, Jw ≡ J1ι,∀ι ̸= 1. For the discrete
choice model generated by (3) we have:

Uι(ω1;ω2, . . . , ωn) ≡ u(ω1) + ω1J
w

n∑
ι=2

ωι + hω1 + γϵ(ω1); (9)

Uι(ωι;ω1) ≡ u(ωι) + ωιJ1ω1 + hωι + γϵ(ωι); ι = 2, . . . , n. (10)

This system implies interactive discrete choice probabilities as follows:

Prob{ω1|ω2, . . . , ωn} =
exp [β[u(ω1)− u(0) + ω1J

w∑n
ι=2 ωι + hω1]]

1 + exp [β[u(1)− u(0) + +Jw
∑n

ι=2 ωι + h]]
. (11)

Prob{ωι|ω1} =
exp [β[u(ωι)− u(0) + ωιJ1ω1 + hωι]]

1 + exp [β[u(1)− u(0) + J1ω1 + h]]
, ∀ι ̸= 1. (12)

The probabilities associated with Nash equilibrium of the interactive dis-
crete choice system may be obtained in terms of the equilibrium probabili-
ties Prob{ω2, . . . , ωn}. The general case involves 2n−1 such probabilities, but
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taking advantage of symmetry reduces vastly the number of unknowns down
to n.

Walrasian star-shaped interaction is seen here as a prototype for trees,
which is one of the graph topologies for which threshold properties have been
obtained by the random graphs literature. The model may be augmented to
allow for branches with different number of nodes and may also serve as a
prototype for hierarchical structures. A variety of economic settings may be
explored with this model. The extreme value distribution assumed by the
behavioral model fits quite naturally a situation where where agent 1 con-
ducts an auction based on offers by agents 2, . . . , n. Alternatively, each of the
agents on the periphery may specialize in the production of a differentiated
product. The number of agents n may thus reflect the demand for variety,
etc.

3.6 Circular Interaction

This is obtained from the general case above by specifying that for each ι,
ν(ι) = {ι − 1, ι + 1}, and Jι,ι−1, Jι,ι+1 ≡ J, where for symmetry, {n + 1} =
{1}, {1− 1} = {n}. For the discrete choice model generated by (3) we have:

Uι(ωι;ωι−1, ωι+1) ≡ u(ωι) + ωιJ [ωι−1 + ωι+1] + hωι + γϵ(ωι), (13)

which implies interactive discrete choice probabilities as follows:

Prob{ωι|ωι−1, ωι+1} =
exp[u(ωι)− u(0) + ωιJ [ωι−1 + ωι+1] + hωι]

1 + exp[u(1)− u(0) + J [ωι−1 + ωι+1] + h]
. (14)

The probabilities associated with Nash equilibrium of the interactive dis-
crete choice system are easy to obtain once we have computed the equilib-
rium values of the probabilities Prob[ω1, . . . , ωn]. The key is to recognize that
symmetry implies that

Prob[ω1, . . . , ωn] = Prob[ω2, . . . , ωn, ω1] = . . . = Prob[ωn, ω1, . . . , ωn−1].
(15)

Specifically, for the case of n = 3 it suffices, based on (15) to solve
for the four unknown probabilities Prob[1, 1, 1], Prob[1, 1, 0], Prob[1, 0, 0],
and Prob[0, 0, 0]. We use the following notation for the respective inter-
active choice probabilities (14) in terms of the parameters of the model:

Prob{1|1, 0} ≡ exp[u(1)−u(0)+J+h]
1+exp[u(1)−u(0)+J+h]

; Prob{1|1, 1} ≡ exp[u(1)−u(0)+2J+h]
1+exp[u(1)−u(0)+2J+h]

; Prob{0|0, 0} ≡
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1
1+exp[u(1)−u(0)+h]

. Symmetry along with the definition of the interactive choice

probabilities (14) imply the following linear system of equations:

Prob[1, 1, 1] + 3Prob[1, 1, 0] + 3Prob[1, 0, 0] + Prob[0, 0, 0] = 1;

(Prob[1, 1, 1] + Prob[1, 1, 0])Prob{1|1, 1} = Prob{1, 1, 1};

(Prob[1, 0, 0] + Prob[0, 0, 0])Prob{0|0, 0} = Prob[0, 0, 0];

(Prob[1, 1, 0] + Prob[1, 0, 0])Prob{1|0, 1} = Prob[1, 1, 0].

Let Pci(u(1)−u(0), J, h), a vector, denote the solution to this system, which
is in closed form. The classic example is due to Wicksell (1934) in specializing
in different goods. Because of absence of double coincidence of wants agents
will avail themselves of the opportunity to trade only if circular sequences
of trades may be completed. We pursue this further in Section 6. We note
that the circle model has been addressed by the interacting particle systems
literature [Ellis (1985), 190-203]. It gives rise to some features which are
absent from the Curie-Weiss model, namely a new kind of phase transition
described in terms of random waves. This and other features of models of
circular interaction are being investigated currently by the author.

3.7 Comparisons

The most important differences among the three stylized topologies that we
have examined are associated with the fact that the circular and complete
graph topologies allow circular trades to be completed. The results reported
by Kauffman (1993) involving autonomous Boolean networks with randomly
assigned Boolean functions are indicative of the sort of results one could
obtain by different specifications of preferences. For example, the Boolean
functions .OR. and .AND. are conceptually similar to substitutability and
complementarity, respectively. Analogous interpretations may be obtained
for other Boolean functions. The importance of the preference structure in
conjunction with the topology of interconnections may be underscored by
the example, due to Schelling (1978), of an extreme case of complementarity,
preferences for reading and lighting, which we quoted in the Introduction.

The sharp differences that preferences combined with topology make sug-
gest the potential complexity of outcomes, and great richness in dynamic
settings. Further study of these models is currently pursued by the author.
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3.8 The Arrow-Debreu-Evstigneev Model

This section attempts to address the challenge of extending the Arrow-
Debreu model in order to endow it with a general graph topology. It is
critical to note that the Arrow-Debreu model depends on time being natu-
rally ordered. The important extension we introduce below is based on the
σ-algebras not being necessarily linearly ordered. It is standard to model
uncertainty by means of a set N of states of the world, indexed by w ∈ Ω,
and a finite number of periods, indexed by t = 0, 1, . . . , T . The information
in the economy is exogenously specified and is represented by a sequence of
partitions of Ω, {Ft | t = 0, 1, . . . , T}. At time t an agent knows which event
has occurred and which cell of Ft contains the true state. It is standard to
assume that information increases through time; Ft+1 is at least as fine as
Ft. It does not imply loss of generality to assume that F0 = Ω, the universe,
and FT = {ω | ω ∈ Ω}, the discrete partition, the state of the world is re-
vealed by period T . Let us denote by Ft the σ-field of events, generated by
Ft; F = {Ft; t ∈ {0, 1, . . . , T}} is the filtration generated by the sequence of
partitions Ft. Consumption goods and endowments in terms of goods may
be represented as stochastic processes adapted to Ft.

Evstigneev (1991) extended the Arrow-Debreu model by invoking the in-
dex set used17 to describe communication links in a large economy. This
device possesses a multitude of advantages. It implies as special cases graph
topologies which describe patterns of trading links that underlie several pop-
ular models in economics as special cases. Moreover, it may be considered
as a rigorous extension of the Arrow- Debreu model, where the pattern of
trading links has the (graph) topology of a tree, the tree of events. We,
therefore, refer to this model as the Arrow-Debreu-Evstigneev model, ADE
for short.

A key characteristic of the ADE model is that the index set T is endowed
with the topology of an oriented, that is directed, graph.18 Let (Ω,F ,P)

17See also Evstigneev (1988), which solves the problem of optimizing an objective func-
tion that roughly corresponds to a theory of teams type problem. The model in Evstigneev
(1990), on the other hand, corresponds to a recursive equilibrium-type structure, where
economic units may be spatially differentiated and be asymmetrically related to one an-
other.

18A generalization to Evstigneev’s approach would be to consider T̃ as a virtual index
set. It would incorporates the set of logical as well technological possibilities that are a
prerequisite to actual economic relationships. The actual index set in our setting, T, will
be the outcome of individuals’ decisions.
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be a probability space, as before. It is assumed that to each t ∈ T there
corresponds a set K(t) ⊆ T, which contains t and may be interpreted as the
set of descendants of t, that is the set of agents directly dependent on t. On
the graph corresponding to T there is an arrow (arc) leading from t to every
element of K(t).

The ADE model explores the notion that the sources of randomness which
influence t also influence all agents who descend from her. That is, the
σ−algebras Ft corresponding to each agent, Ft ⊆ F , satisfy

Ft ⊆ Fs, ∀s ∈ K(t).

This condition, namely that the σ-algebras Ft do not decrease as we move
along the arrows of the graph means that the random factors which influence
agent t also influence all agents in K(t). In case of a cycle, the σ-algebras
coincide Fs = F ′

s.
The index set T and the σ-algebras do not have to be linearly ordered.

In contrast, the counterpart of our index set in a number of standard eco-
nomic models has very special, and linearly ordered, structure. In dynamic
equilibrium models, it describes the sequential evolution of time. Alterna-
tively, in purely spatial allocation problems T indexes locations in space,
sites. Similarly to an agent’s descendants we may define the set of of an
agent t’ ancestors, those agents from whom agent t descends. The set of
agent’s t ancestors is defined as M(t), includes t and consists of the agents
{s : s ∈ M(t), if t ∈ K(s)}.

Evstigneev suggests that time may be introduced explicitly in two alter-
native ways. One is to think of the elements of the set T as pairs t = (n, b),
where n ∈ {1, 2, . . . , N} denotes discrete-valued time within a finite horizon
N , and the set B(n), with generic element b ∈ B(n), is the set of economic
units functioning at time t. With each pair, t = (n, b) (b ∈ B(n)) a set
K(n, b) ⊆ T is associated such that (n′, b′) ∈ K(n, b) implies n′ ≥ n. A
second and perhaps simpler way of introducing time is to assume that an
integer-valued function ν(t), t ∈ T, is given on the graph T, and its values
ν(t) are interpreted as moments of functioning of economic units t ∈ T. It
is natural to assume here that ν(s) ≥ ν(t) for s ∈ K(t). We define the set
of agent’s t’ contemporaries C(t) as all agents that function during the same
point in time.

Evstigneev (1991) starts with Zt(q), the set of preferable programs of
agent t under price system p : q = (qs)s∈K(t) and proves existence of equilib-
rium by means of tools from the theory of monotone operators. Evstigneev
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and Taksar (1992; 1993) offer a sensitivity analysis and an extension for
the case of growing economies. Evstigneev’s work constitutes a major gen-
eralization of the Arrow-Debreu model in a spatial context. Still, like the
Arrow-Debreu model, it does not allow for feedback from the anticipation of
trade frictions to allocation decisions.

4 Models with Random Topology

The previous section explored interactions across agents, when the topology
of interconnections among them is given. Here we study by means of random
graph theory how different patterns of interconnections may come about
completely randomly. We review the literature that has utilized thius theory
in models of trading structures. We end the section by taking up a number
of economic issues which may be also be analyzed by random graph but have
been paid little attention by the literature.

Random graph models19 are a natural way to model situations where
traders are into contact with other potential trading partners directly as
well as indirectly through the partners of their trading partners and so on.
There are other good reasons for treating the communication structure of an
economy as a random variable. It might not be known who communicates
with whom, and any two individuals may attempt to contact one another at
random, and such attempts may fail stochastically.

Kirman (1983) was the first to argue in favor of this approach for studying
communication in markets. Kirman et al. (1986) employ it studying coalition
formation in large economies. Ioannides (1990) uses is it in a model of trading
uncertainty, where formation of trading groups rather than consummation
of bilateral trades is the object of investigation. Durlauf (1994a) uses it to
study the role of communication frictions in generating coordination failure
which in turn leads to aggregate fluctuations. Bernheim and Bagwell (1985)
invoke random graph theory to assess the number of individuals who are
linked through interpersonal transfers.

19The seminal work by Erdös and Renyi (1960) was followed by a broader set of appli-
cations in Erdös and Spencer (1974). See Bollobas (1985) and Palmer (1985) for the latest
sources on this vast fascinating literature.
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4.1 Random Graph Theory

Random graph theory introduces randomness by means of two alternative
models.20 Model A is defined in terms of graphs of order n and a probability
p = p(n) such that an edge exists between any two vertices i and j from
among all possible vertices. The sample space consists of all possible labelled

graphs of order n, with each of all
(

n
2

)
possible edges being assigned

independently with probability p. Model B is defined in terms of graphs of

order n and size q, 0 ≤ q ≤
(
n
2

)
. The sample space consists of all possible

labelled graphs of order n and size q = q(n), each occurring with equal

probability given by
( (

n
2

)
q

)−1

. Model A, B will be referred to as GA
n,p(n),

GB
n,q(n), respectively.
Random graph theory is concerned with properties of graphs, such as

connectedness and other, where the likelihood that they prevail satisfies a
threshold property as the order of the graph grows. The literature utilizes
results from random graph theory when n tends to infinity without specifying
the space within which the graph is imbedded. Almost all of the literature
works with homogeneous models, but as Erdös and Renyi (1960) speculated,
there exists now a bit of literature pertaining to anisotropic models and
is discussed below. It is evidence of the richness of this theory that the
emergent21 properties of random graphs do appear in homogeneous settings.

In the remainder of this subsection we discuss certain results from random
graph theory which are less known and lend themselves neatly to economic
applications. We complete the section with a review of the principal economic
applications of random graph theory.

4.1.1 Emergence of Cycles

Of particular interest in the section below where we attempt to explore the
actual topology of the random graph is conditions for the emergence of cycles.
We know from Erdös and Renyi, op. cit., the following facts. The number of
cycles of order k, k = 3, 4, . . . , contained in GB

n,cn has a Poisson distribution

20Erdös and Renyi (1960) work with Model B but refer to the equivalence between these
two models.

21I believe that Cohen (1988) and Kauffman (1993) are the first to refer to the properties
of random graphs as emergent.
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with mean equal to (2c)k

2k
. The number of isolated cycles of order k, k = 3, 4, . . .

contained in GB
n,cn has a Poisson distribution with mean equal to (2ce−2c)k

2k
. The

number of components consisting of k ≥ 3 points and k edges has a Poisson

distribution with mean equal to (2ce−2c)k

2k

(
1 + k + k2

2!
+ . . . kk−3

(k−3)!

)
. The ex-

pected number of all cycles contained in GB
n,cn is equal to 1

2
ℓn

(
1

1−2c

)
− c− c2,

if c < 1
2
; to 1

4
ℓnn, if c = 1

2
. The probability that GB

n,cn contains at least one

cycle is given by 1−
√
1− 2cec+c2 , 1

2
≥ c. The total number of points of GB

n,cn

that belong to some cycle is finite and given by 4c3

1−2c
, if c < 1

2
. The expected

number of points of GB
n,cn which belong to components containing exactly

one cycle is given by 1
2

∑∞
k=3(2ce

−2c)k
(
1 + k + k2

2!
+ . . . kk−3

(k−3)!

)
, if c ̸= 1

2
, and

equal to
Γ( 1

3
)

12
n

2
3 , otherwise. It then follows that for c < 1

2
all components of

GB
n,cn are with probability tending to 1 either trees or components containing

one cycle. In other words, almost all graphs have no components with more
than one cycle. Thus, we are not guaranteed a cycle until c = 1

2
, or p(n) ≥ 1

n
.

Finally, the asymptotic probability of cycles of all orders in GB
n,n is equal to

1.

4.1.2 Connectivity and Hamiltonicity

A cycle that goes through every node exactly once (a spanning cycle) is
known as a Hamiltonian. Specifically, we have from Palmer (1985), p. 59,

the following result. In the random graph GA
n,p(n), with p(n) = ℓnn+ℓn[ℓnn]+2cn

n
,

the probability of hamiltonicity tends, as n → ∞, to: 0, if cn → −∞; e−e−2c
,

if cn → c; 1, if cn → +∞. In contrast, the probability of connectivity in the
random graph GA

n,p(n), with p(n) = c ℓnn
n

tends to 1, if c > 1. This holds in

GB
n,q(n), with q(n) = c

2
nℓnn. In both cases, the random graph is disconnected

if 0 < c < 1. If p(n) = ℓnn+2c
n

the probability of connectivity of GA
n,p(n) tends to

e−e−2c
.Outside the giant component, there are only isolated agents. Similarly,

if p(n) = ℓnn+2c
n

the probability of connectivity of GA
n,p(n) tends to e−e−2c

. It is
thus clear that in order to make hamiltonicity possible, the probability that
any two agents be connected must be larger than the value which ensures
connectivity at least by a term ℓn[ℓnn]

n
, which of course decreases with n.

Connectivity is a useful concept in understanding how news travels through
a population of agents. For example, if news can travel through direct and
indirect contacts, then the probability of connectivity gives the probability
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that a given piece of news can reach everyone. Hamiltonicity lends itself
readily to modelling the emergence of conditions under which fiat money can
finance trades, which we take up in Section 6 below.

4.1.3 Anisotropic Random Graph Models

Kovalenko (1975) provides a rare example of a random graph model where the
edge probabilities are not equal. Specifically, Kovalenko considers random
graphs where an edge between nodes i and j may occur with the probability
pij independently of whatever other edges exist. He assumes that the prob-
ability tends to 0 as n → ∞ that there are no edges leading out of every
node and that there are no edges leading into every node. Under some ad-
ditional limiting assumptions about the probability structure, he shows that
in the limit the random graph behaves as follows: there is a subgraph A1

of in-isolated nodes whose order follows asymptotically a Poisson law; there
is a subgraph A2 of out-isolated nodes whose order follows asymptotically a
Poisson law; all remaining nodes form a connected subgraph. The orders of
A1 and A2 are asymptotically independent and their parameters are given
in terms of the limit of the probability structure.

4.2 Economic Applications of Random Graphs

Here are some examples of how the economics literature has exploited random
graph theory. Kirman (1983) works with GA

n,p(n), where p(n) ≡ p, a constant.

Then GA
n,p(n) is strongly connected with probability equal to limn→∞ : 1−n(1−

p)n−1, which is, of course, equal to zero. Kirman derives a Probabilistic Limit
Theorem for the Core: the epsilon core is arbitrarily close to a sequence of
replica Walrasian economies. This result is strengthened by Kirman, Oddou
and Weber (1986), where p(n) is a decreasing function of n, which can go to
0 as fast as 1√

n
, for n → ∞. They also prove a probabilistic theorem that all

members of a coalition are required to be in direct contact; in that case, in
particular, p(n) should go to 0 slower than 1

ℓnn
. Ioannides (1990) interprets

each node as an independently endowed trader, and the isolated components
of the random graph as trading groups within which trades are allocated
according to Walrasian rules.22 He then considers the evolution of GB

n,cn,
where c is a constant, and associates the emergence of the giant component

22Ioannides (1986) considers that interlinked traders form mutual funds.
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of the random graph, when n → ∞, with elimination of uncertainty for a
certain proportion of the economy. The expected number of components of
GB
n,cn divided by the number of traders n is: 1−c+ O(1)

n
, if c < 1

2
; 1−c+ O(ℓnn)

n
,

if c = 1
2
; and, 1

2c

(
x(c)− x2(c)

2

)
, if c > 1

2
, where x(c) is the only solution in

(0, 1) of the equation xe−x = 2ce−2c. That is, it decreases, as c increases,
originally linearly and then slower than linearly with c. The random graph
contains a unique giant component of order [1 − x(c)

2c
]n, and the remaining

vertices, whose number is roughly equal to x(c)
2c

]n, belong to components that
are trees of order at most ℓnn. This finding is particularly dramatic if it is
presented as a plot of the size of the largest component against c, the ratio of
edges to nodes, which has a sigmoidal shape with a sharp rise at c = 1

2
.23 The

random graph GB
n,cn is of particular interest in that it exhibits an interesting

uniformity “in-the-small,” in spite of this stark heterogeneity. For any of
its points, the probability that it is connected to j other points is given by
(2c)je−2c

j!
, j = 0, 1, . . . , i.e., it has a Poisson distribution with mean equal to

twice the number of edges per trader. Equivalent statements hold for the
random graph GA

n, 2c
n

.

Durlauf (1994a) considers the evolution of a set of industries, each con-
sisting of a large number of costlessly communicating firms. When a set of
industries establish contact with one another and form a production coali-
tion, whereby all members of a production coalition must be able to commu-
nicate directly through a bilateral link with at least one other member of the
coalition, output and profits are improved. Durlauf works with GA

n,p(n) and
assumes that the probability of communication between industries i and j,
the probability of an edge between nodes i and j, is a continuous increasing
function of industry outputs; he also assumes that conditionally on industry
outputs, the event that industry i communicates with industry j is inde-
pendent of the event that industry i′ communicates with industry j′, when
{i, j} and {i′, j′} are distinct pairs. Durlauf shows that the following con-
ditions are necessary for existence of aggregate cycles: For all finite n, the
probability is strictly positive that two isolated industries be connected when
they produce their maximum possible output – that is, no all industries are
simultaneously isolated; the probability is strictly less than 1 that two dif-
ferent industries that are members of the largest possible coalition of size

23Kauffman (1995) uses this model as a metaphor for the origin of an autocatalytic
model of chemical reactions that “ is ... almost certainly self-sustaining, alive ” [ ibid. p.
58 ].
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n be connected directly when they produce their lowest possible output –
not all bilateral links will become permanently established. So long as the
probability of each bilateral link is between 0 and 1 for all output levels, the
model describing aggregate output will be ergodic. The main theorem in
Durlauf (1994) states that under the assumptions made about the sensitivity
of the probability of bilateral communication aggregate output fluctuations
will be arbitrarily persistent: high output enhances the process of coalition
formation and low output impedes it, so that circumstances of high and low
aggregate activity are self-reinforcing. All these papers do take advantage
of the fascinating properties of random graphs, but they stop short of mak-
ing as dramatic a use of the emergent properties of communication among
large numbers of agents as that by mathematical biologists [ Cohen (1988);
Kauffman (1993; 1995) ].

It is most fortunate that random graph theory has obtained such pre-
cise results about trees and cycles which, as we argued earlier in subsections
3.5 and 3.6 are of particular relevance for economic applications. Our cur-
rent research in this area sets out to combine two sets of analytical insights
obtained by the two approaches discussed so far, that is, models with speci-
fied topology of interaction, discussed in Section 3, and models with random
topology, discussed in the present one. Our goal is to obtain an integrated
model, a grand synthesis, of the evolution of trading structures. This, as
we see it, involves two steps: first, agents’ decisions combine with nature
to generate a particular structure of interconnections; and second, given a
structure of interconnections agents trade. The interplay between those two
approaches becomes the basis of the synthesis. Agents’ decisions may affect
the parameters of the random mechanism of the first step above, and agents’
decisions in the second step may affect the further evolution of the economy.
Even with static expectations, agents face a tradeoff: heavy investments in
establishing a trade infrastructure makes trade more likely but also costs
more. With general structures of preferences, some agents may be better off
specializing in the production of certain differentiated goods, whereas other
agents may be better off providing intermediation services. Circular trading
structures facilitate trade but require, in the average, a greater “thickness”
of interconnections, as the discussion in subsection 4.1.2 immediately above
makes clear. Macro-type properties with multiplier effects are more likely
to emanate from models with circular trades. Endogeneity of differentiated
product varieties may be modelled in tree-type structures.
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5 Other Topics

Spatial aspects of trading structures give rise to issues of spatial complex-
ity and link with the urban economics literature. Our theoretical approach
would be complemented by a study of possibilities of statistical inference.
Aggregate implications of some of the approaches we have discussed have
already been examined extensively by the economies with interacting agents
literature. E.g., Durlauf (1989b) derives and tests empirically the model’s
implications for persistence. Those tests, and other work by Durlauf, work
with the aggregate implications of the theory. Techniques of inference that
could be aimed at a more “micro” level would be particularly useful. The
evolution of trading structures in a spatial context is an area that lends itself
to particularly interesting issues of statistical inference. Another would be
testing Kauffman’s theory of technological change through inference based
on the evolution of economic webs [ Kauffman (1988) ]. The material below
demonstrates that it is fairly straightforward to carry out inference in terms
of differences across graphs. Two other issues are taken up in the remainder
of this section, namely pricing and matching models.

5.1 Spatial Models

The modern economy depends critically on differentiated use of space. Such
differentiation emerged during very early stages of development, when settle-
ments appeared to take advantage of economies of scale in trading activities
relative to a rural hinterland and to exploit other benefits of close human
interactions [Bairoch (1988)]. These processes have been subject of intense
investigations by other social scientists but received only scant attention by
economists outside the broad area of urban economics, which has almost ex-
clusively focussed on cities [Henderson (1985); 1988)]. Recent work by Paul
Krugman on economic geography has revived interest in this area and has
given a new impetus by setting a number of new challenges.

Our understanding of the trade infrastructure of the modern economy is
unthinkable without an understanding of how cities interact with one another
and with their hinterlands. To accomplish this, we must go beyond looking
at agents and sites as points in space and bring into the fore their full spatial
aspects. However, the graph topology that we have relied upon do far is still
useful in understanding a number of key issues.

Modern urban economics has addressed jointly two important questions,
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namely the role of cities whose primary functions are other than retailing to
rural areas and the internal structure of cities. Mills (1967) emphasized the
scale economies in industrial production associated with the spatial clustering
of workers and firms. These economies derive from ease of communication,
benefits from matching of workers and firms, and sharing of fixed costs asso-
ciated with public transportation infrastructure. Cities produce traded and
non-traded goods. There is overwhelming evidence that smaller and medium
size cities specialize in the production of groups of different goods. As Hen-
derson (1988) explains it, “separating industries into different cities allows
for a greater degree of scale economy exploitation in each industry relative
to a given level of commuting costs and city spatial area”[ p. 32 ].

When economic factors such as scale economies due to specialization
and/or urbanization interact with geographical features and historical pat-
terns of settlement the outcome is an uneven spatial distribution of economic
activity. Researchers have debated a variety of stylized facts characterizing
urban systems in different economies and alleged regularities in city size dis-
tributions over time in specific economies as well as across different economies
[ ibid. p. 46; Dobkins and Ioannides (1995) ]. In the economics literature,
however, there has been more emphasis upon the economic functions of cities
and less emphasis upon the structural aspects of systems of cities. Empiri-
cal results [ Henderson, p. 197 ] suggest that observed differences in urban
concentration across economies reflect the composition of national output,
with important agriculture and resource-based activities being associated
with lower concentration and greater presence of service-type industry being
associated with higher concentration and clustering of activity into multi-
centered metropolitan areas. Strategic considerations have also been utilized
to explain allocation of economic activity over space [ Helsley and Strange
(1988; 1989) ].

Casual observation of the evolution of systems of cities suggests that
complexity factors, akin to the ones addressed elsewhere in this paper play
an important role. Cities interact in a variety of complex ways, through
transportation of goods and movements of people, flows of knowledge, and
complex trading arrangements [ Krugman (1993; 1994) ]. The complexity
of real world trading arrangements, especially in their spatial dimensions,
closely resembles the theoretical models discussed earlier in the paper. We
refrain from pursuing this issue further here, since the paper by Paul Krug-
man in this volume is dedicated to this topic. We offer an example of how
interactions across cities belonging to a system of cities may be highlighted
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by means of random graph theory.
Let us consider a random graph GB

n,q(n), where n denotes the number
of cities. Let edges represent routes of economic interaction between cities,
which in a hypothetical case are placed in the most random way between cities
in the system. We are interested in the topology of interconnections across
cities as the number of interconnections increases over time. In particular,
we are interested in knowing how quickly the isolated parts of the system of
cities become integrated into the main interconnected part of the system. If
the number of routes per city starts at greater than 1

2
and increases over time,

then the giant component grows by absorbing isolated components. It turns
out that the probability is equal to e−2k(ct2−ct1 ) that an isolated subsystem of
k cities (with the topology of a tree) which is present in the system at time
t1, that is, it belongs to GB

n,ct1n
, should still be isolated at time t2, that is it

belongs to GB
n,ct2n

, ct2 > ct1 . Thus the life-time of an isolated urban subsystem

of order k has approximately an exponential distribution with mean value 1
2k

and is thus independent of the “age” of the tree.
This simple model, which is a direct outgrowth of random graph theory,

suggests that fairly rapid thickening of interconnections commonly associated
with systems of cities in growing economies over time could result even from
a random placement of interconnections among cities. If the number of new
links is endogenized, and perhaps related to incentives as perceived by the
members of the subsystem of size k, then depending upon the relationship
of the number of links with the number of cities we may be able to make
different predictions about the properties of the system of cities. Another
result from the random graph literature may be helpful in predicting the
minimum number of interconnections, as a function of of the number of
cities that renders the system completely connected. Let the number of
interconnections between cities be chosen in such a manner that at each stage
every interconnection that has not been chosen has the same probability of
being chosen as the next and let continue the process until until all cities
become interconnected. Then as n → ∞, in model GB

n,q(n) q(n) is such that

q(n) = 1
2
nℓnn+ cn, and limn→∞ : Prob

[
q(n)− 1

2
nℓnn

n
< c

]
= e−e−2c

.

Many additional issues remain unexplored, especially challenging ones
being associated with the spatial as well as functional evolution of urban
systems. Explicitly spatial considerations are rather new, however, in the
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literature.24 The empirical evidence on the evolution of the US urban system
has not been fully explored25 and some of the analytical material from Arthur
(1994), Chs. 3, 6, and 10, may be brought to bear on this issue.

5.2 Statistical Inference

Specifically, one may define a simple metric for graphs, or equivalently, as it
turns out for this use, for adjacency matrices corresponding to graphs. Let
δM(g1, g2) be the symmetric difference metric on graphs, defined by:

δM(g1, g2) =
1

2
tr[(G1 −G2)

2], (16)

which counts the number of edge discrepancies between graphs g1 and g2,
whose adjacency matrices are G1 and G2, respectively. Following Banks and
Carley (1992), one may define a probability measure H(g∗, σ), over the set
GM of all graphs on n distinct vertices, where g∗ ∈ GM is the central graph
and σ a dispersion parameter:

P{g|g∗, σ} = ζ(σ)e−δM (g,g∗), ∀g ∈ GM , (17)

where ζ(σ) is a normalizing constant. It is a fortunate fact that the nor-
malizing constant does not depend on g∗, under the above assumptions:

g∗ = (1 + e−σ)
−
(
n
2

)
[Banks and Carley (1992)]. We are thus free to spec-

ify the central graph and thus implicitly test random graph theory. Also,
Banks and Carley suggest extensions to the case of digraphs, which could
be particularly useful in testing Kauffman’s theory of evolution in economic
webs [Kauffman (1988)] in terms of long-run changes in input-output rela-
tionships.

5.3 Pricing

It is worth mentioning in passing that the dual of whom trades with whom
is whose prices are inputs to whom. So, much of what we have been con-
cerned with applies to pricing models. Dynamics of pricing decisions have

24See, in particular, Fujita, Krugman and Mori (1994), and Ioannides (1995).
25See Dobkins and Ioannides (1995) for a recent inquiry.
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been examined by a number of researchers but because of their preoccupa-
tion with representative-individual models, which has been eloquently criti-
cized by Kirman (1992), they have not been considered as being central to
macroeconomic theorizing. Notable is the work by Blanchard (1983; 1986),
who explores the dynamics of pricing decisions in two alternative settings.
In Blanchard (1983), final output is produced in a number of discrete stages,
each carried out under constant returns to scale by competitive firms. Just as
Blanchard allows for the number of stages to change, “leaving the [aggregate]
technology unchanged,” one can conceive of settings where the number of in-
termediate goods changes in the Dixit-Stiglitz style [cf. Blanchard (1986)].
One may impose patterns of intermediate goods purchases, which may gen-
erate interesting dynamics whose steady states may be not unlike the ones
explored by Weitzman (1982).

5.4 Matching

Agent matching has been proved useful in a number of areas in economics as a
simple way to express a possible dependence between frequency of trades and
the number of agents. This literature has typically focussed on actual trades
and thus avoided making assumptions about the full pattern of interaction.
Matching models have been adopted in macroeconomic applications where
the interest was in understanding the impact of frictions [Pissarides (1979;
1990)]. Recently, work in evolutionary game theory has revived interest in
matching.

The typical setting in Pissarides (1990) involves a homogeneous model,
where matching is construed as an operation in bipartite graphs, where each
part groups workers and firms. Let L denote, respectively, the total number
of workers, and uL and vL denote unemployed workers and the number of
vacant jobs. If only unemployed workers and vacant jobs engage in matching,
then the number of job matchings per unit time is given by the matching
function: x = X(uL,vL)

L
. Pissarides invokes empirical evidence to argue that

the matching function is increasing in both of its arguments, concave, and
homogeneous of degree 1.26 Homogeneity implies that the rate of job contacts
is given as a function of the unemployment and vacancy rates only, x =
x(u, v). A number of informational assumptions underlie this construction,
i.e., are distinct. workers’ and firms’ effectiveness in search may be modified

26For empirical evidence with US data, see Blanchard and Diamond (1989; 1990).
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by search intensity and advertizing, respectively.
Moving to stochastic matching, however, poses some technical problems.

For example, Gilboa and Matsui (1990) show that if the populations to be
matched and the set of encounters are countably infinite, and purely random
matching is imposed (which ensures that everyone is matched), then the
distribution of encounters over time equals their common distribution as
random variables with probability one: the law of large numbers holds. That
is, the population as a whole is not affected by aggregate uncertainty. Boylan
(1992) addresses the need for detail in the specification of random matching,
which is usually approximated with a deterministic model. Boylan assumes
a countably infinite population {1, 2, . . . , n, . . .} where each individual is to
be matched with exactly one other individual. There are m different types
of individuals, S = {s1, . . . , sm}. Matching is such that each individual is
matched exactly once and “if John is matched with Paul then Paul is matched
with John.” Boylan articulates a number of difficulties that random matching
schemes face. For example, imposing the condition of equally likely matches
leads to a contradiction; the properties of random matching do depend on the
assignment of types. He gives conditions under which there exists a random
matching scheme which is equivalently handled by a deterministic system.
However, for a law of large numbers to hold the random matching scheme
must depend on the assignment of types in the population. Boylan (1993)
considers a similar set of questions except that the number of matchings
per individual in this note is random and converges to a Poisson process
as the population grows. He shows that the deterministic process which
approximates the random matching process must have a globally stable point.

The literature is concerned primarily with bilateral matching. In contrast,
several problems addressed by the literature on economies with interacting
agents involve in effect multilateral matching. The anisotropic model de-
veloped by Kovalenko (1975) may be used to model multilateral matching.
Finally, some assignment and network models may actually be considered
relevant to the inquiry pursued by this paper, but we shall refrain from dis-
cussing them here.
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6 Equilibrium Interactions in Anisotropic Set-

tings: A Sketch

This section demonstrates in a preliminary fashion the possibility of equilib-
rium models in anisotropic, that is, non-isotropic, settings. As we see shortly,
controlled random fields27 may be used here in a manner that is reminiscent
of models of equilibrium search, where market structure is endogenous. In
the first subsection below we take up non-additive effects of interaction which
serve two functions: one, to motivate our decision to emphasize a circular
pattern of interconnections; two, to demonstrate properties of circular trade
patterns which are of independent interest. In the second subsection, we offer
a preliminary model of equilibrium interactions in a circular setting.

6.1 Non-additive Effects of Interaction

Just as international trade among distinct national economies has complex
effects, so does trade among interacting agents, when the patterns of in-
terconnection are complex. A number of papers by Jovanovic [ Jovanovic
(1984; 1985; 1987) ] establish that one may design game structures which
may either attenuate or reinforce the effects of independent shocks acting on
each of a large number of agents. We interpret such structures as patterns
of interaction. We discuss circular interaction in some detail, because it is of
particular interest in this paper and is utilized in our example of equilibrium
in subsection 6.2 below. We then take up Jovanovic’s general results.

6.1.1 Circular Settings

We consider i = 1, . . . , n distinct sites, each occupied by a continuum of
consumers and firms, each of unit measure. Firm i uses input xi to produce
output θix

γ
i , 0 < γ < 1, where θi and γ are parameters. Firms are owned

by the consumers who consume the entirety of their profit incomes on firms’
output. In a centralized setting, where own output can be used for both
consumption and investment and output may be costlessly transported across
all sites, output price everywhere is equal to 1. The profit-maximizing level
of output in site i is given by: ℓnxi =

ℓnγ
1−γ

+ 1
1−γ

ℓnθi. If the set of parameters

27In contrast, in Evstigneev’ work on controlled random fields, the structure is not
endogenous.
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{θi}i=n
i=1 are IID random variables, then aggregate output per capita obeys

the law of large numbers and is thus equal to: ℓnγ
1−γ

+ 1
1−γ

E{ℓnθi}. While
we will discuss below variations of this model, unless the pattern of trade is
more complex or the shocks contain an aggregate component, the centralized
setting of the Walrasian trading model precludes reinforcement of individual
shocks.

Jovanovic (1984) proceeds with the following restrictions on preferences.
Consumers must consume goods produced in the site of their residence. Firms
on site i must purchase good produced on site i − 1. Sites are located on a
circle. For symmetry, if i = 1, i − 1 = n. Let prices be (p1, p2, . . . , pn),
with p1 = 1 as the numeraire. Profit maximization requires that pi−1

pi
=

γθix
γ−1
i . The model is closed by imposing equilibrium in the output market.

Individuals spend their incomes on consumption. It turns out that firm
ownership patterns do not matter and that equilibrium output in sites i and
i − 1 must satisfy xi = γθix

γ
i−1. It follows that consumption in site i − 1

is equal to (1 − γ)θi−1x
γ
i−1. The model closes with the “initial” condition

xn+1 = x1, with which the solution follows:

ℓnxi =
γℓnγ

1− γ
+

n∑
j=1

γn−j

1− γn
ℓnθi+j, (18)

where for i + j > n, θi+j ≡ θi+j−n. By the change of variable ϵi ≡ (1 −
γn)−1ℓnθi, (18) becomes ℓnxi =

γℓnγ
1−γ

+
∑n

j=1 γ
n−jϵi+j. We now see a pattern

of dependence 28 across outputs in all sites: the x′
is contain a common com-

ponent. Some further manipulation makes that dependence even clearer. We
retain the ϵ’s as given parameters and vary the θi’s as γ → 1. This yields
the result that ℓnxi = 1 +

∑n
j=1 ϵj, so that the xi’s are perfectly correlated.

Furthermore, as the limit is taken the uncertainty at the individual level be-
comes negligible, as the variance of θi tends to 0. In contrast, the centralized

28Jovanovic (1984) does point out the fact that basic patterns of circular dependence
have been studied in the context of circular serial correlation. Actually, the dynamics
of a system exhibiting circular serial correlation of order T involve the eigenvalues and
eigenvectors of a matrix B, whose only nonzero elements are bi,i+1 = 1, i = 1, . . . , T −
1, bT,1 = 1. The eigenvalues of B, are the T th roots of 1 and thus naturally involve the
trigonometric functions and so do the corresponding eigenvectors [Anderson (1971), 278-
284.] Periodic dynamics associated with this system are thus inherent in it and thus
particularly interesting. In fact, the circular interaction model that we are investigating
is, as Jovanovic notes, a natural way to motivate the circular serial correlation model.
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setting when pursued in the same manner yields: ℓnx̃i = 1+nϵi, i.e., outputs
are IID across sites.

Jovanovic does emphasize that the reinforcement of local shocks is achieved
by a complete absence of a coincidence of wants between any two neighbors.
He concludes by expressing that “there is hope, therefore, of analyzing the
role of money in such structures”[ibid. p. 21], but seems to be unaware of
the fact that a similar set of questions have been originally addressed by Cass
and Yaari (1966) in a deterministic setting.

6.1.2 General Settings

Jovanovic (1987), p. 399, proves a general theorem which if suitably inter-
preted allows us to assess the likelihood of similar results for other general
patterns of interaction. Consider that {θi}i=n

i=1 are independent random vari-
ables, with θi being the “micro” shock to agent i’ reaction function (more gen-
erally, correspondence), which may be written as ϕ(x{I−i}, θi). A Nash equi-
librium, is a solution to the system of structural relations xi ∈ ϕ(x{I−i}, θi).
Under fairly mild conditions on the θ′i s, any reduced-form h(θ1, . . . , θn),
which relates the endogenous x′s to the exogenous θi’s, can be generated by
a family of games, with agents acting with common knowledge of all shocks.
Thus, restricting attention to stochastically independent agents imposes, in
general, no restriction on the distribution of observed outcomes. From the
perspective of the present paper, restrictions that are associated with specific
topological structures of interactions are of particular interest.

6.2 Equilibrium in Circular Settings

Let us consider now that an original random matching results in n agents’
ending up in a circle. We invoke a setting very much like that of subsection
3.6, where agent ι has as neighbors agents ι− 1 and ι+ 1. An agent may be
active or inactive, a state that is determined as the outcome of a comparison
of expected benefits and costs, in a way which will be precisely specified
below. That is, the interactive discrete choice model of subsection 3.2 is
utilized here as a model of market participation.

In the context of the present discussion, the solution in subsection 6.1
applies only if all agents are active. The expression for xι is symmetric with
respect to location on the circle. If we now allow for agents to be active or
inactive, we quickly recognize that we must account for all possible outcomes.
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However, even if only one agent on the circle is inactive, the equilibrium
outcome for all agents is xι = 0, in which case consumption is also equal to
0 and u(0) = 0.

We can go further by restricting attention to the case of three agents,
without loss of generality, as it turns out. Such a setting contains key features
of the model. For that case, we have already derived in subsection 3.6 the
equilibrium probabilities. A typical agent, say agent 1, in this setting may be
found active or inactive. The probabilities of these events may be computed.
Agent 1 is active with probability given by

Prob{1} = Prob[1, 1, 1] + 2Prob[1, 1, 0] + Prob[1, 0, 0]. (19)

We may take u(1) to be expected utility conditional on an agent’s being
active, which we may compute from (18) as a function of parameters, denoted

by ū. By multiplying with Prob[1,1,1]

Prob{1}
we obtain expected utility conditional

on an agent’s being active. It is now clear that a simultaneity is involved
in computing the equilibrium state probabilities associated with model (13).
The equilibrium state probabilities depend upon u(1), expected utility con-
ditional on an agent’s being active, and the latter in turn depends upon
equilibrium state probabilities. Let the equilibrium values of the probabili-
ties be denoted by ∗’s. They satisfy:

P∗
ci = Pci(ū

Prob∗[1, 1, 1]

Prob∗{1}
, J, h), (20)

We may now use these results as ingredients for a dynamic model, very
much along the lines of Brock and Durlauf (1995). That is, we use the above
model to predict the motion of an entire economy. The economy consists
of agents in three sites, who are assumed to act with static expectations
and whose states are determined according to the interactive discrete choice
model. The first step in the study of these dynamics is to consider that
utility values u(ωι) are exogenous. This will allow us to separate the effects
upon the dynamics of the interactive discrete choice model from those of
the endogeneity of utility associated with the state of being active. We may
then proceed with the case of endogenous utilities, by assigning to those
terms the values of expected utilities implied by the model. The model
exhibits a fundamental simultaneity. The Gibbs state is defined in terms of
the interactive choice probabilities, and the interactive choice probabilities
depend upon the Gibbs state through the calculation of expected utilities.
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The Gibbs state for the model is defined as fixed point. As an extension of
this basic framework, one could also introduce a mean field effect along with
neighbor interactions.29

6.3 A Research Agenda

The fact that Nash equilibrium places few restrictions on our ability to re-
cover reaction functions (and thus, according to Jovanovic’s Lemma 1, ibid.,
p. 398, agents’ preferences as well) allows us to speculate that it should be
possible to obtain fairly general results for equilibrium interactions. The ex-
ample of subsection 6.2 demonstrates that it is possible to go beyond mean
field theory and characterize equilibrium interactions in anisotropic settings
as long as one restricts oneself to a given topology of interactions. The more
challenging problem is, of course, to let preferences, costs of interaction and
costs of trading determine the topology of interactions at equilibrium.

Random graph theory allows us to make predictions about topologies
which are most likely to prevail under different assumptions about the de-
pendence upon the number of agents n of p(n), the probability of an edge,
or of q(n), the number of edges. It remains to link these probabilities, which
we see as determining the original topology of potential interaction, with the
fundamentals of the problem, such as preference and cost parameters. Even
before that is accomplished we speculate that a number of interesting re-
sults may be obtained; those results would rest on multiplicity and stability
properties of equilibrium. Under the assumption that preferences allow a
wide variety of potential interactions, the original random matching provides
the boundary conditions for the interactive choice model of subsection 3.2.
If the unique equilibrium configuration is globally stable, then the bound-
ary conditions do not matter. If, on the other hand, there exist multiple
equilibria, it matters whether or not a particular initial potential topology
of interaction lies in the domain of attraction of a stable or of an unstable
equilibrium. Furthermore, the original matching may not perfectly random;
it might reflect specific, nonhomogeneous, features of a particular setting.

We speculate that such an approach may lead to investigations in a num-
ber of directions which we are currently pursuing. We outline a few of them
here. One direction could be a model for an old problem: the appearance

29This is particularly interesting from a macroeconomic point of view in the sense that
one could potentially distinguish between true “macro” shocks and aggregate shocks which
result from aggregation of individual shocks.
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of money as an emergent property of an economic system. When links per
trader are few, then cycles are rather unlikely and trade is restricted to bi-
lateral or autarkic. With more links per trader, cycles become likely, and
circular sequences of bilateral trades can develop. We think of such cycles as
different subeconomies, each of which is equivalent to a centralized setting
through the use of IOU-type money in the style of Wicksell. With even more
links per trader, a hamiltonian cycle is likely, which would be associated with
the emergence of a single currency. A second direction could be a model of
the spatial differentiation of the economy, which may make it conducive to
spontaneous growth in certain circumstances and not in others [Kelly (1994)].
Such an approach would provide a new dimension to the growing endogenous
growth literature. A third direction could be a new look at the fundamentals
of the process of technological change, perhaps along the lines of Kauffman’s
ideas on the evolution of economic webs. A fourth direction could be to link
formal theories of trade infrastructures and of relational constraints in gen-
eral equilibrium [ Haller (1994); Gilles, Haller and Ryus (1994) ]. The circle
model on its own gives rise to particularly interesting dynamics. The results
obtained for the deterministic case by the mathematical biology literature
and for the stochastic case by the interacting particle systems literature are
particularly promising. Finally, we also note the potential afforded by mod-
elling trade based on evolving networks of interconnected traders, which we
discussed in Section 3 above.

7 Summary and Conclusion

Our review of the evolution of trading structures has attributed a central role
to the literature of economies with interacting agents. It identifies two main
strands in that literature, namely works that presume a given topology of
interactions among agents and those that let random mechanisms determine
that topology. Both are recent and very fast-growing bodies of knowledge
that shares methodological tools with other social sciences.

The paper addresses two key weaknesses of these two fundamental ap-
proaches to the study of trading structures. The specified topology of inter-
action approach has concerned itself primarily with isotropic settings. How-
ever, some anisotropic settings are particularly interesting for economists.
For example, circular patterns of interaction highlight the role of money and
credit; tree-type of interactions may be seen as depicting Walrasian inter-
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actions. The random topology of interaction approach has concerned itself
primarily with the sizes of trading groups, and thus has not exploited the
entire range of topological properties of trading structures which may emerge.

The paper proposes an integration of those approaches which is intended
to exploit their natural complementarities. In the simplest possible version,
our synthesis involves individual decisions and expectations, randomness,
and nature combining to fix an initial “primordial” topology of interaction.
The dynamics of interaction move the economy from then on. The evolu-
tion of trading structures depends critically upon multiplicity and stability
properties of equilibrium configurations of the interaction model.

The paper has also pointed to links with spatial economics and as well
as with processes of growth and technological change. We hope that those
suggestions will become fruitful avenues for specific applications of further
research on the evolution of trading structures.

We think that ultimately it should be possible to address the problem of
emergent market structures by means of mathematical tools involving con-
trolled random fields.30 Our analytical intuition is that just as models of
controlled stochastic processes (such as search models) lead to equilibrium
descriptions of the economy, it should be possible to apply the same intuition
to models that generalize the notion of dependence into spatial cum temporal
contexts. Individuals may sample over space, in a timeless context, or over
space and time. The modelling problem which must be solved would require
conditioning each individual’s state on her neighbor’s state, rather than on
links between neighbors being operative or not. This intuition is very similar
to the one underlying the use by search theory of sequential statistical deci-
sion theory. Just as equilibrium in search models takes the form of invariant
distributions for the variables of interest, equilibrium in models involving
random fields involves probability distributions associated with the active or
inactive state of subsets of relevant populations.

30For mathematical theories that lend themselves to such applications, see Krengel and
Sucheston (1981), Mandelbaum and Vanderbei (1981) and Evstigneev (1988a,b).
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