# The Global Leapfrogging of Urban Growth

Yannis M. Ioannides (Tufts University)

joint with Shengbin Wei (Boston College) July 2023

The 21st Conference on Research on Economic Theory and Econometrics

1. Data & Definitions

- 2. Emergence
- 3. Population Growth
- 4. Life spam

5. Conclusion

### Motivation: Increasing Number and Size of Cities

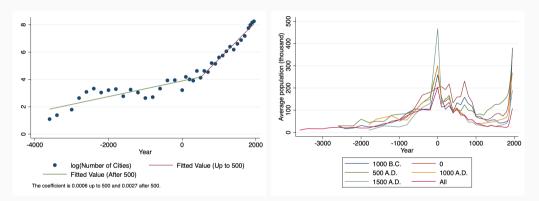
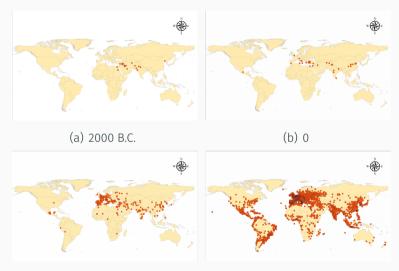




Figure 1: The number of cities in logarithm worldwide

Figure 2: The average size of cities worldwide

### Motivation: Cities Were Widely Established



(c) 1000 A.D.

(d) 1950 A.D.

• National growth **leapfrogs,** first Mesopotamia and China, then Egypt, Greece and Rome, back to China and India, back to Europe, the Western Offshoots, like North America, Australia, back to Europe, then on to Japan, Korea and China. Africa and South America lag behind.

- National growth **leapfrogs,** first Mesopotamia and China, then Egypt, Greece and Rome, back to China and India, back to Europe, the Western Offshoots, like North America, Australia, back to Europe, then on to Japan, Korea and China. Africa and South America lag behind.
- We know growth is driven by urbanization. Natural to look for factors that contribute to the global leapfrogging of urban growth.

- National growth **leapfrogs,** first Mesopotamia and China, then Egypt, Greece and Rome, back to China and India, back to Europe, the Western Offshoots, like North America, Australia, back to Europe, then on to Japan, Korea and China. Africa and South America lag behind.
- We know growth is driven by urbanization. Natural to look for factors that contribute to the global leapfrogging of urban growth.
- Urban growth leaps from a city to other cities.

- National growth **leapfrogs,** first Mesopotamia and China, then Egypt, Greece and Rome, back to China and India, back to Europe, the Western Offshoots, like North America, Australia, back to Europe, then on to Japan, Korea and China. Africa and South America lag behind.
- We know growth is driven by urbanization. Natural to look for factors that contribute to the global leapfrogging of urban growth.
- Urban growth leaps from a city to other cities.
- Are geographical characteristics, temperature, or urban interactions the driving forces?

- National growth **leapfrogs,** first Mesopotamia and China, then Egypt, Greece and Rome, back to China and India, back to Europe, the Western Offshoots, like North America, Australia, back to Europe, then on to Japan, Korea and China. Africa and South America lag behind.
- We know growth is driven by urbanization. Natural to look for factors that contribute to the global leapfrogging of urban growth.
- Urban growth leaps from a city to other cities.
- Are geographical characteristics, temperature, or urban interactions the driving forces?
- How have these influences varied across different epochs and continents?

### Overview

- Geographical characteristics and temperature alone do not provide a satisfactory explanation for urban growth.
  - In most cases, the coefficients related to these factors are statistically insignificant for urban population growth and emergence of cities.
  - Additionally, the factors that do show statistical significance are not economically significant.

### Overview

- Geographical characteristics and temperature alone do not provide a satisfactory explanation for urban growth.
  - In most cases, the coefficients related to these factors are statistically insignificant for urban population growth and emergence of cities.
  - Additionally, the factors that do show statistical significance are not economically significant.
- Urban interactions play a crucial role in urban growth.
  - Both the number and size of neighboring cities have a statistically and economically influential impact on the growth and emergence of cities.
  - There exists a strong relationship between a city's growth rate and those of its neighboring cities.

### Overview

- Geographical characteristics and temperature alone do not provide a satisfactory explanation for urban growth.
  - In most cases, the coefficients related to these factors are statistically insignificant for urban population growth and emergence of cities.
  - Additionally, the factors that do show statistical significance are not economically significant.
- Urban interactions play a crucial role in urban growth.
  - Both the number and size of neighboring cities have a statistically and economically influential impact on the growth and emergence of cities.
  - There exists a strong relationship between a city's growth rate and those of its neighboring cities.
- The lifespan of a city also contributes to explaining urban growth and emergence.

## Data & Definitions

• Our analysis is based on a **unique dataset**, a product of merging several existing datasets. It traces city worldwide from 3700 B.C. to 1950 A.D.

- Our analysis is based on a **unique dataset**, a product of merging several existing datasets. It traces city worldwide from 3700 B.C. to 1950 A.D.
  - Data Sources:
    - A comprehensive, unpublished dataset by Özak et al. (2021), amalgamating six different sources and providing global coverage from 1 A.D. to 2000 A.D. (Bairoch, 1988, Chandler, 1987, Chandler and Fox, 2013, De Vries, 2006, Eggimann, 2000, Modelski, 2003).
    - A dataset by Reba et al. (2016) that integrates data from Chandler (1987) and Modelski (2003), covering the period 3700 B.C. to 2000 A.D.
    - An expanded dataset by Buringh (2021), focusing on European cities from 700 A.D. to 1900 A.D. It builds on the work of Bairoch (1988).

- Our analysis is based on a unique dataset, a product of merging several existing datasets. It traces city worldwide from 3700 B.C. to 1950 A.D.
  - Data Sources:
    - A comprehensive, unpublished dataset by Özak et al. (2021), amalgamating six different sources and providing global coverage from 1 A.D. to 2000 A.D. (Bairoch, 1988, Chandler, 1987, Chandler and Fox, 2013, De Vries, 2006, Eggimann, 2000, Modelski, 2003).
    - A dataset by Reba et al. (2016) that integrates data from Chandler (1987) and Modelski (2003), covering the period 3700 B.C. to 2000 A.D.
    - An expanded dataset by Buringh (2021), focusing on European cities from 700 A.D. to 1900 A.D. It builds on the work of Bairoch (1988).
  - Methodology in merging datasets:
    - Cities from different datasets were harmonized based on their geographic coordinates and names.
    - Following the methodology of Bosker and Buringh (2017), we excluded observations with populations under 5,000 to maintain consistency in the dataset.

Our study spans from 3700 B.C. to 1950 A.D. We segment entire span into six distinct epochs for nuanced analysis and "homogeneity":

- Preclassical Epoch: 3700 BCE– 500 BCE, mainly centered on Europe.
- **Classical Hellenic and Roman Epoch**: 500 B.C. to 300 A.D., marked by the zenith of Athens and the founding of New Rome, Constantinople.
- **Byzantine to Charlemagne Epoch**: 300 AD– 800 AD, Roughly, Beginning of Byzantine Era to Charlemagne's coronation as the Holy Roman Emperor; also includes developments in Asia and the Great Arab conquests post-600 AD.

- Charlemagne to Black Death Epoch: 800 AD 1400 AD, Charlemagne's Coronation to Black Death in Europe; notably beginning of Ming Dynasty in China.
- Black Death to Modern Era Epoch: 1400 AD 1800 AD. Spanning Sung Dynasty, China, and Zheng He's expeditions starting in 1405 AD.
- Modern Era Epoch: 1800 A.D. to 1950 A.D., after onset and spread of the Industrial Revolution.

 $pten_{it}^{wd} = a_i + \beta_1 ptens_{it}^{eu} + \beta_2 pten_{it}^{af} + \beta_3 pten_{it}^{na} + \beta_4 pten_{it}^{sa} + \beta_5 pten_{it}^{as} + \beta_6 pten_{it}^{oc} + \delta_t + \epsilon_{it},$ (1)

- $pten_{it}^{wd}$ : decile rank of city *i* in **global population distribution** at time *t*.
- RHS variables: *pten*<sup>X</sup><sub>*it*</sub> population decile rank of city *i* at time *t* within continent *X*.
- $pten_{it}^{X} = 0$ , if city *i* not in continent *X*.
- $\delta_t$ : fixed time effect.
- $a_i$  : city fixed effect.

### Urban Growth across Continents: Populations

• Urbanization varying dramatically across continents over epochs

|                      | (1)      | (2)        | (3)         | (4)        | (5)         | (6)          | (7)        |
|----------------------|----------|------------|-------------|------------|-------------|--------------|------------|
| VARIABLES            | ALL      | up to -500 | -500 to 300 | 300 to 800 | 800 to 1400 | 1400 to 1800 | After 1800 |
| tenths <sup>eu</sup> | 0.861*** | 0.374***   | 0.639***    | 0.361***   | 0.666***    | 0.805***     | 0.882***   |
|                      | (0.006)  | (0.123)    | (0.137)     | (0.081)    | (0.010)     | (0.006)      | (0.006)    |
| tenths <sup>as</sup> | 0.550*** | 0.992***   | 0.888***    | 0.792***   | 0.409***    | 0.312***     | 0.628***   |
|                      | (0.016)  | (0.019)    | (0.034)     | (0.036)    | (0.021)     | (0.019)      | (0.022)    |
| tenths <sup>na</sup> | 0.807*** | 1.130***   | 0.203***    | 0.123      | 0.351***    | 0.717***     | 1.039***   |
|                      | (0.035)  | (0.175)    | (0.043)     | (0.120)    | (0.054)     | (0.053)      | (0.045)    |
| tenths <sup>sa</sup> | 0.830*** |            |             |            | 0.273***    | 0.729***     | 0.852***   |
|                      | (0.016)  |            |             |            | (0.027)     | (0.051)      | (0.014)    |
| tenths <sup>af</sup> | 0.540*** | 0.332***   | 0.118***    | 0.616***   | 0.443***    | 0.303***     | 0.647***   |
|                      | (0.028)  | (0.107)    | (0.043)     | (0.118)    | (0.036)     | (0.021)      | (0.031)    |
| tenths <sup>oc</sup> | 0.153*** |            |             |            |             |              | 0.090**    |
|                      | (0.042)  |            |             |            |             |              | (0.036)    |
| Constant             | 1.207*** | 0.672***   | 1.473***    | 2.071***   | 2.330***    | 1.578***     | 0.873***   |
|                      | (0.032)  | (0.084)    | (0.217)     | (0.172)    | (0.050)     | (0.035)      | (0.036)    |
| Observations         | 18,073   | 233        | 241         | 395        | 2,034       | 4,250        | 9,343      |
| R-squared            | 0.939    | 0.942      | 0.937       | 0.918      | 0.971       | 0.978        | 0.971      |
| Ν                    | 3,668    | 59         | 64          | 120        | 560         | 1,382        | 3,342      |

 $gten_{it}^{wd} = a_i + \beta_1 gtens_{it}^{eu} + \beta_2 gten_{it}^{af} + \beta_3 gten_{it}^{na} + \beta_4 gten_{it}^{sa} + \beta_5 gten_{it}^{as} + \beta_6 gten_{it}^{oc} + \delta_t + \epsilon_{it},$ (2)

- Here, *gten*<sup>wd</sup><sub>it</sub> represents the decile rank of city *i* in terms of growth rate at time *t* globally.
- On the right-hand side, *gten*<sup>X</sup><sub>*it*</sub> denotes the decile rank of city *i* in terms of growth rate at time *t* within the continent *X*.
- For cities not located in continent X,  $gten_{it}^{X}$  is set to 0.

### Urban Growth across Continents: Growth Rates

|                      | (1)      | (2)        | (3)         | (4)        | (5)         | (6)          | (7)        |
|----------------------|----------|------------|-------------|------------|-------------|--------------|------------|
| VARIABLES            | ALL      | up to -500 | -500 to 300 | 300 to 800 | 800 to 1400 | 1400 to 1800 | After 1800 |
| tenths <sup>eu</sup> | 0.938*** | 1.033***   | 0.907***    | 1.062***   | 0.980***    | 0.957***     | 0.916***   |
|                      | (0.002)  | (0.109)    | (0.078)     | (0.194)    | (0.010)     | (0.004)      | (0.003)    |
| tenths <sup>as</sup> | 0.938*** | 0.969***   | 0.978***    | 0.943***   | 0.812***    | 1.024***     | 0.918***   |
|                      | (0.008)  | (0.022)    | (0.015)     | (0.015)    | (0.024)     | (0.018)      | (0.018)    |
| tenths <sup>na</sup> | 0.967*** | 0.667**    |             | 0.849***   | 0.629***    | 0.497**      | 1.018***   |
|                      | (0.033)  | (0.322)    |             | (0.181)    | (0.133)     | (0.204)      | (0.028)    |
| tenths <sup>sa</sup> | 1.122*** |            |             |            | 0.645**     | 1.110***     | 1.125***   |
|                      | (0.023)  |            |             |            | (0.266)     | (0.099)      | (0.025)    |
| tenths <sup>af</sup> | 0.882*** | 1.011***   | 0.863***    | 0.883***   | 0.714***    | 0.935***     | 0.970***   |
|                      | (0.021)  | (0.045)    | (0.069)     | (0.156)    | (0.051)     | (0.044)      | (0.039)    |
| tenths <sup>oc</sup> | 1.947*** |            |             |            |             |              | 1.946***   |
|                      | (0.557)  |            |             |            |             |              | (0.556)    |
| Constant             | 0.333*** | 0.529***   | 0.467***    | 0.316**    | 0.549***    | 0.212***     | 0.377***   |
|                      | (0.014)  | (0.101)    | (0.097)     | (0.126)    | (0.055)     | (0.028)      | (0.021)    |
| Observations         | 13,384   | 148        | 156         | 265        | 1,422       | 2,984        | 7,670      |
| R-squared            | 0.937    | 0.887      | 0.926       | 0.915      | 0.902       | 0.965        | 0.950      |

• Urban growth rates varying dramatically across continents over epochs

Emergence

### **Emergence of Cities**

• Geographic characteristics significantly impact global urban growth; technological advancements enable human settlement in previously inhospitable areas.

<sup>&</sup>lt;sup>1</sup>Our methodology, while simpler than the one utilized by Bosker and Buringh (2017), makes the analysis manageable by significantly reducing the number of observations. <sup>2</sup>The dummy variable is multiplied by 100 for ease of interpretation:

### **Emergence of Cities**

- Geographic characteristics significantly impact global urban growth; technological advancements enable human settlement in previously inhospitable areas.
- $\cdot$  We consider first the effects of geographic characteristics on city emergence. Founding dates of cities worldwide vary greatly – earliest dates in our data  $\sim$  3700 BCE; Greatest numbers established circa 1900 AD.

<sup>&</sup>lt;sup>1</sup>Our methodology, while simpler than the one utilized by Bosker and Buringh (2017), makes the analysis manageable by significantly reducing the number of observations. <sup>2</sup>The dummy variable is multiplied by 100 for ease of interpretation:

### **Emergence of Cities**

- Geographic characteristics significantly impact global urban growth; technological advancements enable human settlement in previously inhospitable areas.
- We consider first the effects of geographic characteristics on city emergence. Founding dates of cities worldwide vary greatly earliest dates in our data  $\sim$  3700 BCE; Greatest numbers established circa 1900 AD.
- We assume that all city locations up to 1950 AD indicate potential city sites<sup>1</sup>. We designate a value of 100 to  $city_{it}^2$  If a city has been established by time *t*, and 0 otherwise.

<sup>1</sup>Our methodology, while simpler than the one utilized by Bosker and Buringh (2017), makes the analysis manageable by significantly reducing the number of observations. <sup>2</sup>The dummy variable is multiplied by 100 for ease of interpretation:

$$p(city_{it}|city_{it-1}=0) = \alpha_i + X\beta + f(x_i, y_i) + \delta_t + \epsilon_{it},$$
(3)

- $\alpha_i$  represents random effect
- X is a vector of both time-variant and time-invariant geographic characteristics that includes proximity to a river within 10 km, proximity to an ocean within 10 km, roughness, elevation, and temperature
- $f(x_i, y_i)$  denotes a cubic function with respect to longitude  $x_i$  and latitude  $y_i$
- $\cdot \delta_t$  is time fixed effect

### Geographical Characteristics (City Emergence)

|                  | (1)       | (2)        | (3)         | (4)        | (5)         | (6)          | (7)        |
|------------------|-----------|------------|-------------|------------|-------------|--------------|------------|
| VARIABLES        | ALL       | up to -500 | -500 to 300 | 300 to 800 | 800 to 1400 | 1400 to 1800 | After 1800 |
| river            | 0.104     | 0.035      | 0.048       | 1.214***   | 0.397       | -5.505***    | 2.910*     |
|                  | (0.097)   | (0.044)    | (0.115)     | (0.235)    | (1.035)     | (1.476)      | (1.704)    |
| ocean            | 0.121     | -0.020     | 0.467***    | 0.522***   | -1.179      | -0.861       | -0.146     |
|                  | (0.097)   | (0.040)    | (0.138)     | (0.197)    | (0.902)     | (1.389)      | (1.527)    |
| roughness        | 0.002     | -0.003***  | -0.004***   | -0.005*    | 0.029**     | 0.104***     | 0.029      |
|                  | (0.001)   | (0.001)    | (0.002)     | (0.003)    | (0.012)     | (0.020)      | (0.021)    |
| elevation (100m) | 0.005     | 0.015***   | 0.059***    | 0.114***   | -0.178***   | -0.356**     | -1.116***  |
|                  | (0.011)   | (0.005)    | (0.015)     | (0.027)    | (0.065)     | (0.150)      | (0.147)    |
| temperature      | 0.009     | 0.025***   | 0.034***    | 0.078***   | 0.102**     | -0.153       | -1.044***  |
|                  | (0.008)   | (0.004)    | (0.010)     | (0.016)    | (0.046)     | (0.101)      | (0.108)    |
| Constant         | 48.904*** |            |             |            | 3.303***    | 26.259***    |            |
|                  | (1.452)   |            |             |            | (1.169)     | (2.414)      |            |
| Observations     | 154,010   | 67,336     | 28,685      | 22,241     | 19,463      | 11,163       | 5,122      |
| Ν                | 4,827     | 4,827      | 4,822       | 4,809      | 4,109       | 3,959        | 2,513      |

• The influence of geographical characteristics varies across epochs.

• While numerous studies analyze city networks' impact on urban growth, most focus on 20th century neighboring cities.

- While numerous studies analyze city networks' impact on urban growth, most focus on 20th century neighboring cities.
- Some research exploring earlier periods confirms network effects on urban growth (Beltran Tapia et al., 2021, Bosker and Buringh, 2017, Cuberes et al., 2021, Rauch, 2014).

- While numerous studies analyze city networks' impact on urban growth, most focus on 20th century neighboring cities.
- Some research exploring earlier periods confirms network effects on urban growth (Beltran Tapia et al., 2021, Bosker and Buringh, 2017, Cuberes et al., 2021, Rauch, 2014).
- Using Özak (2010)'s travel time dataset, superior to the commonly used great circle distances, we define a city's neighboring area as a 16-hour walking range, approximately 50-100 kilometers.

$$p(city_{it}|city_{it-1}=0) = a_i + D_{t-1}\beta + \delta_t + \epsilon_{it},$$
(4)

- $D_{t-1}$  is a vector consisting of four dummy variables. Define  $NC_{it-1}$  as the count of neighboring cities for city seed *i* at time t 1.
  - $D_{1t-1}$  is 1 if  $NC_{it-1} = 1$ , and 0 otherwise.
  - $D_{2t-1}$  is 1 if  $2 \le NC_{it-1} < 5$ , and 0 otherwise.
  - $D_{3t-1}$  is 1 if  $5 \le NC_{it-1} < 11$ , and 0 otherwise.
  - $D_{4t-1}$  is 1 if  $NC_{it-1} \ge 11$ , and 0 otherwise.
- $a_i$  represents the city fixed effect.
- $\delta_t$  denotes the time fixed effect.

### Urban Network Effects (City Emergence)

• Network effects vary across epochs, with the optimal number of neighboring cities influencing city emergence differing by epoch.

|                                                 | (1)        | (2)        | (3)         | (4)        | (5)         | (6)          | (7)        |
|-------------------------------------------------|------------|------------|-------------|------------|-------------|--------------|------------|
| Neighboring Cities ( <i>NC<sub>it-1</sub></i> ) | ALL        | up to -500 | -500 to 300 | 300 to 800 | 800 to 1400 | 1400 to 1800 | After 1800 |
| $NC_{it-1} = 1$                                 | 1.292***   | 2.875***   | 0.236       | -0.665     | 2.161***    | 1.008        | 14.118***  |
|                                                 | (0.439)    | (1.073)    | (0.339)     | (0.615)    | (0.750)     | (1.694)      | (3.597)    |
| $2 \le NC_{it-1} < 5$                           | 3.561***   | 8.502**    | -0.197      | -0.101     | 1.281       | 4.962*       | 22.540***  |
|                                                 | (0.871)    | (4.062)    | (0.457)     | (1.968)    | (0.920)     | (3.012)      | (4.318)    |
| $5 \le NC_{it-1} < 11$                          | -4.038*    | 20.158***  |             |            | 0.404       | 19.344***    | -18.655**  |
|                                                 | (2.083)    | (7.714)    |             |            | (1.387)     | (5.009)      | (8.282)    |
| $11 \leq NC_{it-1}$                             | -15.099*** |            |             |            | -0.898      | 37.280***    | -53.249*** |
|                                                 | (3.091)    |            |             |            | (0.686)     | (9.149)      | (12.608)   |
| Constant                                        | 3.165***   | 0.117***   | 0.400***    | 0.986***   | 1.506***    | 5.728***     | 25.514***  |
|                                                 | (0.026)    | (0.008)    | (0.015)     | (0.034)    | (0.094)     | (0.321)      | (1.437)    |
| Observations                                    | 154,034    | 67,350     | 28,684      | 22,210     | 18,943      | 9,859        | 4,336      |
| R-squared                                       | 0.259      | 0.109      | 0.350       | 0.282      | 0.303       | 0.377        | 0.520      |
| Ν                                               | 4,828      | 4,828      | 4,816       | 4,776      | 3,589       | 2,655        | 1,727      |

# **Population Growth**

### Influence of Geographical Characteristics on Population Growth

$$\log(\frac{\text{population}_{it}}{\text{population}_{it-1}}) = \alpha_i + \delta \log(\text{population}_{it-1}) + X\beta + f(x_i, y_i) + \delta_t + \epsilon_{it}$$

- $\cdot$  The left-hand side represents the population growth rate.
- $\alpha_i$ , X,  $f(x_i, y_i)$ , and  $\delta_t$  retain their previous definitions.

Simplified, we obtain:

 $\log(\text{population}_{it}) = \alpha_i + (\delta + 1) \log(\text{population}_{it-1}) + X\beta + f(x_i, y_i) + \delta_t + \epsilon_{it}$ 

# Influence of Geographical Characteristics on Population Growth

• Geographical characteristics exert a strong and significant influence on urban growth, particularly in the final two epochs.

|                  | (1)       | (2)        | (3)         | (4)        | (5)         | (6)          | (7)        |
|------------------|-----------|------------|-------------|------------|-------------|--------------|------------|
| VARIABLES        | ALL       | up to -500 | -500 to 300 | 300 to 800 | 800 to 1400 | 1400 to 1800 | After 1800 |
| river            | 0.098***  | 0.053      | -0.138*     | 0.047      | 0.041       | 0.050**      | 0.112***   |
|                  | (0.020)   | (0.121)    | (0.076)     | (0.083)    | (0.027)     | (0.022)      | (0.024)    |
| ocean            | 0.189***  | -0.414*    | -0.074      | -0.056     | 0.045       | 0.078***     | 0.217***   |
|                  | (0.020)   | (0.247)    | (0.097)     | (0.085)    | (0.030)     | (0.024)      | (0.023)    |
| roughness        | -0.003*** | 0.000      | -0.004**    | -0.001     | -0.001**    | -0.001*      | -0.003***  |
|                  | (0.000)   | (0.003)    | (0.002)     | (0.001)    | (0.000)     | (0.000)      | (0.000)    |
| elevation (100m) | 0.006***  | -0.007     | -0.009      | 0.004      | 0.005       | -0.009**     | 0.007**    |
|                  | (0.002)   | (0.016)    | (0.008)     | (0.007)    | (0.004)     | (0.004)      | (0.003)    |
| temperature      | -0.012*** | -0.014     | 0.008       | -0.006     | -0.000      | -0.010***    | -0.017***  |
|                  | (0.002)   | (0.018)    | (0.007)     | (0.008)    | (0.004)     | (0.004)      | (0.002)    |
| Constant         | 1.219***  | 1.304      |             | 1.537***   |             | 1.108***     | 1.418***   |
|                  | (0.267)   | (0.800)    |             | (0.333)    |             | (0.135)      | (0.069)    |
| Observations     | 14,080    | 168        | 175         | 311        | 1,610       | 3,471        | 8,345      |
| Ν                | 3,646     | 58         | 68          | 126        | 564         | 1,441        | 3,435      |

 $log(population_{it}) = a_i + (\delta + 1)log(population_{it-1}) + D_{t-1}\beta + \delta_t + \epsilon_{it}, \quad (5)$ 

- $D_{t-1}$  is a vector consisting of four dummy variables. Define  $NC_{it-1}$  as the count of neighboring cities for city seed *i* at time t 1.
  - $D_{1t-1}$  is 1 if  $NC_{it-1} = 1$ , and 0 otherwise.
  - $D_{2t-1}$  is 1 if  $2 \le NC_{it-1} < 5$ , and 0 otherwise.
  - $D_{3t-1}$  is 1 if  $5 \le NC_{it-1} < 11$ , and 0 otherwise.
  - $D_{4t-1}$  is 1 if  $NC_{it-1} \ge 11$ , and 0 otherwise.
- $a_i$  represents the city fixed effect.
- $\delta_t$  denotes the time fixed effect.

# Urban Network Effects (Population Growth)

#### Network effects have become significantly prominent in the recent two periods

|                                              | (1)      | (2)        | (3)         | (4)        | (5)         | (6)          | (7)        |
|----------------------------------------------|----------|------------|-------------|------------|-------------|--------------|------------|
|                                              | ALL      | up to -500 | -500 to 300 | 300 to 800 | 800 to 1400 | 1400 to 1800 | After 1800 |
| log(population <sub>it-1</sub> )             | 0.645*** | 0.196**    | 0.137       | 0.455***   | 0.464***    | 0.368***     | 0.367***   |
|                                              | (0.013)  | (0.079)    | (0.154)     | (0.058)    | (0.044)     | (0.034)      | (0.016)    |
| Neighboring Cities ( <i>NC<sub>i</sub></i> ) |          |            |             |            |             |              |            |
| $NC_i == 1$                                  | 0.091*** | 0.235*     | -0.257**    | 0.409      | -0.013      | 0.075        | 0.133***   |
|                                              | (0.028)  | (0.125)    | (0.115)     | (0.257)    | (0.068)     | (0.056)      | (0.049)    |
| $2 <= NC_i < 5$                              | 0.150*** | -0.060     | 0.102       | 0.047      | 0.078       | 0.166***     | 0.136**    |
|                                              | (0.032)  | (0.119)    | (0.253)     | (0.123)    | (0.080)     | (0.062)      | (0.061)    |
| $5 <= NC_i < 10$                             | 0.242*** | -0.061     |             |            | 0.177*      | 0.211***     | 0.167**    |
|                                              | (0.037)  | (0.232)    |             |            | (0.098)     | (0.066)      | (0.081)    |
| $10 <= NC_i$                                 | 0.365*** |            |             |            | 0.266       | 0.268***     | 0.278***   |
|                                              | (0.043)  |            |             |            | (0.211)     | (0.073)      | (0.088)    |
| Constant                                     | 1.178*** | 2.604***   | 4.202***    | 2.336***   | 1.713***    | 1.711***     | 2.118***   |
|                                              | (0.042)  | (0.240)    | (0.739)     | (0.257)    | (0.140)     | (0.098)      | (0.066)    |
| Observations                                 | 13,384   | 148        | 156         | 265        | 1,422       | 2,984        | 7,670      |
| R-squared                                    | 0.8959   | 0.8436     | 0.8237      | 0.8259     | 0.8846      | 0.9214       | 0.9286     |
| Ν                                            | 2,946    | 38         | 49          | 80         | 376         | 953          | 2,758      |

Life spam

- In our previous analysis, we focused on the influence of geographic characteristics and urban networks on urban growth.
- Another important factor is a city's history. Looking back, we find that countries with a long history have hosted relatively larger cities.
- However, have older cities maintained their large sizes? Additionally, does this effect vary across continents?

We investigate the influence of a city's history on its population and growth rate. We specify two alternative models:

$$\log(\text{population}_{it}) = \alpha_i + \beta_1 \text{age}_{it} + f(x_i, y_i) + \delta_t + \epsilon_i$$
(6)

and

 $\log(\text{population}_{it}) = \alpha_i + \gamma \log(\text{population}_{it-1}) + \beta_2 \text{age}_{it} + f(x_i, y_i) + \delta_t + \epsilon_i, \quad (7)$ 

where  $age_{it}$  is the age of city *i* at time *t*, and  $\alpha_i$  is random effect.

### Life Spam

• Over time, the impact of a city's age on its size and population growth becomes increasingly stronger.

| ALL                        | up to -500                                                                                                   | -500 to 300                                                                                                                                                                                                                                                                                                      | 300 to 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 800 to 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1400 to 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | After 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (1)                        | (2)                                                                                                          | (3)                                                                                                                                                                                                                                                                                                              | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| panel A: City Size         |                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.071***                   | 0.001                                                                                                        | 0.021**                                                                                                                                                                                                                                                                                                          | 0.032***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.061***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.080***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.074***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (0.005)                    | (0.011)                                                                                                      | (0.010)                                                                                                                                                                                                                                                                                                          | (0.008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 19,083                     | 270                                                                                                          | 299                                                                                                                                                                                                                                                                                                              | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 4,678                      | 96                                                                                                           | 122                                                                                                                                                                                                                                                                                                              | 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                            |                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Panel B: Population Growth |                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (8)                        | (9)                                                                                                          | (10)                                                                                                                                                                                                                                                                                                             | (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 0.778***                   | 0.717***                                                                                                     | 0.774***                                                                                                                                                                                                                                                                                                         | 0.616***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.811***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.763***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.780***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (0.008)                    | (0.060)                                                                                                      | (0.075)                                                                                                                                                                                                                                                                                                          | (0.044)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 0.007***                   | -0.007                                                                                                       | -0.003                                                                                                                                                                                                                                                                                                           | 0.011***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.008***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.011***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (0.001)                    | (0.008)                                                                                                      | (0.006)                                                                                                                                                                                                                                                                                                          | (0.004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 14,085                     | 168                                                                                                          | 175                                                                                                                                                                                                                                                                                                              | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 3,647                      | 58                                                                                                           | 68                                                                                                                                                                                                                                                                                                               | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                            | (1)<br>0.071***<br>(0.005)<br>19,083<br>4,678<br>(8)<br>0.778***<br>(0.008)<br>0.007***<br>(0.001)<br>14,085 | (1)         (2)           0.071***         0.001           (0.005)         (0.011)           19,083         270           4,678         96           (0.008)         0.717***           (0.008)         (0.060)           0.077***         -0.007           (0.001)         (0.008)           14,085         168 | (1)         (2)         (3)           0.071***         0.001         0.021**           (0.005)         (0.011)         (0.010)           19,083         270         299           4,678         96         122           Pane           (8)         (9)         (10)           0.778***         0.717***         0.774***           (0.008)         (0.060)         (0.075)           0.007***         -0.007         -0.003           (0.001)         (0.008)         (0.006)           14,085         168         175 | (1)         (2)         (3)         (4)<br>panel A: City           0.071***         0.001         0.021**         0.032***           (0.005)         (0.011)         (0.010)         (0.008)           19,083         270         299         541           4,678         96         122         266           Panel B: Population           (8)         (9)         (10)         (11)           0.778***         0.717***         0.774***         0.616***           (0.008)         (0.060)         (0.075)         (0.044)           0.007***         -0.007         -0.003         0.011***           (0.001)         (0.008)         (0.006)         (0.004)           14,085         168         175         311 | (1)         (2)         (3)         (4)         (5)           panel A: City Size         0.071***         0.001         0.021**         0.32***         0.061***           (0.005)         (0.011)         (0.010)         (0.008)         (0.008)           19,083         270         299         541         2,278           4,678         96         122         266         804           Panel B: Population Growth           (8)         (9)         (10)         (11)         (12)           0.778***         0.616***         0.811***         (0.008)         (0.020)           0.007***         -0.007         -0.003         0.011***         0.001           (0.001)         (0.008)         (0.006)         (0.004)         (0.002)           14,085         168         175         311         1,610 | (1)         (2)         (3)         (4)         (5)         (6)           panel A: City Size           0.071***         0.001         0.021**         0.032***         0.061***         0.080***           (0.005)         (0.011)         (0.010)         (0.008)         (0.008)         (0.006)           19,083         270         299         541         2,278         5,377           4,678         96         122         266         804         2,509           Panel B: Population Growth           (8)         (9)         (10)         (11)         (12)         (13)           0.778***         0.717***         0.616***         0.811***         0.763***           (0.008)         (0.060)         (0.075)         (0.044)         (0.020)         (0.017)           0.007***         -0.007         -0.003         0.011***         0.001         0.008****           (0.001)         (0.008)         (0.006)         (0.004)         (0.002)         (0.002)           14,085         168         175         311         1,610         3,473 |  |

Conclusion

# Conclusion

# References

Paul Bairoch. Cities and economic development: from the dawn of history to the present. University of Chicago Press, 1988.

Francisco J Beltran Tapia, Alfonso Díez-Minguela, and Julio Martinez-Galarraga. The shadow of cities: size, location and the spatial distribution of population. *The Annals of Regional Science*, 66:729–753, 2021.

Maarten Bosker and Eltjo Buringh. City seeds: Geography and the origins of the european city system. *Journal of Urban Economics*, 98:139–157, 2017.

Eltjo Buringh. The population of european cities from 700 to 2000: Social and economic history. *Research Data Journal for the Humanities and Social Sciences*, 6(1):1–18, 2021.

Tertius Chandler. Four thousand years of urban growth: An historical census. (*No Title*), 1987.

Tertius Chandler and Gerald Fox. 3000 years of urban growth. Elsevier, 2013.

David Cuberes, Klaus Desmet, and Jordan Rappaport. Urban growth shadows. *Journal of Urban Economics*, 123:103334, 2021.

Jan De Vries. *European Urbanization, 1500-1800*, volume 4. Routledge, 2006. Gilbert Eggimann. *Population des villes des tiers mondes de 1500 à 1950*. 2000. G Modelski. World cities:-3000 to 2000, faros 2000. *DC: Washington*, 2003. Ömer Özak. The voyage of homo-economicus: Some economic measures of distance, 2010.

- Ömer Özak, David Weil, and Evan Friedman. The new city dataset: 1-2000 ad. *Unpublished dataset*, 2021.
- Ferdinand Rauch. Cities as spatial clusters. *Journal of economic geography*, 14(4): 759–773, 2014.
- Meredith Reba, Femke Reitsma, and Karen C Seto. Spatializing 6,000 years of global urbanization from 3700 bc to ad 2000. *Scientific data*, 3(1):1–16, 2016.