
Fortran programming and molecular dynamics simulation of

argon module

Teacher Guide

Introduction

In this module students will learn basic programming skills using the Fortran program-
ming language while exploring kinetic molecular theory and molecular dynamics (MD)
simulations. Students will create hypotheses about how changing the parameters in their
programs will affect the simulation. The data produced from the simulations such as tem-
perature, potential energy, and coordination, will be graphed and analyzed by the students
and compared to their hypotheses.

All of the Fortran files referenced in this guide can be downloaded from our website
by cliking the “Sample files and fortran codes” link under the “Fortran programming and
molecule dynamics simulation of liquid argon” section.

Basic programming

Introduction to Fortran and “average program”

In the first part of the module, we introduce the Fortran programming language and
teach students how to write a basic program that reads a list of numbers from a file,
calculates the average, display it on the screen, and also writes that average to a new file.

To write and run programs in Fortran you need to use a simple text editor to write the
code and a compiler to convert it into an executable that your computer can run. With
Internet access, you can use the Tutorials Point Fortran development environment, which
allows you to write Fortran code, compile it, and run it in a single browser window. You
can also install a Fortran compiler on your computer; see the Appendix for details.

Let’s look at a basic Fortran program (ft average.f95, included as a sample file) that
calculates the average of the numbers in a file called numbers.txt. Below the code is a
line-by-line annotation. Note that in Fortran any line beginning with the character ! is a
“comment,” which is not translated into the executable program by the compiler. These
comments are simply to help the human reader of the code understand it better. All of
our code examples include comments to help make them more human readable.

1

http://www.tutorialspoint.com/compile_fortran_online.php
http://www.tutorialspoint.com/compile_fortran_online.php

1 program average

2 implicit none

3 integer :: i

4 integer, parameter :: numlines = 10

5 real :: run_sum

6 real :: x

7

8 ! open the file for reading

9 open(unit = 11, file = ’numbers.txt’)

10

11 ! initialize the running sum

12 run_sum = 0.0

13

14 ! read the number on each line into x,

15 ! add to the running sum

16 do i = 1, numlines

17 read(11, *) x

18 run_sum = run_sum + x

19 end do

20

21 close(11)

22 ! calculate average by dividing running sum by number of lines

23 run_sum = run_sum / real(numlines)

24

25 ! open a file for writing and write the average to it

26 open(unit = 91, file = ’out.txt’)

27 write(91, *) run_sum

28 close(91)

29 print*, run_sum

30

31 end program average

Here is a line-by-line annotation, explaining the function of this program:

• Line 1: Every Fortran program begins with the statement program followed by the
name of the program.

• Line 2: implicit none prevents the use of any undeclared variables. It is recom-
mended to always use this statement.

• Lines 3–6: Variable declaration. A variable is simply a container for a value. We use
them throughout the program to store different values, such as numbers. We must

2

“declare” variables before we use them. Variables have types which dictate what can
be stored in them. For example, in line 3, i is declared as an integer, so it stores a
number in . . . , −3,−2,−1, 0, 1, 2, 3 . . . On the other hand, run sum and x are declared
as real, so these can be used to store decimal (floating point) numbers, such as 3.2
or 1.6. The parameter statement in line 4 allows us to specify a value, 10, that the
variable numlines will have for the entire program. Attempting to set numlines to
any other value later in the program will result in an error.

• Line 9: The open statement opens a file for reading and assigns it a number. In this
case, we assign the file numbers.txt the number 11. We can read or write to this
file using this number from now on.

• Line 12: We initialize the variable run sum to the value 0.0. This is because when
we declare the variable, it will automatically take on a (seemingly) random value
from memory. Since we need to use this variable to calculate a running sum, we will
not get the right answer unless we set it to 0.0 before hand. Note that 0.0 is not the
same as 0 (0.0 is of type real, and 0 is of type integer

• Lines 16–19: This is a type of loop called a do loop in Fortran. The code in between
do i = 1, numlines and end do is executed numlines times. In line 17, we use the
read statement to read everything (*) from file 11, and store what we read into the
variable x. In line 18, we set run sum to whatever its current value is plus the current
value of x. As the code repeats in the loop, the run sum variable stores a cumulative
sum of all the numbers in the file, while x only stores the number that was last read
from the file.

• Line 21: The close statement closes a file. We do this because we are done with the
file.

• Line 23: To calculate the average, we simply divide the sum of all the numbers by
the count of numbers in the file. Note that numlines is originally declared as an
integer, so to ensure we get a decimal result we use real(numlines) to turn it into
a real.

• Line 26: We open a file called out.txt and assign it the unit number 91.

• Line 27: We write the average to the file with unit 91.

• Line 28: Now we close file 91 because we will not write anything else to it.

• Line 29: print*, prints all of the variables listed after it to the console.

• Line 31: We end the program.

Now, let’s run the program. If you’re using the Tutorials Point online environment:

3

Figure 1: The Coding Ground Fortran online environment. The left pane shows the list
of files and directories, the right pane is the text editor, and the bottom green pane is the
Terminal.

1. Click on the root folder. Then click “File→ Upload File” and select ft average.f95

and numbers.txt from wherever they are on your computer.

2. Note the split of the environment into several panes. The left contains a list of
your files, the bottom is the Terminal, the center is a text editor, and the right
contains links to other tutorials (Figure 2). The Terminal is where you can run the
compiler to make your program and then run it. In the Terminal, type gfortran

ft average.f95 and hit the enter/return key.

3. If all is successful, the compiler will not give you any warnings or errors and generated
an executable, which is by default called a.out. To check that this file exists, type
ls in the terminal and hit enter to see a list of all files in your current directory.
You should see that ft average.f95, a.out, numbers.txt, and perhaps the default
Tutorials Point main.f95 are all there.

4. Finally, run the program. Type ./a.out and hit enter. The average of the ten
numbers in numbers.txt will be printed to the screen. Type ls and hit enter to see
the files in the directory now. An additional file called out.txt should have been
created. Type cat out.txt to put the contents of that file onto the screen and verify
that it also contains the average of the ten numbers in your file.

Now, you can verify that if you change the ten numbers in numbers.txt to a different
ten numbers, you’ll get the average of those numbers. If you change one of the lines to

4

something that isn’t a number, the program will crash. If you add more than ten numbers
to numbers.txt but don’t modify the code, those numbers won’t be included in the average.
Lastly, if your numbers.txt has fewer than ten numbers, the program will also crash.

What if you want to calculate the average of more than ten numbers? In the code, we
specified

integer, parameter :: numlines = 10

as a parameter. If we change 10 to some other number, we can then read that number of
lines from a file.

Writing slightly more interesting programs

So far, we have a program that reads in a certain amount of numbers and tells us the
average. In that program, we read from files and wrote to files, did some calculations, and
used a loop. We now also introduce another programming structure, called a conditional.
Let’s say we do not know how many numbers are in numbers.txt, and instead of specifying
the number of lines as a parameter in our file, we just want to read until its end.

In the last program, we used the read function as

read(11, *) x

to store a number in the variable x. An alternate way of using the read function is:

read(11, *, iostat=iostatus) x

When read is used in this way, instead of the programming crashing when there are
no more lines or something of the wrong type is read, it puts a number in the variable
iostatus. If that number is 0, then read worked fine. If the number is negative, read
reached the end of the file. If the number is greater than zero, then read didn’t work for
some other reason (for example, in our case maybe one of the lines wasn’t a number but a
word).

This iostat variable combined with a programming structure called conditionals will
allow us to implement our goal of taking the average of several numbers without knowing
how many there are beforehand. A conditional in Fortran is shown below:

if (6 > 5) then

print*, "Hey there"

end if

The statement in parenthesis is called the condition. First, the program evaluates whether
the condition is true or false (in this case 6 > 5 is always true). If it is, it will print Hey

there! Otherwise, it does nothing. The condition can contain variable names, in which
case it references that value of the variable. Here’s a more complicated example. Let’s say
your program already has a grade for a student’s assignment stored in the variable grade

5

if (grade == 100) then

print*, "Perfect score!"

else if (grade > 90) then

print*, "A"

else if (grade > 80) then

print*, "B"

else if (grade > 70) then

print*, "C"

else if (grade > 65) then

print*, "D"

else

print*, "F"

end if

In this case, first the program checks to see if the grade is 100. If it is, it prints Perfect
score! and does nothing else. If the grade is not 100, it goes to the first else if statement
and checks if the grade is over 90. If it is, it then prints A and does nothing else. If all of
the conditions (i.e. == 100, > 90, >80, >70,>65) are false, it simply prints F. Below is a
new version of the average program, ft average v2.f95, which uses conditionals and the
iostat part of the read statement to read numbers.txt until the end of the file. Many of
the lines are exactly the same as original version, but the changes are detailed below.

1 program average

2 implicit none

3 integer :: numlines

4 integer :: iostatus

5 real :: run_sum

6 real :: x

7

8 open(unit = 11, file = ’numbers.txt’)

9

10 ! initialize running sum and number of lines to 0

11

12 run_sum = 0.0

13 numlines = 0

14

15 do

16 read(11, *, iostat=iostatus) x

17 ! if read was successful

18 if (iostatus == 0) then

19 run_sum = run_sum + x

6

20 numlines = numlines + 1

21 ! if read failed

22 else if (iostatus > 0) then

23 print*, "Something is wrong with input...exiting..."

24 ! STOP quits the program

25 STOP

26 ! if read found end of file

27 else

28 ! exit terminates the do loop

29 EXIT

30 end if

31 end do

32

33

34 close(11)

35 run_sum = run_sum / real(numlines)

36 open(unit = 91, file = ’out.txt’)

37 write(91, *) run_sum

38 close(91)

39 print*, run_sum

40

41 end program average

• Line 3: In the first program numlines was a parameter, but in this case we will
update numlines each time we read a line.

• Line 13: We will essentially count the number of lines we read in, so numlines has
to be set to 0 to begin with.

• Line 15–31: do, with nothing following says to repeat lines between do and end do

infinitely (either until something ends the loop from within or you kill the program).

• Line 16: Read the contents of a line into x, and also store the iostat into iostatus.

• Lines 18–20: If iostatus is 0, that means that the read of the line completed suc-
cessfully, so we’ll add the number into our running sum, and also add 1 to numlines.

• Lines 22–25: If iostatus is > 0 then there was some error. In this case we just print
a message and crash the program with the STOP command.

• Lines 27–29: The only other option for iostatus is to be negative if the program
gets to this point. If iostatus is negative, then we know read got to the end of the
file. The EXIT command kills the loop.

7

Compile and run this program as you did before by uploading it to the Coding Ground
site, typing gfortran ft average v2.f95 to compile, and ./a.out to run. Play around
with changing the number of lines in the numbers.txt file; you will notice that the program
will work now regardless of how many numbers you give it.

A final example

After writing the average program, students can write slightly more complicated pro-
grams. One example we suggest is a program that reads in a list of names with grades. If
a student’s grade is higher than some threshold, the program prints their name, followed
by “Yay!” This code example is included as ft grades.f95.

Molecular dynamics

Theoretical background

Molecular dynamics (MD) simulations are a type of computer simulation that allow
scientists to observe the movements of atoms or molecules in nanoscale systems. At the
beginning of a simulation (t = t0), we specify the positions and velocities of every particle
in our system. We define a potential function that allows us to calculate the energy of
interaction between particles as a function of their positions. From classical mechanics,
force can be calculated as the derivative of potential energy with respect to distance, and
the force acting on each particle in the system can be determined. By Newton’s second
law, we can determine the acceleration of each particle, and from the equations of motion
we can then calculate velocity and position of every particle at t = t0 + ∆t. In practice, ∆t
(the “timestep”) is a small number, typically on the order of femtoseconds (1 fs = 10−15

s).
The simulation program used in this module was written to closely reflect one of the first

published MD simulations. In 1964, Aneesur Rahman published a report of a simulation
of liquid argon at 94.4 K with 864 atoms [1]. The parameters used in our code come from
this paper.

Potential function: Lennard-Jones potential

Rahman’s 1964 simulation used a pairwise potential function to model the interaction
between atoms called the Lennard-Jones potential. This function is given by the equation:

U(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(1)

where rij where rij is the distance between atoms i and j and ε and σ are potential
parameters specific to the atoms being modeled. As shown in Figure ?? the Lennard-Jones

8

Figure 2: Plot of a Lennard-Jones potential function.

potential is repulsive (positive potential) at short distances but enters into an attractive
regime (negative potential) prior to decaying to zero. The ε parameter has units of energy
and is the depth of the potential well; thus, the minimum of the Lennard-Jones potential
occurs at −ε. σ has distance units and is the distance at which the potential function
U(rij) = 0.

An excellent resource for explaining the Lennard-Jones potential is the PhET Atomic
Interactions simulation. This small applet depicts two particles moving back and forth in
one dimension while simultaneously showing the corresponding potential on a plot of the
Lennard-Jones potential function. Options are even available to display force vectors on
the atoms and manually adjust potential parameters to see their effects.

The simulation algorithm and its implementation

The first part of each timestep involves the calculation of the forces on all the atoms.
First, the distances between all atoms in the system are calculated. If the distance between
two atoms is within a defined cutoff, the derivative of equation (1) with respect to r is used
to calculate the force acting on the atoms. The total force acting on each atom is calculated,
and then used to determine each atom’s acceleration vector. From the acceleration vector, a
numerical integration is performed to propel each atom’s position and velocity one timestep
forward.

We have provided three Fortran files to conduct the simulations: ft main.f, ft mdroutines.f,
and ft parameters.f. The following is a brief description of the files:

9

http://phet.colorado.edu/en/simulation/legacy/atomic-interactions
http://phet.colorado.edu/en/simulation/legacy/atomic-interactions

• ft mdroutines.f contains subroutines (essentially small, callable pieces of code that
perform specific operations) that are essential for MD simulations. Among these are
the calculation of forces and the integration of motion. This file is commented, so
take a look at it; with the programming knowledge from the previous part of this
guide you might be able to understand much of this file.

• ft parameters.f contains all of the constant value parameters needed for the sim-
ulation, such as the size of the box, number of atoms in the simulation, mass of the
atoms, Lennard-Jones potential parameters, physical constants, and various param-
eters that control how the simulation is run.

• ft main.f contains the “main” MD program. This program performs the simulation
by calling the subroutines from ft mdroutines.f according to parameters specified
in ft parameters.f

Additionally, we provide an input configuration of 864 argon atoms called Ar Lattice.gro.
The ft parameters.f file is preconfigured for an equilibration simulation of argon.

Running a simulation

Before we run a simulation, let’s look at our initial structure. Open VMD and select
“File → New Molecule” in the “VMD Main” window. Click “Browse. . . ” to find the
end structure.gro file. Click “Open” in the “Choose a molecule file” window and then
“Load” to load in the file. Adjust the representation so that you can better visualize the
system. First select “Graphics → Representations” in the VMD Main window, and under
the “Drawing Method” dropdown menu select “VDW.” You will notice that the structure is
simply an organized lattice of atoms, each a fixed distance apart. In particular, you might
notice that this lattice is not very liquid-like. Since our goal is to simulate and calculate
the properties of liquid argon, we must do something to get our system to actually look
like liquid argon. Thus, the first thing we will do is run an equilibration simulation. In
this simulation, we will start with the lattice-like structure provided, and simulate it at
a constant temperature (94.4 K, at which argon is in the liquid state) until the structure
more closely resembles liquid argon.

Now, close VMD and upload the MD Fortran files and Ar Lattice.gro file to Coding
Ground. Double click on the ft parameters.f file. This file contains lines that control
various simulation parameters, shown below:

1 MODULE PARAMETERS

2 IMPLICIT NONE

3 ! Number of atoms in system

4 integer, parameter :: natoms = 864

5 ! Number of timesteps to run simulation

6 integer, parameter :: nsteps = 2000

10

7 ! Atom name for output trajectory

8 character (len = 2), parameter :: aname = ’Ar’

9 ! Lennard-Jones parameter sigma, nm

10 real, parameter :: sigma = 0.34

11 ! LJ cutoff, nm

12 real, parameter :: R = 0.765

13 ! Lennard-Jones parameter epsilon, J

14 real, parameter :: eps = 1.657E-21

15 ! Box dimension, nm

16 real, parameter :: box = 3.47786

17 ! Mass of each atom, kg

18 real, parameter :: mass = 6.6335209E-26

19 ! Timestep for simulation, ps

20 real, parameter :: dt = 1E-2

21 ! Whether or not to use thermostat; .TRUE. or .FALSE.

22 logical, parameter :: Tcoupl = .TRUE.

23 ! Reference temperature for thermostat

24 real, parameter :: Ref_T = 94.4

25 ! Frequency to write to trajectory and log files

26 integer, parameter :: stride = 10

27 ! Name of input file for simulation

28 character (len=*), parameter :: inputfile = ’Ar_Lattice.gro’

Look at lines 21–24. Line 22 tells the program whether to use a thermostat to control
the temperature of the system. When this is activated (Tcoupl = .TRUE.) the speed of
every atom is rescaled to a target speed for the specified temperature, which is determined
by the equipartition theorem:

v =

√
NdofkBT

m
(2)

where Ndof is the number of degrees of freedom (3 for single atoms, corresponding to
translation in x, y, and z), kB is the Boltzmann constant, T is the absolute temperature,
and m is the particle mass. For argon, equation 2 gives a speed of 0.242 773 nm/ps. If
we did not use a thermostat, the temperature would immediately “explode” due to the
very close distances between lattice atoms causing large, repulsive forces. The atoms then
accelerate quite quickly and reach a speed away from our target, even though their initial
velocities correspond to the target temperature.

The temperature coupling used here is very basic; while it does allow us to run a
simulation and get a reasonable starting structure for a “production run,” the trajectory
of this run is not suitable for analysis. The main reason for this is that this thermostat
makes every atom in the system move at the same exact speed (note the difference between
speed and velocity; each atom has the same speed, but every atom is moving in a different

11

direction, so they do not have the same velocities). The distribution of speed in this system
is unrealistic, and if we were in fact to plot it it would be a vertical line.

However, after we do run the equilibration, we can use the structure it generates to run
a production run and analyze the trajectory. Let’s run the equilibration now:

1. Upload the four files detailed above to the Coding Ground environment.

2. Compile the program with the following line in the Coding Ground Terminal pane:
gfortran ft parameters.f ft mdroutines.f ft main.f -o equilibration

3. Run the simulation by executing the newly compiled program with: ./equilibration

Assuming you have not modified the nsteps parameter, the simulation should run very
quickly. After you have run the simulation you will have generated several files (in Coding
Ground, you may have to click the refresh button in order for the files to appear):

• trajectory.xyz contains the coordinates of all of the atoms in the system at different
time points in the simulation. Because this file can get rather large quickly, the
program only writes the coordinates every 10 steps. You can modify this behavior
by changing the stride parameter.

• temperature.log contains the temperature of the system at different time points.
The frequency of output is also controlled by the stride parameter.

• energy.log contains the kinetic, potential, and total energy of the system at different
time points in the system. The output frequency is also controlled by the stride

parameter.

• end structure.gro is a file that contains the coordinates and velocities of every
atom in the system at the very end of the simulation.

Download trajectory.xyz to your computer and open it in VMD as you did before
with the Ar Lattice.gro file. By dragging the slider in the “VMD Main” window, you
will be able to watch the movement of the atoms over 20 ps. Now, let’s run the production
run:

1. Before beginning, make sure you have downloaded all of the files from Coding Ground.

2. Rename the end structure.gro to some other name like equil structure.gro. Be
sure not to use any spaces in the name and to maintain the “.gro” file extension. We
will use this file as the input for the production run.

3. Open ft parameters.f and change the following parameters:

• First change inputfile to the name of your equilibrated structure (e.g. equil structure.gro).

12

• Next change Tcoupl to .FALSE. Note the periods around the word FALSE.
This will turn off temperature coupling in your simulation. We can do this
because we are starting with a structure that already looks liquid like and has
velocities that correspond to a reasonable liquid temperature (94.4 K. Since
the structure is equilibrated, the temperature should stay close to our target
without artificially maintaining it there algorithmically; moreover, our system
will have a Maxwell-Boltzmann distribution of speed.

• We’ll also change the duration for which we run the simulation. We previously
ran the equilibration for 20 ps. We?ll run the production run for 50 ps. Change
nsteps to 5000.

• Lastly, because we?re running the simulation for a much longer time, we should
try to ensure that we don?t write files that are too massive. The stride to
parameter tells the program how often to write coordinates to the trajectory
file. For example, if stride is 10, the resulting trajectory file has coordinates for
every 10 timesteps. Let?s set stride to 25.

4. Save and close the file. Compile and run the program with:
gfortran ft parameters.f ft mdroutines.f ft main.f -o production

./production

After running the simulation, you’ll generate the same files as you did before. At this
point, if you’re using the Coding Ground environment, download all of the generated files to
your desktop from both the equilibration and production runs and close the environment.

Simulation visualization

We can now view the production simulations trajectory in VMD. Load trajectory.xyz

from the production run as before into VMD. Play around with the representations to get
your scene to look the way you’d like. You can render an image of the display window and
save it for later. To do this, click “File → Render. . . ” to open the “File Render Controls”
window (Figure 3). To make a good quality image, you should use the option “Tachyon
(internal, in-memory rendering).” Click the “Browse. . . ” button to select where you want
to save your image. Click the “Start Rendering” button to make the image file.

Coordination structure

The radial distribution function, g(r), is a function that describes the probability of
finding two atoms in a system a distance r apart from each other. From a simulation
trajectory, it can be easily calculated by determining the distances between each pair of
atoms and counting how many of the pair distances fall in a certain range. This count is
then normalized and expressed relative to the number of atoms one would expect to find
in a spherical shell of radius r with the system’s average density.

13

Figure 3: The VMD render controls GUI window.

From the radial distribution function (RDF), we can easily determine the radius of
argon’s first coordination shell; it is simply the distance to the first minimum of the RDF.
Additionally, the integral of the RDF with respect to r gives us the coordination number,
or number of argon atoms that are on average within a distance r. In this sense, if we
integrate the RDF and find the value of its integral at the RDF?s first minimum, we know
the number of atoms that are on average within the first coordination sphere of an argon
atom.

VMD can calculate the RDF for us. To use this feature, load the trajectory into
VMD as before. Select “Extensions → Tk Console.” In the Tk Console, type pbc set

{34.7786 34.7786 34.7786} -all and press Enter. Close the Tk Console and now select
“Extensions→ Analysis→ Radial Pair Distribution Function g(r).” Select your trajectory
in the “Use Molecule” dropdown menu. Type “all” in both the “Selection 1 and Selection
2” fields. Ensure the “Use PBC” checkbox is checked. Click “Compute g(r)” to have VMD
calculate the RDF. It will open in a separate window.

You can save the file containing the function data by choosing “Export to ASCII matrix
. . . ” from the “File” dropdown menu in the plot window. This exports the file as a text
file that can be imported into nearly any data analysis software (e.g. Microsoft Excel,
Numbers, OpenOffice, Mathematica, etc.)

Looking at temperature and energy of the system

When you consider the temperature and energy log files and the file from the RDF
calculation calculation, there are several text files with simulation data in them. A conve-
nient way to look at the results of the simulation would be to plot the data. As mentioned
earlier, nearly any data analysis software including Microsoft Excel is capable of doing this.
To import a given file into Excel,

1. Select “File → Import . . . ” to open the import window.

2. Click on the “Text file” radio button and then click “Import”

14

Figure 4: Liquid argon structure shown in VMD with plot of the radial distribution
function and the calculate radial distribution function dialog box.

3. Select your text file. Because the files generated by the simulation have extension
“.log” and the VMD files have extension “.dat,” you may need to change the selection
in the “Enable” dropdown menu from “Text Files” to “All Files.” Click “Get Data”
to open the Text Import Wizard.

4. Ensure the “Delimited” radio button is selected and click “Next >”

5. Under “Delimiters,“ uncheck “Tab” and check “Space.” Ensure that “Treat consec-
utive delimiters as one” is checked. Click “Next >”

6. Use the “General” column data format and click “Finish.”

7. Select the place in your Excel sheet you want to put the data and click “OK.”

In the energy.log and temperature.log files, the first column and resulting x-axis of
the graphs corresponds to time, in picoseconds (1 ps = 10−12 s). In energy.log, the second,
third, and fourth columns correspond to potential, kinetic, and total energies, respectively.
These values are in joules. The second column of temperature.log is temperature in
Kelvin.

Each temperature and energy file from both equilibration and production runs can
be imported and plotted into Excel. Notice the differences between the temperature and

15

Figure 5: Microsoft Excel with energy file from the equilibration simulation imported. A
plot of the energy evolution with time is shown. As a thermostat was used to maintain
the temperature, the kinetic energy is nearly constant, but total energy is not conserved.

energy plots from the equilibration and production runs. In the equilibration, the tem-
perature is constant. Likewise, the kinetic energy is constant (because temperature and
kinetic energy are related quantities), while total and potential energy fluctuate (Figure
5). Recall that in the equilibration, we purposely maintained the temperature at 94.4 K.
As a result, the kinetic energy remains nearly constant, but total energy is not conserved.
On the other hand, during the production run you will notice the temperature fluctuates
around 94.4 K. In the energy plot kinetic and potential energy will fluctuate, but total
energy is conserved.

Modifying the parameters

Due to the modular nature of the MD code, it is rather easy to modify specific simulation
parameters and tinker with the potential function or simulate a different system. For
example, if we alter the particle mass and Lennard-Jones potential parameters, we would
expect different properties in the resulting trajectories. Students can try to alter the
parameters themselves and form hypotheses on the effects of these alterations, or they can
use Lennard-Jones parameters for similar atoms such as neon and attempt to simulate a
system of neon atoms by editing the appropriate parameters. Table 1 shows some Lennard-

16

Jones parameters and the corresponding modifications that would need to be made in
ft parameters.f to simulate other group 18 atoms. Students can look up phase diagrams
for these elements to determine appropriate simulation temperatures for liquid.

Table 1: Masses and Lennard-Jones parameters for some group 18 elements [2].

Element Mass (kg) σ (nm) ε (J)
aname mass sigma epsilon

Ne 3.350 91× 10−26 kg 0.275 nm 4.915 11× 10−22 J

Kr 1.391 53× 10−25 kg 0.383 nm 2.264 27× 10−21 J

Xe 2.180 22× 10−25 kg 0.406 nm 5.605 44× 10−21 J

References

[1] Rahman, A. Phys. Rev. 1964, 136, A405–A411.

[2] McQuarrie, D.A.; Simon, J.D. Physical Chemistry: A Molecular Approach, 1st ed.;
University Science Books, 1997.

17

