All posts by Jess Davis-Knowlton

Notes from the North – Collaboration and Communication

March is just around the corner, so there are just a couple of weeks before the CMDB and Genetics program students and faculty will be joining me for a weekend in Portland! As much as I want to advertise for the retreat and mention that it is student driven in that talks will be on topics selected by students, the day is structured based on student feedback, and the Saturday night social trivia session was voted in by students, I don’t want readers from other programs to feel left out of my article’s audience. Note on image: lobster coloration really can display Tufts support, the pattern occurs in bilateral gynandromorphs (half male, half female) where one side has normal black/brown color and the other side has a rare color mutation causing a blue carapace. The chance of a half blue/half brown lobster may be as little as 1 in 100 million.

Now, the real reason I mention the retreat is that over the last three months I have been collaborating with student and faculty colleagues at three separate campuses along the New England coast to help bring this retreat together. It has required learning and practicing organizational skills, shared decision-making skills, delegation, and diplomacy. These are all skills worth cultivating for anyone who may participate in scientific collaboration, so it is helpful to seek out collaborative experiences early in a scientific career. Here is how helping to plan a retreat becomes practice for collaboration and communication:

Integration of multiple viewpoints. One of the great advantages of working as a group toward a common goal is that collectively the group has abundant experience to draw from in order to propose ideas and predict where problems may arise. While planning the CMDB/Genetics retreat we felt it was important to be respectful of all organizer opinions and concerns and at the same time try to incorporate as many ideas from the retreat participants as possible. This of course meant instances when compromise and diplomacy were necessary. Delegation of point people for specific tasks also helped mitigate conflict because one person has had primary responsibility while others advise.

Faculty as peers as well as advisors. Speaking of advising, I have found that a benefit of helping to organize such a large event for the CMDB and Genetics programs has been the need to interact with many faculty and staff in a capacity slightly different from that of my usual student role. Over the course of our academic careers our view of academic mentors shifts from their being “sages on the stage” in high school, undergrad, and early graduate school, to being approachable human beings with advice that ranges far beyond the scholarly later in graduate school, post-doctoral fellowships, and early career. The increase in responsibility that comes with becoming a peer as well as an advisee is not something I think consciously about very often, so this has been a valuable exercise in examining the evolution of these relationships. Recognition of this changing role can facilitate collaborative scientific work because it gives you confidence in your value to a project.

Interaction at a distance. The CMDB/Genetics retreat brings together students and faculty from four campuses in two states, making it imperative that we utilize methods of communication that are speedy and reliable. Now imagine if we were on different continents! For the most part this has meant heavy reliance on email, but we have also found it helpful to setup online video conferencing for regular face-to-face interaction. Meetings can be tricky to schedule for groups comprised of very busy individuals, and it is easy to fall into the trap of holding too many, however they are important for quickly refocusing the group after a period of productivity. Another tool we have made extensive use of that is suitable for both near and far collaborative efforts are online workspace platforms such a Google Drive that allow multiple users to work and edit simultaneously. This is especially helpful in generating a living record of how the group’s ideas and priorities change over time. I think one of the greatest lessons I have learned from helping to organize the retreat has been realizing the importance of keeping a centralized record of decisions. It has allowed the retreat planning committee to understand the logic that got us to a particular point, and then guided us as we moved forward on a number of occasions.

The best way to improve any set of skills is to go out and practice them, so look for those collaborative opportunities!

Notes from the North – CMDB first year visit to MMCRI

We frozen few doing our thesis work in the CMDB and genetics programs are always looking for ways to highlight some of the excellent resources we have at our institutes. Last month I had the pleasure of hosting the CMDB first year students and introducing them to the Maine Medical Center Research Institute in Scarborough, Maine. They heard from the faculty here about potential rotation projects, but perhaps more importantly about the larger on-going projects that could become collaborative efforts between Maine and Boston. Here are some pictures of their visit and a link to the updated MMCRI website in case you too are interested in finding out about current MMCRI research.

 

Left to right CMDB first years Brittany Ahlstedt, Alexander Hu, Alice Meng, and Jackson Fatherree at Portland Head Light at Fort Williams Park.

 

Left to right CMDB students Alice Meng, Brittany Ahlstedt, Jess Davis-Knowlton, Jackson Fatherree, and Alexander Hu at Duckfat in Portland.

Science Sketches at MMCRI

Very recently I found myself in a revelationary conversation with a non-scientific colleague as we were planning our annual exhibition for the Maine Science Festival. We needed a display that would highlight the molecular biology work we do at MMCRI that would be exciting and comprehensible to a broad audience plus a related hands-on activity that could be completed in just a few minutes. Pulling from the expertise of the folks attending the festival, I proposed that we have a display on our use of 3D silk scaffolds in modeling cancer. One of the hallmarks of the cancer cells compared to healthy cells is reduced lipid content, so the hands-on activity could be a demonstration of dye solubility with the explanation that this is how we measure lipid content in our cell populations.

Well, about halfway into the conversation I found that I had completely failed to convey A. the link between the silk scaffold models and the hands-on activity and B. the importance of dye solubility in highlighting specific structures and substances. Fortunately, my colleague asked me to take several steps back and was able to ask very specific questions such that I was able to reform my explanation for her. In the end, my idea was passed along, but the episode highlighted to me that despite all the opportunities I have to explain my science to both scientific and lay audiences I still need lots more practice.

This past summer at MMCRI we had an excellent opportunity to think in great depth about how to present our work in a concise and comprehensible manner: we produced Science Sketches! A Science Sketch is a two-minute or less video summary of a scientific topic. I have seen examples of more universal basic scientific principles as well as very specific projects.

All sketches start as an idea or concept that the writer wants to convey to their audience. The writer must decide who their audience will be, as this will dictate the vocabulary and the level of explanation that needs to be employed. Science Sketches has a great tutorial to help writers as they get started telling their stories. They recommend a 300-word script with no jargon that has been proofread by several colleagues and assessed using online tools that highlight terms above a given reading level. With a complete script, you can start putting together a storyboard that illustrates every sentence.

The sketches generally utilize pen and ink drawing on copy paper or white board, but they can also employ cut paper shapes, building blocks, or other props to illustrate an idea. They can be made very rapidly and at very little expense as they are often filmed using a cell-phone camera mounted on a ring stand.  The writer films him or herself drawing or moving paper cut outs, records his or her script, then uses video editing software to compress the video and match it to the audio. The writer can take as long as he or she likes drawing the images as they can be sped up to whatever speed is necessary using the editing software.

Video summaries of scientific concepts have been around for a long time, and I am particularly fond of this trippy vintage recording of translation, but organizing an approachable tutorial that anyone can carry out is a novel model. Science Sketches arose at the Max Plank Institute of Molecular Cell Biology and Genetics in Dresden Germany as a collaboration between the institute’s postdoc program manager, Lisa Dennison, PhD, and the Hyman lab. More recently, Science Sketches has focused on improving their public engagement, so Liam Holt, PhD of NYU, became involved and helped them develop their science fundamentals video series.

I found this summer’s workshop challenging but rewarding. I had to take a high altitude view of my project again after months of detailed experiments in order to highlight the key features of my work and keep my audience’s attention for the full two minutes. It also gave me an excuse to binge watch lots of science vignettes, making me feel really well rounded and intelligent for a day, as I decided how I wanted to construct my own video. Hope you enjoy!

Notes from the North – Happy Mother’s Day!

Anyone who has been to the supermarket or drug store in the last couple of weeks has been bombarded with commercial reminders that mother’s day is just around the corner. Flowers, mom mugs, and cards all vie for attention next to registers beckoning shoppers to make a purchase and check mother’s day responsibility off the to-do list. When I picked up a tea kettle printed with spring flowers for my own mother, I was thinking of it as a mechanism to express my gratitude for all the love and support she has lavished on me. Having recently produced my own offspring, however, I find myself reflecting on the truly amazing biological processes that must occur in order for us to be here to celebrate mother’s day. So in addition to thanking her for being the amazing person she is, I also thank her for embarking on an amazing biological adventure three decades ago.

The grind of assays, meetings, and deadlines often forces us to narrow our focus exclusively on our own little piece of the biological puzzle such that thinking about the larger pattern becomes overwhelming. This weekend I will be trying to contemplate the biology of motherhood with wonder and appreciation instead of my more typical bewilderment.

As med-bio researchers we are more attuned than most to the incredible number of steps that must take place in near perfect choreography for a healthy living organism to result. Dividing cells talk and cross-talk, differentiate at variable rates, and form functioning organs that allow the growing fetus to become more and more independent. For mammals, cross talk between the maternal system and the fetal system trigger additional developmental programs for lactation in mom that were arrested at puberty.  In the hood we are happy if we can get our cultures to remain viable for more than several months. With all the resources of a full organism, cells can still be fully functional decades later without resorting to preservation in liquid nitrogen!

Incidentally, there was a student at Stanford a few years back who was also moved by mother’s day to contemplate the science behind the celebration. He expressed his appreciation much more eloquently than I in a ballad that can be found here on YouTube.

This mother’s day take time to celebrate the positive impact your mother has had in your life and use it also as a day to celebrate eons of evolution that result in modern biology. And don’t forget father’s day and grandparent’s day too!

Notes from the North: Review of Online Course “Scientists Teaching Science”

Scientific graduate programs all over the country do a wonderful job training their students to become critical thinkers able to design experiments, write fellowship grants, write peer reviewed papers, and grasp complex scientific systems. Nearly all programs, however, struggle to provide career training. Traditionally, skills such as mentoring, teaching, and leadership have been learned by observing others. This has generated many excellent scientists, mentors, teachers, and leaders, but how many more could we have developed had students received directed training? And how much better would our current scientific leaders be had they not had to reinvent the wheel for themselves?

One of the dangers of requiring students to learn through osmosis is that we tend to recapitulate what we see, even if it is not the most effective method. Partly this is because many of us do find this an effective way of gaining skills and knowledge, but there is also a mentality of initiation: we had to struggle, the next generation should experience this too. There are many answers to this paucity of career development training, however, in the form of business clubs, student and postdoc association lead career workshops, and online extracurricular courses.

Some of us at Sackler interested in a teaching career have taken advantage of a short course entitled “Scientists Teaching Science” which teaches best practices in science education, based on the latest research on teaching and STEM ed sol logolearning by STEM Education Solutions (http://stem-k20.com/). This is a completely online course that runs about nine weeks with a different module every week. Depending on the week, the time commitment is about 3 hours per week for light weeks and as much as 8 hours per week on heavy weeks (depending on how assiduous a note taker you are when doing readings and how detailed you are in written assignments).

I found the intro to the course very illustrative and memorable. We were asked to read several articles on how science has traditionally been taught and how active learning has repeatedly been shown to improve learning outcomes, then Barbara Houtz started her own narrated lecture in the traditional “Sage on the Stage” style. My heart immediately sank as I envisioned the next nine weeks writing dense, jargon filled notes on topics that seemed esoteric and non-practical. This was not what I thought I was signing up for! Then she paused and asked the question, “what are you thinking?”

That’s when the real lecture began. The narrated lectures were fantastic! Available 24/7 and provided as both narration and transcript. Methods that make participants stop to think about what they are being told were used liberally to retain participant attention. This meant that we were being shown how to effectively employ all the skills we were being taught as they were being taught to us. The modules covered learning/teaching styles, generating effective assessments, Bloom’s Taxonomy of Learning, writing your teaching philosophy (a part of faculty application materials that I only learned about last year despite years of aspiration to teach), cultural awareness, active learning and inquiry based teaching, writing course objectives, teaching online, course development, and syllabus compilation. Each module was comprised of a narrated lecture, readings, and a written assignment or discussion board post requirement. Additional resources were also provided on the Virtual Learning Environment and Barbara Houtz frequently sent out class announcements about recent articles on STEM education and careers for PhDs.STEM

I embarked on this online only course with a great deal of trepidation. Would I have the self-discipline to keep up with the material? Would I feel comfortable reaching out to the instructor with questions and comments? The answer is that with the help of an instructor devoted to keeping her participants involved and getting the most out of her course I was able to gain practical teaching skills in a remarkably short time.

Notes from Up North: What is an IDeA COBRE?

By Lucy Liaw, PhD Tufts/MMCRI

Here at Maine Medical Center Research Institute, we are very happy to be supporting Tufts trainees and working with many Tufts investigators here and in Boston to provide core facility services such as transgenic mouse generation.

Did you know that many of our core facilities were established at Maine Medical Center through a special NIH program, the Institutional Development Award (IDeA) Program? The IDeA program was established by Congressional mandate in 1993 to help develop research infrastructure to support biomedical research in 23 states that historically have had a low level of NIH funding. Maine is one of those states. In fact, there was a time when 50% of NIH funding went to researchers in 5 states (Massachusetts being one of those heavily funded states!), while the 23 IDeA eligible states together only received about 5% of all NIH funds. Over the last 23 years, NIH investment in biomedical research in Maine has contributed to a burgeoning biotech scene (http://www.mainebioscience.org/access_resources/bioscience-map-of-maine/) and a highly collaborative network of research institutes.

One of the components of the IDeA program is the Centers of Biomedical Research Excellence (COBRE). Maine Medical Center has been fortunate to have received two COBRE awards since 2000, one with the theme of Vascular Biology, and one in Stem and Progenitor Cell Biology. These awards have supported the recruitment of new junior investigators to Maine Medical Center (with appointments at Tufts University School of Medicine), and also the establishment and expansion of our core facilities.  Please visit our website at mmcri.org, and find “Core Facilities” under “Research Services & Resources” to see if we provide services that could be useful to your research!

Microinjection of mouse fertilized oocyte. Our Mouse Transgenic Facility performs genome modification using standard transgenesis, gene targeting in ES cells, or CRISPR/Cas. In 2017, we will start to offer services for CRISPR/Cas project design and sgRNA synthesis.
Microinjection of mouse fertilized oocyte. Our Mouse Transgenic Facility performs genome modification using standard transgenesis, gene targeting in ES cells, or CRISPR/Cas. In 2017, we will start to offer services for CRISPR/Cas project design and sgRNA synthesis.

 

Imaging by microCT. We run a Scanco vivaCT40 for microCT imaging of bone, teeth, fat, and the vasculature. Image, above right, shows microfil perfusion of the vasculature of a tumor xenograft, used to quantify and measure tumor angiogenesis.
Imaging by microCT. We run a Scanco vivaCT40 for microCT imaging of bone, teeth, fat, and the vasculature. Image, above right, shows microfil perfusion of the vasculature of a tumor xenograft, used to quantify and measure tumor angiogenesis.

 

Proteomics and Lipidomics Core Facility. We run a mass spectrometry resource with state-of-the-art protein and lipid profiling capacity. Recent studies include experiments to study tissues including adipose tissues and the skeleton, and how their protein and lipid content changes during metabolic disease.
Proteomics and Lipidomics Core Facility. We run a mass spectrometry resource with state-of-the-art protein and lipid profiling capacity. Recent studies include experiments to study tissues including adipose tissues and the skeleton, and how their protein and lipid content changes during metabolic disease.

 

Histopathology Core Facility. We provide full services for tissue processing, embedding, sectioning, routine histology, and immunostaining. We work closely with our Maine Medical Center Biobank to generate tissue arrays for screening of human disease specimens from patients.
Histopathology Core Facility. We provide full services for tissue processing, embedding, sectioning, routine histology, and immunostaining. We work closely with our Maine Medical Center Biobank to generate tissue arrays for screening of human disease specimens from patients.

Take Part!

Remember student council elections in high school? Typically the most popular student running would win, but everyone was full of enthusiasm and excitement to attain those coveted positions! Fast-forward a decade or so to filling positions in organizations like the student council during graduate school and the picture looks dramatically different. We each take a turn, but we tend to do so grudgingly. High school was grueling, don’t get me wrong, but as the years progress the demands on our time change, the expectations are different, and the student body is less diverse (no more Poli Sci majors to eagerly take on the class president position).

Organizations that support fellow trainees and coworkers are typically run by volunteers. Each year we need people with a fresh perspective to step up and help with maintaining organizations such as the Graduate Student Council, the Sackler InSight, the Post-Doc Association, and, up here in Maine, the Research Fellows Association. There are so many important career and social events that just would not happen if these organizations were to disappear, not to mention how much smaller our voice within the school would be.

Teamwork

If you find yourself holding back from taking part in one of these community serving groups because you simply don’t have time between experiments, think of participation as a convenient way to get some career development in. Those of us who have been shoehorned into leadership positions can tell you firsthand how much rigorous practice we get in using the “soft skills”. In the business vernacular these include but are not limited to social and emotional intelligence, ability to develop people, delegation, structure and tactile development (how you get stuff done and how you tweak things to make sure it keep s getting done), style flexibility, and focus1.

Experience on a leadership team will create a tangible CV bullet that is particularly important for anyone interested in going into industry, but such experience will also be very helpful for people staying in academia (think committee and ancillary duties). It’s all in how you frame your skills to your audience.

Any of the students currently serving on committees or volunteering in other capacities will be more than happy to share their experiences, what their responsibilities and time commitments have been, contacts they have made, and what they have gotten out of their service in terms of personal and professional development.

  1. For a more in depth explanation on these soft skills, see SciPhD competencies and SCIPHD.com

Notes from the North – MMCRI mouse transgenic expertise from the comfort of your own bench!

Whether you’re hunting for an engaging and useful elective as a first/second year student or soaking up last minute knowledge before jumping into the job/post-doc market, I recommend considering Mouse Transgenic Models and Advanced Mouse Transgenic Models coordinated by Dr. Lucy Liaw of Maine Medical Center Research Center and Tufts Sackler. The aim of the modules is to deepen understanding of molecular biology’s most popular mammalian model organism and help participants design thoughtful and effective in vivo experiments.

The first module givinjectiones an overview of how to develop transgenic models of gene expression and gene targeting plus strategies for phenotypic characterization such models. When I took the course for transfer credit in spring 2015 we learned basic transgenic and gene targeting construct design, conditional and inducible systems, early embryonic mouse development in the context of pronuclear and blastocyst injection, and the effects of genetic background on models. We utilized what we were learning over the course of the module to develop a strategy for making a mouse model of our choice (construct design through phenotype characterization) with discussion of our design at the start of each class.

CRISPR

The second module focuses on cutting-edge techniques currently being used in academic and industry laboratories to generate transgenic animals. Last spring we reviewed genome editing via Zinc finger nucleases, TALENS, and CRISPR/Cas9. The assignment for this module was to revise our previous model employing the more recent techniques.

Both modules utilized lecture, discussion of primary literature, and project development/presentation to ground participants in mouse transgenic biology. The pace was rigorous; we met for 2 hours twice a week for 3.5 weeks per module, yet easy to integrate with benchwork.

These well established modules have been available through the UMaine graduate course catalog for four years and will be directly available to Sackler students starting spring 2017 (look up CMDB 0350 while browsing the Tufts SIS catalog). The UMaine Graduate School of Biomedical Science and Engineering students who have traditionally taken this course rely on a consortium of institutes across Maine for their training. Because of this, the Mouse Transgenics modules are designed to be highly compatible with teleconference style classrooms allowing excellent participant interaction and experience in telecommunication meetings (a skill not to be sneezed at in this era of global collaboration).teleconference

Notes from the North – The Science of Lobster

The other week my family and I were driving home from an afternoon on the beach playing in the waves, poking through tide pools, and eating seaweed (only Ronan indulged in this last pursuit) when we IMG_20160713_204129_894[1]made a spur of the moment stop at a local farm to pick up lobster and a couple pounds of steamers1. Standing at the counter in flip-flops and a swimsuit as the lobsterman weighed out our “bug”, I began to ponder this quintessential Maine summertime treat. In preparing and eating whole lobster the consumer becomes acutely aware of the animal’s physiology; an experience most of us are divorced from for most of the produce we eat.

 To start with, you have to decide as you are making your purchase whether you would like a hard-shell or a soft-shell lobster. A soft-shell lobster is one that has recently undergone ecdysis, a shedding of the exoskeleton. The lobster does this by inflating a newly grown exoskeleton with water within the old carapace causing it to pop open and expose the soft new shell. The reason these soft-shell lobsters cost less per-pound than the hard-shell lobsters is that a good proportion of their weight comes from that water rather than meat.

When you get your lobster home and are facing the decision of how to cook him or her2, you might begin to wonder “why on earth do I need to buy it live?” In part this goes back to the molting cycle again: powerful proteases (four members of the calpain family) induce muscle atrophy in the claws in order to reduce the volume of tissue that will need to be withdrawn from the old shell. When the lobster is dead, these proteases cause rapid degradation of the flesh. The other part of the answer lies in the presence of metabolites from micro-organisms. The combination means a much shorter shelf-life for raw lobster meat than you might otherwise imagine.

This inconvenient brevity of freshness forces the chef to consider the question of lobster nociception.  The avoidance behaviors (tail-flipping) exhibited by lobsters upon being placed in boiling water clearly demonstrate that at the very least lobsters have evolved to respond to noxious stimuli. Pain is typically understood to be comprised both of physical sensation and emotional distress, but since it is difficult to observe or define emotion in non-humans using only our experience of human emotion it seems reasonable to minimize the animals’ exposure to noxious stimuli. In Europe this is accomplished by electrocuting crustaceans prior to cooking, but the best compromise I have seen in the US is to make a cut through the lobster’s brain while it is still cold from the fridge before cooking.

There is a huge body of scientific literature out there both utilizing lobster as a model organism and studying it directly (the lobster fishery just in Maine is worth over $1 billion!), but I’ll leave you with just one last lobster physiology anecdote. Ed Kravitz, one of my grandmentors (mentor’s mentor) demonstrated that GABA is a neurotransmitter using lobster (the shell apparently makes a convenient receptacle in which to bath the muscle and nerves), but I was always told that Ed’s favorite part of studying lobster was the taste test!

  1. Scrumptious little soft shell clams that are cooked by steaming. In our family we bring the cooking brine to the table so we can rinse each clam clean of sand before dipping in butter to consume whole.
  2. The most infallible method to determine the gender of your lobster is by looking at the first pair of swimmerets that appear on the ventral surface of the animal where the tail joins the cephalothorax. In females these are soft and flattened while in males they are stiff and curve to form a tube through which spermatophores are deposited in the female during mating.Lobster anotomy

Notes from the North – Reporting at the Molecular Level

March’s Notes from the North article is written by guest writer Spencer Scott, a current member of the Liaw Lab at MMCRI and recent transplant to the field of molecular medicine. He worked for seven years in New York as a producer for NPR, CNN, and ABC and is now a pre-med post-baccalaureate studying Biochemistry at the University of Southern Maine. Spencer will be applying to M.D. programs this spring.
Spencer CNN

CNN cameraman Spencer Scott reporting on the blackout in Manhattan following Hurricane Sandy in 2012.

Spencer Scott

Tom McCarthey’s brilliant film Spotlight took best picture at the Oscars this year. In an age when news has become synonymous with 24-hour cable networks plastered with pundits and steadily declining newspaper readerships, Spotlight is an important homage to the important role of real journalism in American society. For over seven years I worked as an aspiring producer for outlets including NPR, CNN, and ABC. While I would never dream of comparing my young career to the work of the incredible reporters at the Globe’s investigative unit, there is still a common aspiration amongst all those who enter the field. As their name, “Spotlight,” implies, we wish to shine light where there once was darkness, to illuminate the unknown for the betterment of our society.

A little more than a year ago, I left the craft to which I had thought I would devote my life. I spent the final four months of my career in television news shooting a medical documentary series for ABC in three of Boston’s Level I trauma centers. It was there in those halls that I finally decided to follow in the foot steps of my mother, father, and brother, and pursue medicine. I left my work in television and returned to my home state to begin a post-baccalaureate pre-medical program at University of Southern Maine, which I will finish in May.

It may seem odd that the child of an orthopedic surgeon and emergency room physician grew up shying, if not flat out running, away from the sciences. I still struggle to answer that for myself. But the only answer I can give is that I didn’t think my mind was wired in that way. I loved history and language and stories, and when I thought I could help people by telling their stories, I believed I’d found my calling. I sold my first story to NPR when I was seventeen, an interview with an Iraq war veteran, only three years older than I was. He had nearly lost his life in an IED explosion in Fallujah, the shrapnel of which had torn through his throat, rendering his voice a quiet rasp. Because of my reporting, millions of “All Things Considered” listeners heard Cpl. Chris Kotch tell his story. It was a feeling that inspired the pursuits of the next decade of my life.

In fact, after all of my years working in the field, I’m still proudest of the reporting I did when I was just a kid in high school. None of the stories I told in my professional career carried the weight that my earliest, self-directed work did. Working for big networks, the feeling that you had helped someone share something vital, that you had illuminated what was once shrouded in darkness, became rare, especially for a young producer. But in Boston, as I watched the doctors in my camera’s viewfinder treating their patients I saw something so exhilarating. It may sound cliché, or like a line from “We Are the World,” but I saw people helping people, through my lens and live before my eyes. I do not mean to discount the importance of journalism, I believe steadfastly in the critical role it plays in our society. But for me, witnessing those human connections made walking away from the field easy. I knew my place lay on the other side of the lens where the help was delivered every day directly and in real time.

Back in Maine, I threw myself headlong into my studies. When I walked into my first class at USM (BIO 105 Cell & Molecular Biology) I didn’t yet know if I had a mind for science, but I was willing to do whatever it took. Fortunately, I soon learned that in academia, you can do whatever you set your mind to, as long as you are willing to put in the work and the passion is genuine. Finding science has been the most fulfilling and gratifying experience of my life and I have been rewarded for the work I’ve put into it. When I started my program a little over a year ago, I never could have dreamed that I would be interning at a place like Maine Medical Center Research Institute, involved in the incredible work its investigators perform every day. In one sense, my work at the Institute is the farthest I have yet strayed from the newsroom. Whether it is furiously scribbling down names of promoters or genes or antibodies to google, or looking at slides of fluoresced cells and western blots, every Monday lab meeting reminds me that I am not in Kansas anymore. But in another sense, the work of the researchers at MMCRI is akin to that original creed of the aspirant journalist. Science and research, like journalism, work to shed light where there once was darkness. Both disciplines endeavor to peer into the unknown and learn what lies within. Whether it be learning the struggle of an American veteran who can no longer sleep through the night, or learning the process by which the notch signaling pathway impacts the function of endothelial cells in vasculature, science and journalism share the understanding that we are all better off for knowing.