NOTES FROM THE LIBRARY

RESEARCH GUIDES TO HELP YOU GET STARTED ON YOUR RESEARCH

Many people turn to Google when they are brainstorming a research topic. I am not here to shame anyone on that practice, especially because I am guilty myself! But as many librarians will say, you can always start with Google but NEVER end there.

There are better resources to help get you started on your research. The following are some research guides that have a curated list of resources based on topic/subject area.

As always, if you need help navigating any of these resources, please feel free to make an appointment with me or drop by Sackler Library Office Hours!

FINDING INFORMATION

SCHOOL OF BIOMEDICAL SCIENCES RESEARCH GUIDE. This will guide you through finding journal articles, chemical/drug information, protocols/methods, data, data analysis/visualization, and more!

PROBLEM-BASED LEARNING. For those of you working/researching in a clinical setting, this guide will help you with some resource that might be helpful in answering clinical questions. This guide includes a variety of resources that include, but is not limited to, point-of-care tools, e-book collections, clinical practice guidelines, drug information, etc.

BIOINFORMATIC RESOURCES. If you need bioinformatics resources, this is a guide that directs you to databases, tools, journals, books, and bioinformatics at Tufts.

STUDY DESIGNS IN THE HEALTH SCIENCES. This guide will help you gain an introductory understanding of the different types of study designs that are frequently used in the health sciences.

ADVANCED SEARCHING TECHNIQUES. If you have a handle on basic searching in databases like PubMed or Ovid, you might find this guide helpful. It will give you some tips and strategies for advanced searching on a variety of databases.

OTHER RESOURCES

APPROACHING THE LITERATURE REVIEW. This is a great place to start if you need help with your literature review. It walks you through the steps of approaching your literature review and links you to other resources that might be useful.

DOCTORAL RESOURCES. You should visit this guide if you need help with your dissertation, teaching, or locating career information!

FINDING FUNDING. This guide is specifically designed to help you find funding (both on and off campus), as well as write grant proposals. It will also give you tips on finding successfully awarded grants on PubMed and other databases.

NOTES FROM THE LIBRARY

Introduction

Hello everyone! My name is Andrea Kang and I recently joined the Research & Instruction Librarians at the Hirsh Health Sciences Library (HHSL). One of my roles is to be the library liaison to the School of Biomedical Sciences. I am so excited to be a part of the Tufts community and hope I can make your lives a little bit easier, whether that is by helping you through your literature review for your thesis, or giving you tips on research data management, or connecting you with resources that HHSL has to offer you. Here are some things that I can help you do throughout your time at Tufts:

FIND JOURNAL ARTICLES & MORE. I can help you find articles, datasets, health statistics, chemical/drug information, etc. and equip you with the skills on how to do it yourself in the future! Even if you know the basics, I can help with troubleshooting or refining search strategies.

GET YOU STARTED ON A RESEARCH DATA MANAGEMENT. Government funders among others are requiring rigorous research data management (RDM) plans for your research, some requiring that you meet with a librarian. But beyond these requirements, RDM can make your life (and others’ lives) easier in the long run. I can provide tips on best practices and where to get started with your RDM plan.

HELP ORGANIZE YOUR CITATIONS. If you are still using Microsoft Excel/Word, Google Sheets, or going old school with pencil and paper to organize the bazillion articles you found for your research, STOP. There are other ways that you can manage your citations that will save you time in the long run! I can help you with tools like Zotero, Mendeley, and EndNote (which is FREE because Tufts pays for it), or connect you with the experts here at HHSL.

CONNECT YOU WITH OTHER RESOURCES. There are so many other resources available at HHSL. Whether you need to use test prep books, borrow a phone charger, just need advice on where to start your research, or learn skills like R/R studio, I can help connect you to the resources you need. Just reach out!

To make an appointment with me, you can go to my page and schedule an appointment through the scheduler. If there are problems with this, you are more than welcome to call me at (617)-636-0385 or email me at andrea.kang@tufts.edu.

New Initiative on Campus Seeks to Tackle Mental Health Issues among Grad Students

For a long time, it was a generally accepted trope in academia that graduate students must endure harsh conditions, intellectual and emotional, before they are granted their PhD degrees. This is supposedly meant to build character, and weed out those who are not fit for the rigor and stress one encounters in academic research – a trial by fire of sorts. The ones who survive these conditions and emerge victorious, also internalize such hazing and come to think of it as just the regular pressure of working in academia.

It is therefore not surprising that the mental health of graduate students have not been discussed very much except in the recent years. While it has long been a subject of humor, such as PhD Comics and memes such as Shit Academics Say, it is only recently that the severity of the problem has been brought to light. In 2013, a series of articles regarding graduate students’ mental health was published on the GradHacker blog. In a guest post, Nash Turley, then a PhD candidate in evolutionary ecology at University of Toronto, looked at studies focusing on the major mental health issues graduate students face – anxiety, depression, suicidal thoughts, going as far back as 1997, and deduced that “mental health issues are the biggest barriers to success among graduate students.”

Earlier this year, a study published in the journal Nature Biotechnology by , described the mental health issues among graduate students as a “crisis”, highlighting the prevalence of anxiety and depression. After surveying 2,279 graduate students representing 26 countries and 234 institutions, the study found that graduate students are six times more likely to suffer from moderate-to-severe depression compared to the general population. The study also found that female, trans and gender-non conforming (GNC) students were significantly more likely to experience anxiety and depression than their cis male counterparts. Among the students with anxiety and depression, more than half did not felt valued by their mentors and half did not agree that mentors provided emotional support (only a third said yes). The study proposed some short term solutions, such as providing trainings to faculty and administrators by mental health professionals, similar to the NIH’s “train the trainers” program. For a longer term solution, the authors advocated for “a shift of the academic culture to eliminate the stigma and to ensure that students are not reluctant to communicate openly with PIs.” The notion of suffering has been internalized by graduate students to the point that in a latest study conducted among five hundred economics graduate students across eight institutions, the students who scored worse than average on a mental-health assessment tended to think that their mental health was better than average; among those who reported having suicidal thoughts, 26% assumed that their psychological well-being was better than the norm. In both studies, the major driver of such mental health issues seemed to be a combination of financial worries and the professional pressure to publish, both of which are products of the tight budget climate and the “publish or perish” nature that academia has recently taken on.

Alyssa DiLeo, a second-year graduate student in the Neuroscience program, is well aware of mental health issues graduate students face; she has faced them personally as well. “Graduate school is a hard transition for many people and even more difficult when they don’t have a support system. Mental health issues are also highly prevalent in graduate students. Levecque et al. published a study in May of 2017 reporting one in two PhD students experience psychological distress and 1/3 of graduate students are at risk for a psychiatric disorder. An online survey of graduate students in a recent March 2018 study by Evans et al. reported that graduate students are more than six times as likely to experience depression and anxiety compared to the general population. After taking a few years off before entering graduate school, I’ve definitely found myself struggling to transition from an employee to a graduate student and was finding it hard to find the right support.” She became aware of an initiative called Resources for Easing Friction and Stress (REFS) at MIT while attending a Graduate Women in Science & Engineering (GWiSE) event at Harvard, and was inspired to start a REFS program here at Sackler called sREFS (sackler Resources for Easing Friction and Stress).

The goal of the sREFS initiative is “to provide an easily accessible outlet for graduate students to talk about conflicts, issues, or stressors in their lab or personal life.” Currently, there are few options that Sackler students can peruse if they are having mental health issues – the Wellness Center which puts out events for the whole TUSM community, the Student Advisory Council of the Wellness center (which just got a Sackler rep on their board), or their friends and other graduate students at certain social events. Mentoring circles, another peer-based support system started by Sackler students and alumni for networking and career development, could be another option. However, Alyssa noted that while Mentoring Circles provided “a great networking resource with experienced mentors”, “sREFS aims to create a more one on one private conversation between students about mental health in graduate school.” This initiative also hopes to serve as the first contact for first year students who may have questions about the school or its programs, courses, etc. Additionally, sREFS will be trained on mediation and conflict management skills that may prove valuable in their own labs or workplaces post-graduation.

The sREFS initiative is a pilot program, proposed by Alyssa in conjunction with Sharon Snaggs from the Wellness Center, and has gained the support of the Dean’s Office and the Graduate Student Council. The process to become a sREF involves an 8-hour training spread out over 8 weeks, and is modeled after MIT’s REFS program. While the MIT program offers a certification after 40 hours of training provided by professionals, the sREFS initiative has a smaller scope and is more flexible given the student body size and available resources at Sackler. Once trained, sREFS will be expected to hold office hours for one-on-one conversations, and sREFS are also mandatory reporters and are liable to report any cases of harassment or similar incidents to the administration. At the inaugural meeting on Thursday, Nov 29, Alyssa mentioned that the only exclusionary criterion for becoming a sREF is enrollment as a PhD student, since continuity and consistency are important for this initiative to succeed. The sREFS will be allowed to keep anonymized and confidential notes only after getting consent from those who are speaking with them. These notes may also help identify the common issues prevalent among Sackler graduate students and help sREFS recommend programs to administration to tackle such issues. In case of any conflict of interest, sREFS may recuse themselves from certain cases; Alyssa would like to see at least one graduate student from each program volunteer as sREFS to avoid such conflicts. Given that this role incurs emotional stress on the volunteers, sREFS can also take time off from the initiative.

Interested students are asked to email Alyssa at Alyssa.DiLeo@tufts.edu to receive an application packet. The application deadline is Jan 15, but is also flexible since the initiative would like to be as inclusionary as possible. The sREFS initiative is also looking for volunteers to fill in positions on the executive board to help with logistics and planning. Unsurprisingly, all the current volunteers are female, as emotional labor most often falls on women in this patriarchy, and it would be great to see the male graduate students do their part as well in this timely, community-based initiative.

Five Things to Consider Before Attending a Conference

  1. Make a good poster.

To bring a good poster to a conference, you need to have an actual poster to bring, which means carefully planning when you assemble and send your poster for printing. Leave at least a few days, or even better a week, between printing your poster and the date of your departure or attendance.

Check for any poster guidelines provided by the conference; you don’t want to end up with a poster that doesn’t fit on the presentation board.

Think about how you want your poster to look, in regards to content as well as physical appearance. Find an organizational flow for your information and data that will allow readers and listeners to easily track your project through its various stages. While paper posters are format most researchers use, fabric posters are easily packed into a suitcase, making them a good option for airline travel. 

  1. Choose sessions to attend wisely.

Big or small, conferences have a lot going on. Daily schedules are packed, and with larger conferences, there can be a half-dozen or more sessions happening simultaneously. It’s easy to get overwhelmed, so be thoughtful about the scientific fields or types of research you want to experience while there. Pick a few sessions that are of high interest to you that you absolutely will commit to going to, and be engaged in those sessions: sit in the front, take notes, write down questions and papers to look up later. Aside from those key sessions–and depending on the size of the conference and its offerings–be judicious in how you add to your list so you can get maximum output from all of the input available there.

  1. Plan out a networking strategy.

Conferences can be as much about networking as they are about sharing and learning new science. During poster sessions, socials, career events, dinners, and coffee hours, you might be introduced to dozens of new faces. Figure out ahead of time what you want to get out of the social aspects of the conference beforehand. Do you want to find another lab to collaborate with? Is there a lab you are interested in applying to after graduate school? Do you want to get to know trainees from other institutions? Are there contacts in science-related careers of interest to you that will also be at the conference? Once you have a goal in mind for how you want to network at the conference, scan through the program to pick out events that will help you meet those goals and commit to attending those sessions.

  1. Prepare business cards.

If you meet a potential collaborator or career connection, having a business card to give them could make or break a follow-up after the conference. After all, we’ve all written down someone’s email on a note in our phones and then promptly forgotten about it until we find it again three months later. With a physical card, your information is in a more accessible and memorable format that shows you are both professional and prepared.

  1. Rest, rest, rest.

It is tempting to get wrapped up in the busy nature of conferences, but breaks are key to making it through without feeling completely exhausted by the end. Each day, run out for a quick coffee, go back to your room and take a power nap, or take ten minutes to just listen to some music in a hallway or quiet corner. Even a small pause in the hustle can refresh your brain and make room for even more great science 🙂 

NIH’s efforts to fight sexual harassment fall short of expectations

On October 21, the National Science Foundation’s (NSF) new policy to fight sexual harassment in science went into effect. This policy requires institutions that receive NSF funding to report to the agency any findings related to sexual harassment, including coercion, assault and other forms of harassment (as defined here), by principal investigators (PIs) and co-PIs, within ten business days of the report. This policy also requires the institutions to report any administrative actions that have been taken against such PIs, including putting them on a leave during an investigation. This policy, originally drafted in February of this year, will apply to any new grants and any extensions to existing grants made on or after that date, and is considered as the “strictest action yet by a US research funding agency” to fight sexual harassment.

In comparison, the NIH’s new efforts to battle sexual harassment pales when held up to the NSF’s new policy. Several months after the NSF’s initial undertaking to design their policy, NIH Director Francis Collins unveiled the new anti-sexual harassment website containing a centralized reporting system for sexual harassment and violence, and updated policies that would apply to the institutions that receive NIH funding. These policies require the institutions to also develop and foster an environment that prevents gender violence, increase accessibility to reporting of incidents, respond to any reported incidents and notify the NIH in case of status change of the PI/co-PI on existing grants.

While these policies seem sound, a comparative analysis between NSF and NIH’s efforts reveal the lukewarm nature of such policies. The NSF requires that the agency be notified by funded institutions whenever a PI/co-PI has been placed on administrative leave, faces any administrative action related to the incident, or is under investigation for violating the award policies or the codes of conduct related to sexual harassment. In contrast, the NIH only requires that it be notified when there is a change of status for the PI/co-PI (a change of status is required when a PI/co-PI is no longer able to substantially contribute to the research efforts of the grant awarded). In addition to requiring that incidents be reported within ten business days, the NSF also has a review process for evaluating such incidents. The NIH has no such timeline, provides no guidance on investigating such incidents, and has no proper review process in place for determining the course of administrative action. It should be noted that both the NSF and NIH are dependent on the investigation performed by the alleged perpetrator’s host institution, which is a problem in itself given how universities seem reluctant to pursue sexual harassment cases.  

The starkest difference between the NSF and NIH policies seems to revolve around the question of what will happen to the funding situation for the alleged perpetrator if they are to be found in violation of the codes of conduct. Under the NSF policy, the PI/co-PI can be either removed from/substituted in the award, or have their funding amount reduced, or have their award suspended or terminated. However, in the FAQ section of the new NIH website, the question of removal of funding is described as a “complex issue” and refers to an existing policy requirement that is not specific to gender violence and sexual harassment issues. NIH Director Francis Collins pointed out that NIH grants are awarded to “institutions, not to individuals”; he also mentioned that due to the legal constraints the NIH faces since it is under the Department of Human and Health Services (HHS), immediate termination of the perpetrator’s funding cannot be applied as it can from the NSF, which is an independent agency.

Critics argued that Collins’ rationale appears contradictory and unclear. NIH policies allow grantees to transfer their funding when they change institutions, which is directly opposite to his statement that NIH grants are awarded to institutions and not individuals. Additionally, there are other mechanisms that the NIH can use to address time-sensitive issues, such as those of sexual harassment when they threaten the safety of scientists. The disappointment and frustration expressed towards NIH’s lukewarm efforts to fight sexual harassment is amplified by the fact that Collins had announced this topic to be on his agenda back in 2016. Critics pointed out that if the NIH had actually started working on this issue when they promised, they would have already made progress with the the complex rulemaking process. Collins has promised to work with the government and his counterpart in NSF, France Cordova, to work on these issues.

The issue of gender violence and gender bias in STEM fields have taken a center place with the burgeoning #MeTooSTEM social media movement. It was given a more concrete place in policymaking with the report from the National Academy of Sciences, published on June 12, that showed how pervasive these issues are, the failure of current Title IX policies, and the absence of any specific policies to address them. In this report, female STEM students in the University of Texas system reported higher levels of sexual harassment and related issues compared to non-STEM majors, with the highest level in Medicine; similar trends were found when female graduate students in the Pennsylvania state system in a separate survey. The report also showed how sexual harassment is also harming careers and driving women away from pursuing scientific careers altogether. All this data build on previous research which showed that prevalence of sexual harassment in academia stands at 58%; women of color, LGBTQIA and gender minority folks experienced a higher rate of harassment. The NIH’s new policy does not take into account the barriers victims face when reporting incidents of sexual harassment and violence due to established power dynamics and the pervasive patriarchy in society; nor does it take into account that it is more often than not that the victim suffers in their professional careers more than the perpetrator. The latter is exemplified in the case of the tobacco researcher at UCSF, who has been found guilty of sexually harassing a post-doc (although the perpetrator has denied responsibility), but is still employed and lauded by UCSF for winning a large NIH grant, whereas the post-doc had to leave the university and her work has not been published. This only adds to the argument as to why the NIH needs to take serious action against perpetrators and not reward them further with more funding. 

Scientists are not just waiting for NIH to catch up on the times to fight gender violence – Beth McLaughlin, the founder of #MeTooSTEM, and others have launched a petition to Francis Collins to stop funding perpetrators of sexual misconduct. Julie Libarkin has created a detailed spreadsheet of publicly available information on sexual misconduct in academia. Maryam Zaringhalam and Angela Saini are trying to bring Saini’s book Inferior, which details how gender bias in STEM fields have been constructed over decades, to public schools in the US to educate the youth, and especially encourage girls to pursue scientific careers. These trailblazers are, unsurprisingly, all women. It is also critical to note that neither these policies nor a critical examination of the pervasiveness of sexual harassment in academia would have come to light without these young women scientists blowing the whistle at great risk of their careers. Ultimately, the effects of gender violence and gender bias affects all sexes, and we should all be doing our part, especially the male scientists, to fight against it and not leave the burden on those who are affected by it the most.

Coffee & Conversation with Dr. Laverne Melón

Written by Alyssa DeLeoNEURCoffee & Conversation is a series of informal chats with women faculty on campus, hosted by Tufts GWiSE. 

Our last Coffee & Conversation of the year featured Dr. Laverne Melón, a post-doctoral fellow in the Maguire lab and a TEACRS scholar. She will joining Wesleyan University as a faculty professor in neuroscience in the Fall. Laverne was born in Trinidad and moved to New York when she was 10 years old. In high school, Laverne helped establish the science club, which she insists was the most poppin’ after school extracurricular at the time, and she knew she wanted to work in research before even knowing what that was. The science club gave her and her peers the chance to support each other in the search for research experiences and ultimately lead her to volunteer in a cancer genetics lab at Columbia University. As she reflects on her first experience in science, she also acknowledges that it was also her first exposure to the sexism and racism that exists in scientific institutions. It’s difficult to turn a blind eye to these situations when all you want to do is put your head down and do the work in front of you. But, she didn’t let this taint her passion for the field and her experiences spoke to her resilience, which would be noted by several scientists later in her career.

Laverne went on to earn a BA in neuroscience at Middlebury College, a MS in Behavioral Neuroscience at Binghamton, and a PhD in Addiction Neuroscience at IUPUI after her lab at Binghamton moved. She lost a Binghamton fellowship in the move and had to teach at IUPUI, which she found frustrating as anyone does when they’re forced to do something. However, Laverne began to enjoy the process and her career path in academia became increasing clear. Laverne has been a post-doc in Jamie Maguire’s lab for the last 4 ½ years studying effects of stress on reproductive health and the role of the GABAergic system in alcohol addiction. As she moved into her post-doctoral years, she was really fueled by a research question which she presented to Jamie along with some data to score her current position. Now, she’s fielding multiple offers for faculty positions and learning to navigate this new part of her career.

As always, we chatted about how early life experiences brought our guests to their current positions, how crucial the role of mentors played in this trajectory, and the vital importance of self-advocacy. But, we kept coming back to this idea of producing good, reproducible science and how that is only possible if the field really cared about the people behind the data. It’s no secret that scientific institutions have not been the best advocates for the health of their workforce. Levecque et al. published a study in May of 2017 reporting one in two PhD students experience psychological distress and 1/3 of graduate students are at risk for a psychiatric disorder. An online survey of graduate students in a recent March 2018 study by Evans et al. reports graduate students are more than six times as likely to experience depression and anxiety compared to the general population. SIX times! It’s exceeding clear that health of scientists across fields and levels are struggling in this environment. This begins by hiring scientists that are more than a good researcher, but are inspired teachers, passionate mentors, and expert managers who are in touch the health of their lab.

As Laverne is beginning the next chapter of her career, she’s considering taking on an administrative position as a director of inclusion and diversity in addition to her faculty appointment. She intends to use her status to implement institutional changes to allow for better science through caring, supporting, and mentoring the next generation of scientists. When Laverne started to work in science, she admitted she tried to assimilate as much as possible, but it gets exhausting. It’s difficult to integrate into establishments and systems that have been hostile to the existence of women and minorities in science while trying to stick it out until you can get to a position to make changes. She’s been able to tap into her mentoring network over the years for support and instructed us to be vulnerable in our insecurities to allow these organic mentorships to grow.

If you’re interested in getting involved with GWiSE, follow us on Twitter @TuftsGWiSE, like us on Facebook, or email us at tuftsbostongwise@tufts.edu. Our next Coffee & Conversation is October 19th, 2018 at 5PM in Jaharis 913.

Green Labs: How to be environmentally sustainable in biomedical research

The main responsibility of a biomedical researcher is to produce novel, trustworthy science that will improve human health. We may not be doing enough towards this goal, however, if we consider our research results to be our only impact on the human condition. How we conduct our research is just as critical as the results of our research, especially when it comes to the environmental footprint that research laboratories leave behind on university and medical campuses.

In 2013, Tufts University published a campus-wide report to assist the university in building a sustainable future. Working groups focused on three relevant sustainability areas—energy and water use, waste management, and greenhouse gas emissions—to develop actionable goals for reducing Tufts’ environmental impact. Regarding how laboratories and medical facilities factored into this impact, all working groups came to the same conclusion: “[these spaces were] singled out…as the greatest source of opportunity for increased sustainability across all Tufts campuses due to their large production of waste and heavy use of water and energy.”

Tufts is not the only university facing these issues. Harvard University labs consist of  20% of physical campus space but account for 44% of their energy use, and MIT labs take up less than a quarter of campus space but account for up to two-thirds of their energy use. So, if scientists like to talk the talk when it comes to best practices in advocating for governmental and community support of sustainable practices, how can we commit to similar support within our own institutions?

Many universities, including Tufts, have implemented Green Labs initiatives in order to develop environmentally friendly research laboratories using a classic sustainability framework: reduce, reuse, recycle. Based on resources from Tufts’ Green Labs Initiative and similar programs at other institutions, here are some starting points for making laboratories and research facilities more sustainable.


REDUCE

Energy: Labs can significantly reduce energy usage by maximizing the efficiency of their ultra-low temperature (ULT, or -80°C) freezers, as in one year, a single ULT freezer uses the same amount of energy as an average American household. Frequent de-icing, regular upkeep, and maintained organization all decrease the amount of work and time (and thus energy) required by freezers to decrease temperature to the set point. To encourage these approaches, Tufts joined the International Freezer Challenge in 2017, which rewards best practices in cold storage management”. Of note, three Sackler labs–the Munger lab, the McGuire lab, and the Bierderer lab–participated. Additionally, a less universally advertised, but possibly more effective, approach to reducing energy usage by ULT freezers is changing their set temperature. The University of Colorado at Boulder has accumulated a significant amount of information demonstrating that maintaining ULT freezers at -80°C may not be necessary, as many sample types are capable of being stored at -70°C without any significant loss of quality. Though seemingly trivial, this ten degree difference has huge implications for lowering energy usage , which also translates to reduced energy costs (Figure 1). By rough estimation, Tufts could save close to $50,000 per year on electricity if all ULT freezers in Jaharis, M&V, Stearns, South Cove, and Arnold were adjusted from -80°C to -70°C.

†Number of ULT freezers was calculated by presuming 5 freezers per floor in Jaharis 6-9 and 10 freezers per floor in Jaharis 3-5. This estimate was extended to the remaining buildings on the Sackler campus.

Figure 1. Yearly energy expenditure & cost savings for ten-degree increase in ULT freezer temperature.

Closing and/or turning off chemical fume hoods when not in use also mitigates electrical expenditure. At the Medford campus, undergraduate student Emma Cusack led a “Shut the Sash” initiative last year in order to reduce energy use and cost. Based on consultations with the Tufts’ Office of Sustainability about her work, it is estimated that lowering sashes of all 123 chemical hoods on the Sackler campus from 18” to 6” when not in use would result in yearly energy expediture savings of around 40,000 kWh and energy cost savings of over $200,000.


Figure 2. Yearly energy expenditure & cost savings for reducing sash height of chemical hoods. 

Lastly, powering down non-essential lab equipment overnight and incorporating timers into power sources are also simple but meaningful methods of lowering energy usage. The latter method is especially helpful to maintain convenience along with energy efficiency, as incubators and dry ovens are shut off overnight but can still be ready-to-use upon arriving in lab, for example, if set to turn on in very early AM.

Water: A traditional autoclave requires 45-50 gallons of water per minute when in use, and this massive usage is due to the need for continuous addition of water for cooling steam condensate before draining into sewers. Equipment like Water-Mizers use real-time monitoring of drain temperature to add water for cooling only when needed, reducing water usage by at least half. Also, being mindful of when sterilization is actually required for equipment and using dishwashing services as an alternative also contributes to lowering water usage.

Within labs, addition of low-flow aerators to faucets and switching vacuum sources for aspirators from faucet-style to vacuum-style can also can significantly reduce water usage. Finally, being conscious of when it is really necessary to use distilled or deionized water, as the process wastes water that does not pass the filtering thresholds, can also contribute to making water usage by labs more efficient.


REUSE

Materials: Styrofoam shipping containers and freezers packs can accumulate quickly in labs, given the frequency at which supplies are ordered and received. However, they are not necessarily easy to get rid of in sustainable ways. Many labs end up reusing some fraction of the styrofoam boxes and freezer packs they receive for experiments, which seems to be the most common and easily practiced alternative to throwing these shipping components away.


RECYCLE

Materials: Another approach for sustainable disposal of styrofoam and freezer packs is recycling them. A handful of life sciences companies do sponsor recycling programs for styrofoam containers, including Sigma-Aldrich, Qiagen, and New England BioLabs (which has run such a program for over thirty years), but most companies do not, given the cost of such programs. Alternatively, for-hire companies specializing in styrofoam recycling can be contracted by universities, but again the associated cost can be a deterrent. Even rarer are return programs for freezer packs, as the combination of contamination concerns and the cost of re-sterilizing seems to discourage their implementation.

The amount of plastic materials that biomedical research labs use are also quite high, though recycling used materials such as pipette tips, serological pipettes, conical tubes, or microcentrifuge tubes is often not convenient or feasible due to biological contamination. However, containers for materials (i.e. cell culture media bottles, pipette tip boxes) can be sterilized and disposed of much more easily. In the case of pipette tip boxes, several companies–such as Fisher Scientific, USA Scientific, Corning, and VWR–do sponsor programs where discarded boxes are collected or received via mail for recycling.


While achieving greener laboratories first requires implementation of sustainable practices like those listed above, the success of such efforts ultimately depends on institutional support and researcher engagement. Even if such resources and programs are offered by companies or research institutions, scientists need to be made clearly aware of their existence to take advantage of them. Accordingly, university- or departmental-level promotion of and encouragement for sustainable practices could substantially increase researcher interest and participation. Implementing reward-based systems, including financial incentives, for labs that ‘go green’ could also help motivate investigators to commit to practicing sustainable science.

In being more conscious of the environmental footprint that biomedical research leaves behind, scientists can clean up our own backyard and stand on firmer ground when encouraging others to do the same.


Thank you to Tina Woolston and Shoshana Blank from the Tufts Office of Sustainability and to Stephen Larson and Josh Foster from Tufts Environmental Health & Safety for providing information and resources on chemical hood numbers, energy usage, and costs.


Resources

Tufts University: http://sustainability.tufts.edu/get-involved/tufts-green-labs-initiative/

http://sites.tufts.edu/tuftsgetsgreen/2017/07/28/the-green-labs-initiative-an-overview/

University of Colorado: https://www.colorado.edu/ecenter/greenlabs

EPA Greenhouse Gas Equivalencies Calculator: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Laboratory Fume Hood Calculator: http://fumehoodcalculator.lbl.gov/index.php

 

 

Career development initiatives, curriculum design, & building networks discussed at Sackler Community Meeting

This past June, around seventy-five graduate students and faculty members joined Dean Dan Jay and Associate Dean Dan Volchok in the DeBlois Auditorium to reflect on the previous year’s progress and endeavors at the Sacker School. Various community leaders briefly presented on topics that reflect the Deans’ new mission of training to career excellence followed by open discussion between all attendees. Following the larger meeting, attendees continued to engage in these topics in smaller groups over lunch to continue pushing these goals forward in the coming year.

Jay opened the meeting by reviewing the results of career development “trial balloons” that the new administration worked towards last year. He celebrated the high interest and positive reactions from trainees for the new short courses, including Introduction to Drug Development (50 attendees), Navigating the Corporate Environment (22 attendees), and the R Programming Workshop (34 attendees). Building on this positive momentum, additional short courses will be offered in the coming year. A ‘science storytelling’ workshop and an entrepreneurship short course have been developed for the fall semester, with a teaching short course planned for the spring. There are also plans to develop the Introduction to Drug Development course into an official Sackler-wide elective for the spring semester. In addition, two career counseling workshops by Sarah Cardozo Duncan will again be offered in the 2018-2019 for students and post-docs who are interested in industry-related careers.

Not all career development endeavours in Sackler last year had such immediate success, however. The initiative to place students who have completed Year 1, Year 2, or their thesis requirements in summer industry internships encountered several difficulties, including reluctance from potential partner companies. That reluctance mainly stemmed from aversion to such a short internship time period (3 months), as several companies in conversation with Sackler administration requested at least a 6-month full-time commitment from students. Meeting attendees generally agreed that this length of time would be difficult for both PIs and students to commit to without serious disruption to research progress. However, there was at least one successful internship negotiation and placement, suggesting that the program may still be developed but not in as broad a manner as originally intended. A case-by-case determination was concluded to be the best approach moving forward, with the requirement for extensive conversations and mutual agreement between student, PI, and hosting company on timeline and degree of commitment being emphasized.

In reiterating his desire to see Sackler become a leader in career training for biomedical graduate students, Jay described his aspiration to develop a tuition-bearing, two-year master’s program in Biomedical Leadership. Matriculating students would have the opportunity to train for various career tracks related to biomedical research, and their curriculum would include current and future career development short courses or electives offered within Sackler. During the group-wide discussion session, the possibility of offering a 4+1-style master’s program in collaboration with the undergraduate branch of Tufts University was put forward and positively received.

Another main topic of the community meeting was the state of graduate research training at Sackler. Opening discussions involved debating the merits of switching from the current program-specific curriculum design to a single core curriculum that all first-year graduate trainees–regardless of program–would take. Across programs, students generally were opposed to a core curriculum in regards to scientific content, emphasizing that most seek a graduate education specifically to specialize in a particular area. They did support the suggestion that any core courses in scientific content should be ‘nanocourses’, instead of full required or elective courses. In contrast, developing a skills-focused core curriculum that included classes such as research methods, quantitative biology & bioinformatics, and statistics seemed to have wide support from both students and faculty.  In addition to curriculum content, the possibility of expanding the MERGE (Medically-Oriented Research in Graduate Education) beyond the Immunology and Molecular Microbiology programs was discussed. The MERGE program trains participants in clinical aspects of their research area during the summer prior to their first graduate year at Sackler. During this time, they are also paired with a clinical mentor who provides them direct contact with patients and clinicians and serves as a thesis committee member during their research training. Given the proximity of Tufts Medical Center, it was advocated for the Sackler School to take advantage of the opportunity to give more PhD students training in regards to the clinical impact of their research. Genetics and Neuroscience were considered as programs which MERGE could expand to, but no specific plans for that expansion were discussed.

Strengthening the Sackler community was also a significant theme of the meeting. During a discussion about building diversity and inclusion at Sackler, students expressed the need for more structured support from the school. They expressed that while student-led initiatives such as SPINES (Students Promoting Inclusive Excellence at Sackler) provide excellent resources and opportunities for underrepresented minority (URM) students, the responsibility of delivering such support should not fall so heavily on the trainees themselves. Through this discussion, it was emphasized that bringing more URM junior faculty–from Tufts or other institutions–to speak at graduate seminars could help build networks for students to rely on. In addition, hosting a greater number of Sackler-wide events during the year, especially during recruitment, could foster a greater sense of community and provide more school-directed opportunities for URM individuals to connect across programs. Another discussion about community building focused on developing stronger alumni networks. The career development short courses were one way in which the Dean’s Office started on this initiative already. Various alumni contributed their expertise and their time to the courses’ development and operation, which was key to their success; this arrangement also provided a structured environment in which students could take the opportunity to develop professional connections with alumni in their career areas of interest. Given the positive outcomes from this year using this approach, there are plans to build on this foundation for similar endeavours in the future. Dean Jay also discussed his efforts over the last year in reaching out to Sackler alumni for fundraising, which he had done in collaboration with Roxanne Beal from the School of Medicine’s Office of Advancement and Alumni Relations. To broaden this effort, faculty were encouraged to reach out to their former trainees, and the group supported the idea of current students reaching out to alumni for an annual fund.

Overall, the morning and lunchtime discussions provided great insight into the past year’s success as well as highlighted what aspects of graduate training at Sackler still need to be strengthened, and the dialogue between students, faculty, and staff generated actionable items for the administration to take on in the coming academic year.

Relays Re-Play

On June 8th, Graduate students, postdocs, and faculty from all programs and departments flooded from the lab to the Medford campus for the 23rd Annual Sackler Relays, our yearly day of fun-in-the-sun and fundraising for the Student Activity Fund.

With cooler weather than last year, speed-inclined scientists competed in a 100 m dash, a 1 mile race, and the annual event’s namesake, the 4 x 200 relay. A few especially spirited labrats were spotted warming up prior to these events, but competition between the programs remained good-spirited and  friendly throughout the day. Contenders and attendees alike relaxed and enjoyed a buffet of delicious food and drink between the footraces and the team events.

Dodgeball made a triumphant return with new dodgeballs this year, which were a sturdy candlepin size rather than full kickball-size. Simultaneous brackets for dodgeball, volleyball, and tug-of-war ensured maximum participation from each team. In a great show of teamwork, the MD/PhDs stole back tug-of-war victory from CMDB, last year’s tug-of-war champions. The day’s events ended with an obstacle course consisting of a potato sack race, three-legged race, dizzy bat, and an egg-and-spoon race.

With race times recorded and sporting points tallied, Microbiology emerged at the front of the pack. Congratulations, Micro!

Last of all came the presentation of the raffle prizes, including gift cards to Boston Burger Company, tickets to the Somerville Theatre, and from the Celtics, two drinking glasses and a piece of the parquet floor! A full list of raffle prize donors can be found below.

As always, Sackler Relays would not be possible without help from the Dean’s office and the numerous faculty and alumni donors. Thank you to Claudette Gardel and Yusuf Mal for team and event photos, and a big thank you to everyone who participated. Let’s make it even better next year!

Thank you to our local and corporate donors:

Boston Burger Company

Fajitas and ‘Ritas

Slumbrew

Roche Bros.

Sweetgreen

Subway

Boston Celtics

Museum of Science

Somerville Theatre

Rock Bottom Restaurant & Brewery

Institute of Contemporary Art

Tufts University Bookstore

Marathon Sports

Boston Kitchen Pizza

Corner Pub

Al’s South Street Café

Aeronaut Brewing Company

Flour Bakers and Café

Brew Café Boston

MJ O’Connor’s

Bao Bao Bakery

Double Chin

Chicken & Rice Guys

Dunkin’ Donuts

Novelty is in the eye of the beholder: The process of writing an F award application

The image used here is released under Creative Commons CC0.

Writing an F award application is kind of like a jigsaw puzzle. There are lots of pieces, they all need to fit together just so, and it feels like it will never be complete. But writing – whether it be manuscripts, reports, or grant proposals – is a huge part of any scientist’s career, and it shouldn’t be an unpleasant process. F awards, which provide a stipend, health fees, tuition, and travel, are a great first step into the world of scientific writing.

There are a few oft-repeated adages that are thrown around when it comes to grant proposals, such as “Make your aims related, but independent” and “You need to study a little bit of a mechanism.”  While these are helpful in their own way, here are some other tips to make applying for your first F award a bit smoother:

  1. Take advantage of info sessions

Sackler offers two information sessions every year for potential F30 (M.D./Ph.D.) and F31 (Ph.D.) applicants. If you have questions about when to apply, writing, or anything else, this is the place to ask them. An additional day-long workshop is being held for the first time this year, hosted by Dean Dan Jay.

The Application – June 5th, 2 – 3:30 PM

Demystifying the Review Process – June 7th, 2 – 3:30 PM

*Writing Your Specific Aims – June 15th

*Attendance at the first two session is required for this workshop. Attendance will be limited to 20 participants.

  1. Make a list

There are several pieces to this application – so many that it’s possible for some of them to fall through the cracks. A checklist is a simple way to ensure you won’t need to rush to complete a document (or worse, start writing it!) minutes before the deadline. The following list is accurate as of Spring 2018:

  • Abstract/Project SummaryApplicant’s Background and Goals for Fellowship Training
  • Bibliography and References Cited
  • BioSketch
  • Cover Letter
  • Equipment
  • Facilities and Other Resources
  • Institutional Commitment
  • Letters of Support
  • Project Narrative
  • Research Strategy
  • Resource Sharing Plan
  • Respective Contributions
  • Responsible Conduct of Research
  • Selection of Sponsor and Institution
  • Specific Aims
  • Sponsor Information
  • Sponsor’s BioSketch
  • Vertebrate Animals

If you’re resubmitting your application, you’ll also need to include an “Introduction,” a one-page document where you respond to the criticisms of each reviewer.

  1. Gather preliminary data

To the bench! With data in hand, you can work with your advisor to determine what kind of story you want to tell. Your goal here will be to gather data that will demonstrate the feasibility of your proposal. Starting early is key, as this process can take several months. The more data you have, the better. It shows the reviewers that you can work hard and be productive.

  1. A picture is worth a thousand words

Begin crafting your figures before writing. Figures are a visual representation of your story; having it effectively “storyboarded” out makes it easy to see where there are holes in your data. Patching these now makes for a much stronger initial application.

  1. Make your Aims into an outline

Your Specific Aims page functions as an overall summary of your proposal. While your reviewers must read the whole proposal, you should assume that most other panel members will only scan this section. All of the critical aspects of your proposal should be clearly stated here, including the impact and novelty of your research.

  1. Stagger writing with editing

Once you write your initial aims, send it to your advisor for comments and get started on the next piece of your application. As your advisor returns documents with comments, you can edit and send them back. A continuous cycle of writing, editing, and rewriting keeps the process moving and keeps you from working on the same document for too long. You’re more likely to catch typos and other errors by looking every so often with fresh eyes.

  1. Play the matching game

Consistency is huge in any F award application. You will reference your aims multiple times in the Research Strategy section. As you craft your proposal, make sure that the methods listed under each aim match in the Research Strategy and Specific Aims sections.

  1. Ctrl-F for key words

There are certain core concepts that, when missing, are easy for reviewers to point out as a flaw. Your application should not only comment on the novelty and innovation of your proposed research, but also include key phrases such as “sex as a biological variable.” Reviewers may simply search for these terms to see if you address them, so you should do it, too. Talk to your advisor for some examples. As someone who writes and reviews grants, they will know exactly what they would look for in a proposal.

  1. Skip the jargon

Not every reviewer you have will be an expert in your field. In fact, it’s likely that none of them will be familiar with your precise topic of interest. If a simple word will do the job, use the simple word. The less reviewers have to think about what you’re trying to say, the better they will feel about your proposal.

 

Easier said than done, right? Don’t be discouraged if your proposal isn’t funded in its initial submission. Only about 13% of applications are at Sackler. However, making the strongest proposal you can initially will make it easier to edit for resubmission, and much more likely to be funded the second time around. Over the last five years, Sackler applicants have had a 30% success rate (this number includes both proposals funded initially and those funded after resubmission). For a breakdown of success rates by NIH institute, check out the following link: https://report.nih.gov/success_rates/. The F30/F31 spreadsheet is #3 under “Training and Research Career Development Programs.”

Finally, take a break once you’ve submitted the proposal! Rest and recharge before returning to the bench so you can get ahead on your next project.

 

Sources and Related Reading:

  1. NIH. Write Your Application. Last updated: 2016 Jan 28 [cited 2018 May 17]. Available from: https://grants.nih.gov/grants/how-to-apply-application-guide/format-and-write/write-your-application.htm
  1. Chasan-Taber L. 10 Tips for Successful Grant Writing. The Chronicle of Higher Education. 2018 Feb [cited 2018 May 17]. Available from: https://www.chronicle.com/article/10-Tips-for-Successful-Grant/242535
  1. McCollum, L. To Resubmit or Not To Resubmit? GradHacker. 2015 Feb [cited 2018 May 17]. Available from: https://www.insidehighered.com/blogs/gradhacker/resubmit-or-not-resubmit
  1. Hollenbach, AD. A Practical Guide to Writing a Ruth L. Kirschstein NRSA Grant. 1st ed. Oxford: Academic Press; 2014.

• This resource is available from Hirsh Health Sciences Library.

Disclaimer | Non-Discrimination | Privacy | Terms for Creating and Maintaining Sites