Tag Archives: Humans of Tufts Boston

Humans of Tufts Boston: Najah Walton, “The power of the mind is not a joke!”

Humans of Tufts Boston, 15 Oct 2020

Najah Walton, Neuroscience, Second-year Ph.D. Student: “The power of the mind is not a joke!”

JH: How did you get started in science and what were you doing before graduate school?

NW: I’ve always had a fascination with science as an extension of trying to learn more about the world around us. In elementary school I spent a lot of time with my grandma who lives in a rural part of Massachusetts and she always encouraged my siblings and me to get outside and appreciate nature. At the time I was a mini-lepidopterist, but when her sister was diagnosed with ALS my interest in the biomedical field became more of my focus.

As a first-generation student I had no idea what “wet lab” was or the prospect of getting a PhD. Luckily, I was fortunate enough to have friends working in research labs that introduced me to bench research as well as science mentors that inspired me to pursue science on a deeper level. One of my friends that was already doing research encouraged me to apply to the U54 Program which was a collaborative summer research training program between UMass Boston, Dana Farber Cancer Institute and the Harvard Cancer Center.  I got to work on a public health outreach project aimed at increasing healthy lifestyle choices in faith-based organizations in the Boston area, as well as increasing the inclusivity of underrepresented individuals in biobanking. By the end of the summer I was captivated by research and wanted to continue pursuing research in conjunction with the clinical work that I was doing as a nursing student. To my benefit, one of the PIs that was on the grant for the summer program, Dr. Tiffany Donaldson, offered me a position working in her Neuroscience lab at UMass, where I started off studying a potential therapy for a birthing complication known as hypoxic ischemic brain injury.

When I graduated from UMass I received my license to practice as an RN but I chose to pursue a neuroscience graduate degree to continue the exciting work that I was doing as a research technician in the Maguire lab at Tufts. Dr. Maguire’s lab is now the lab where I will be working on my thesis and I’m looking forward to using my training to one day treat patients with neuropsychiatric disorders.

Summer students in the Maguire lab

JH: What drew you to neuroscience?

NW: “The power of the mind is not a joke!” (Quote from world-renowned philosopher Drake Aubrey Graham.) The brain literally controls every aspect of our beings: how we think, how we move, how we breathe, how we laugh, how we love, how we manage illnesses, and how we help those around us.  Seeing how devastating both neurodegenerative and neuropsychiatric diseases can be for individuals drew me to want to know more about the brain and how scientists may be able to combat these diseases with their discoveries.

JH: Have you been following any fascinating new scientific developments (in or out of your field)?

NW: In quarantine it’s been hard not to follow the news about the coronavirus vaccine (s/o Dr. Kizzmekia Corbet!). Dr. Corbet has been leading the NIH’s Vaccine Research Center in its push to develop a vaccine for coronavirus. Once the sequence for the virus was published, she and her team moved from vaccine development to a Phase 1 clinical trial…in just 66 days! To say it in plain terms she is a FORCE of nature and a true inspiration for all pursuing science careers.

Tufts Black Student Alliance

JH: What do you like to do outside of lab? (This is a great place to plug BSA and I would love love love to link to a website or social media account if you have one!)

NW: Outside of lab I am currently co-president for Tufts Black Student Alliance (follow us on Instagram @tufts_BSA)! The Black Student Alliance was founded serendipitously as myself, Udoka, and several of our board members met by passing each other in the hallways or eating lunch in similar locations in the Biomedical Sciences Building. Udoka and I went to undergrad together and benefitted greatly from the community that was offered at UMass Boston and hoped that the same community could be formed at Tufts to ensure graduate school was just as fruitful. Since Black biomedical graduate students account for less than 10% of the STEM graduate student body it made more sense to create a community that spanned all of the health sciences campus to ensure that all Black students from each of the graduate programs were represented and could have a place of refuge/support during their time at Tufts.

I also host science workshops for youth in the Greater Boston area through Bethel Institute for Social Justice.

JH: Are you taking up any new hobbies during COVID times?

NW: Not necessarily a new hobby but my dogs definitely received a lot more attention in quarantine. We’ve had more time for long walks and they love getting off leash and going for hikes.

Connect with Najah on LinkedIn:
https://www.linkedin.com/in/najah-walton/

Humans of Tufts Boston: John Ribis, “Think about how far you’ve come and how much you’ve learned”

Humans of Tufts Boston, 12 Jul 2020

John Ribis, Microbiology, Rising fourth-year Ph.D. Student: “Think about how far you’ve come and how much you’ve learned”

JH: How did you get started in science and what were you doing before graduate school?

JR: I had a circuitous path to grad school, and I came from some very humble beginnings. Both of my siblings are quite a bit older than I am (9 and 11 years), and I remember my sister talking about her high school chemistry class when I was 6 years old. It sounded pretty cool to me, even then. I’ve definitely had interest in science since I was a young child.

Unfortunately, for a variety of reasons, I faced a few challenges throughout my primary education and once I finished high school, I had no real plans to start college. No one else in my immediate family had gone beyond high school, so there wasn’t much pressure or expectation to continue on. After graduating, I got a job working at a local hospital where I worked first bringing food to inpatients and then I worked as an orderly for around 6 years. Being an orderly mostly entailed transporting patients, but we did a number of other things as well; EKGs, responding to violent situations, and providing support during medical emergencies. Twice a day, we would round through the ICU and to assist with various things (helping patients get out of bed, repositioning sedated patients, and sometimes doing chest compressions during codes). I enjoyed asking questions to the nurses and physicians and I got to have a lot of interesting and unforgettable experiences during my time there.

After working at the hospital for a few years, I got motivated to continue my education and started working towards my bachelor’s degree at the suggestion of my girlfriend and some co-workers. I started off by filling in a couple of prerequisites at a local community college over the course of a semester, but I eventually enrolled in classes at the University of Vermont. I did this through a special program that would guarantee admission as an undergraduate as long as you maintained a certain GPA. My high school transcript was dismal to say the least, so I felt very fortunate to have an opportunity like this. I was initially a biology major, but I changed that to microbiology after a year. I toyed with the idea of pursuing a career in medicine, but I was also open to the prospect of a basic science career. I first stepped foot into a research lab in the second semester of my junior year (late I know) and I wasn’t sure what to expect from working in the lab, but I immediately loved it. I was (and still am) very fortunate to have an awesome mentor! I had a ton of fun working in lab learning how to do research, and I spent a ton of time there. I also made friends with a bunch of the grad students and felt like I fit in well with them, so I started seriously considering grad school. I started at Tufts shortly after I graduated.

JH: Looking back, what would you tell someone on a similar path as you about making the decision to go to college and choosing science?

JR: I’d remind them that it’s normal to feel intimidated when making the transition back to school, especially if you had a difficult time previously. It’s also easy to get discouraged at times, feel like you’ve made the wrong decision, and think you’ve wasted a huge amount of money. Make sure to check in with yourself, take a step back and think about how far you’ve come and how much you’ve learned. I’d also suggest starting in a lab as early as possible, and if you have a bad time in the first lab, move on and don’t let that shape your view of science. I’ve seen so many people have a bad experience in their first lab, and they decide to never work in a lab again.

JH: What drew you to microbiology?

JR: This goes back to my time in the hospital, where I was able to see firsthand how incredibly destructive some pathogens were. The thought that something so tiny could wreak such havoc on the body amazed me. It was also crazy to me how prevalent antimicrobial resistant organisms were like MRSA and VRE (vancomycin-resistant enterococcus). I also got to see a ton of people infected with C. difficile, which is the bug I work on now. In addition to pathogens, I thought the fact that we have co-evolved with a huge number of commensal bacteria, which we rely on for what seems like everything, was fascinating as well. It’s pretty wild that the gut microbiota has an impact on pretty much everything, including our brain since some bugs actually produce neurotransmitters that probably impact our mood and behavior. They also protect us from other bacteria that can cause really severe disease. For example, the bacterium I study only makes people sick when gut commensals get wiped out.

JH: Have you been following any fascinating new scientific developments?

JR: Well, if you ask anyone that knows me, they will tell you that I have a slight, maybe unhealthy, obsession with microscopy. It’s the main thing that I’ve missed about being away from the lab. Fun fact: I’m color blind, so my love for microscopy often causes a lot of confusion amongst my peers! I then tell them that GFP doesn’t have to be green and mCherry doesn’t have to be red.

Microscopy pretty much dominates my twitter feed. It’s a hugely innovative field and it’s hard to pick a single fascinating development. I am a bit of a sucker for any super-resolution technique, so the fact that we can now use light microscopy to see single fluorophores and separate them within a couple nanometers of each other in living cells just blows my mind.

On the image analysis side, things seem to be developing even faster. Machine learning/deep learning is making image processing and analysis insanely fast, more accurate, and super high-throughput. There’s a huge open source community that is constantly developing new tools.

If you want to learn the basics, I’d definitely recommend the iBiology microscopy videos on YouTube, the Microcourses YouTube channel, the Nikon Microscopy U website, and the book Fundamentals of Light Microscopy and Electronic Imaging is fantastic. If you’re in a lab that will pay for you to go to a short course, do it. It’s exhausting, but you truly get immersed in everything related to microscopy.

Also, follow microscopy people on twitter.

JH: What do you like to do outside of lab?

JR: Outside the lab I enjoy running, staring at things in museums, spending time with my dog Lucy and my girlfriend, enjoying craft beer, and more recently brewing beer completely from scratch; grain to glass. I also like travelling to cool places when possible and was lucky to do a pre-pandemic trip to Spain and Portugal. I’m also a big fan of horror movies. I definitely recommend The Witch, Hereditary, and Midsommar. They are all fantastic. Like Ramesh, who was previously featured, I keep a planted aquarium as well.

JH: What does that grain to glass process look like?

JR: You steep malted barley (and other grains sometimes) in heated water. You have to control the temperature and pH to activate enzymes in the malted barley to convert starch into simpler sugars for the yeast to eat. Once that’s, done, you boil the wort (unfermented beer), add hops, cool it down, and then add yeast. While its fermenting might have to dry hop, add fruit, coffee or other things. After its fermented you bottle it or keg it to carbonate. Bottles take longer because you have to get a little fermentation started again to generate the CO2 to carbonate the beer. It all can take anywhere from a couple weeks to months (sometimes years) to finish a beer depending on the style!

Homemade New England IPA!

Humans of Tufts Boston: Ramesh Govindan, “Our ingenuity will pull us through”

Humans of Tufts Boston, 7 May 2020

Ramesh Govindan, CMDB, Fourth-year Ph.D. Student (Sixth-year M.D./Ph.D.): “Our ingenuity will pull us through

JH: How did you get started in science and what were you doing before medical/graduate school?

RG: I always had an interest in science, although I had a brief stint in college where I wanted to be a history major (my parents were terrified). I went to college thinking that I wanted to become a biomedical engineer, because my big interests at that time were in tissue engineering. Growing synthetic organs for transplantation seemed like the coolest thing on Earth (and it might be), and I wanted to be the guy to make it a reality. As I learned more biology and physiology as part of my major coursework, as well as a lot of the humanities courses I was required to take, I also became a lot more interested in the human elements of disease and medicine. So, on top of working in a biomedical engineering lab, I started volunteering at a local hospital in a Medical Specialties ward, through a program where we would visit patients who had been, or were anticipated to be, on the ward for a long time (weeks, months). I’d spend a few days a week there for a couple of hours at a time going on walks, playing board games, and chatting with the patients. I got to know a few people pretty well, including a particularly memorable guy who had poorly-controlled schizophrenia and type I diabetes, the combination of which prevented him from being discharged on his own. By the time I hit senior year, I was pretty confused as to what I wanted to do – science or medicine. I ended up taking a gap year at the NIH in a basic science cancer research lab, where we studied the mitotic kinetochore, a protein-chromatin-microtubule complex that forms during metaphase to regulate chromosome segregation. I had two projects there, first looking for substrates of Aurora B kinase, which orchestrates numerous processes in the kinetochore. The second was to study the role of a specific histone methylation (H3.3S31me) in mitosis. Our model system was Xenopus laevis frog eggs, which are highly mitotic and are great for immunoprecipitation. I applied to MD/PhD programs during that time.

The MD/PhD team at the 2018 Relays

JH: Why did you choose to do an MD/PhD?

RG: People ask this of MD/PhD students a lot, and I’m not sure if it’s out of a concern that we’re all secretly insane, or whether they actually think there’s some hidden driving motivation behind each person’s choice. I’ve come to realize over the years that I really don’t have a single reason why I chose this. There are a lot of small reasons, though. The first, probably, is that I was really torn between two professions. I enjoy science and the lab, but I also like helping people directly, with my own hands. To find out at the age of 20 that there was a career path that would allow me to do both of those things, even if it was only in theory, was something I had to jump at. The second reason I chose this is maybe more nebulous – I didn’t really see the downside. It was a challenge that only a relative few chose, and it opened up potential without closing any doors. In my mind, the regret of not having tried to do both would far outweigh the regret of having tried and failed. So I applied, then I got in, and, six years later, I’m still doing it. And yes, I still have two more years of medical school, five-ish years of residency, and then one or two more years of a fellowship, but I take it one step at a time and so far I’m really enjoying it!

The third reason was that medical school is free.

Waiting in line at the 2018 Extreme Beer Festival

JH: What drew you to microbiology for your thesis research?

RG: My interest in microbiology was not a deciding factor in any choice I’ve ever made. I’m not sure I even knew what a virus was before John Coffin and Katya Heldwein told me about them during lectures in my first year of medical school. And even then, I only wrote down enough information to pass whatever exam I had coming up. I didn’t realize that viruses would become such a big part of my life until I decided to join James Munro’s lab, and I only really joined because I liked his mentoring style and pew-pew lasers. But in the last four years, I’ve come to realize that viruses are maybe some of the coolest biological phenomena on the planet. They’re the only known replicating pathogen that is, by most definitions of “life”, dead. They’re nature’s freak killer robots. From a structural biology perspective, they are macromolecular machines perfected by evolution with only the goal of efficiency. They’re insanely amazing as research and therapeutic tools, and equally terrifying as agents of human disease. So I’m pleasantly surprised to have found virology as a PhD student, and I’m hoping to maintain a level of engagement with it as I move on my career.

Setting up a new hot pepper garden at Ramesh’s parents’ house in central MA

JH: Obviously COVID-19 has been getting a lot of press lately. As a future doctor, what do you think? Are there any questions that aren’t being asked that should be?

RG: These are truly terrifying times. The looming specter of COVID-19 has, I think, become a defining challenge for society. As a virologist-in-training, I hope that this pandemic helps us re-evaluate the ways in which we interact with the ecosystem and each other, and, as a doctor-in-training, I hope that we find new ways to organize ourselves to respond to emerging viral pandemics. The gut-wrenching part of this is that this entire pandemic, on nearly every level, is a product of human activity. From the encroachment of humans on untouched wilderness, to our inability to deal with global poverty, to our complacency in letting free market forces dictate the makeup of our healthcare systems, simultaneously all of us and none of us are to blame for this. For instance, while the lack of infectious disease (ID) doctors in this country isn’t specifically anybody’s fault, experts have been pointing out this shortage for decades. A root of the problem is that training in ID is financially devastating – you pay ~60k a year through medical school, then slog through a low-paying internal medicine residency, and then train for 2-3 years as a fellow in ID. As an ID doc, you make less than you would have if you had just stayed in internal medicine – you take a pay cut to get more training. Your salary as a doctor is tied to how much you can bill insurance, and if you don’t do any surgeries or procedures (like an ID doc), you bill less, and you make less. It’s ridiculous. We were able to fight HIV in the ’80s and ’90s because at that time, there were many more ID doctors in the country. Today, we’re out-gunned. 

So, this has been a classic conversation with Ramesh where it gets really dark once he gets going. But it’s not all bad. I am, surprisingly, still an optimist, and I really do believe that our ingenuity will pull us through. Vaccine trials are already underway, and drugs like remdesivir are showing some promise. But we need to keep up our momentum once this pandemic is over, and rethink our preparedness for viral pandemics, because SARS-CoV-2 is just one of many pathogens to come.

Ramesh’s fish tank with Saruman, the betta fish

JH: What do you like to do outside of lab?

RG: Foremost, seeing my friends is my favorite thing to do. The friends I’ve made at Tufts have helped me in more ways than I can describe. Even if I somehow failed out of two doctorate programs, I know I’ll walk away with some of the best friendships I’ve ever had. If you’re asking after hobbies, then I think an easier question would be, ‘What doesn’t Ramesh like to do outside of lab?’ I think most people who know me know of my strange obsession with The Lord of the Rings, the greatest story ever told. More recently, I finished another fantasy series, the Wheel of Time, via audiobook on my drives out to UMass and my lonely nights in lab. I can’t recommend that series enough. During the final book (50-ish hours long) I had to periodically look up to the ceiling to let the tears drain back into my sinuses so that they wouldn’t splash into my ELISA plate. This was besides the tears I normally shed in lab. I also really enjoy gardening. I worked eighteen years a slave in my family’s yard, and then left home to realize that I actually enjoyed it the whole time, so besides heading home to work my parents’ garden I also have a small yard in Cambridge that I’ve been working on. Hand-in-hand with gardening, I’ve started keeping a freshwater fish tank with real plants that’s been pretty fun to maintain, especially in the winter when there’s no gardening to be done outside. I also enjoy cooking – I use the guides on Serious Eats and America’s Test Kitchen to try out new things when I can. It seems like during this pandemic there’s been a huge explosion of cooking on the internet, and I’m really enjoying that. I also can’t wait till summer rolls around so I can start smoking meats again. I generally think that people of our generation need more hobbies that are not Netflix, and I’m very grateful to have found hobbies that I enjoy and can share with my friends.

Humans of Tufts Boston: Logan Schwartz, “I am interested in helping an aging population”

Humans of Tufts Boston, 9 Apr 2020

Logan Schwartz, Genetics (JAX), Second-year Ph.D. “I am interested in helping an aging population”

JH: Thank you so much for agreeing to answer some questions! What were you doing before graduate school?

LS: I started my scientific career as a summer intern at Regeneron Pharmaceuticals for three summers right after high school and through college. I worked in the VelociGene Department aimed at developing genetically modified mammalian models of gene function and disease! I attended the University of Rochester and studied Molecular Genetics and Chemistry. After completing undergrad, I was working for Dana Farber Cancer Institute and MGH as a research technician studying the functional genetics and molecular mechanisms of chronic lymphocytic leukemia and cystic fibrosis.

The Trowbridge lab

JH: What drew you to the JAX program?

LS: I was drawn to the JAX program by the opportunity to work with Dr. Jennifer Trowbridge and the novel mouse models for studying clonal hematopoiesis (CH). The Genetics program at JAX is a unique graduate program with the freedom to take courses at The Jackson Laboratory in topics ranging from systems genetics to different computational languages. I really enjoy the close and collaborative community at JAX and I am happy to be a part of it!

Dr. Trowbridge is a leader in the field of hematopoietic stem cell (HSC) research and she is fearless with respect to developing and employing the new and best techniques to address scientific questions. She is an inspiring investigator to be mentored by, having navigated herself the challenges of achieving success as a woman in science.

The Trowbridge lab hikes in Acadia

I am particularly excited to work in this field of research because I am interested in helping an aging population. With the growing population of elderly individuals worldwide, preventative strategies to reduce aging-associated diseases are urgently needed. We acquire somatic mutations in our HSCs as we age, some of which can confer a competitive advantage and cause clonal HSC expansion, known as clonal hematopoiesis (CH). This is present in 10-15% of individuals aged 70 years or older. My thesis work in the Trowbridge lab strives to identify novel mechanisms that can be used as interventions to prevent aging-associated diseases and disorders of the hematopoietic system, with a specific focus on HSCs, which are responsible for the lifelong maintenance of a functional hematopoietic system.

Riding a camel with Rebecca Brown (Genetics program) in Israel

JH: Is there anything you think is under-appreciated in the field of genetics?

LS: Genetic Diversity! Many diseases are studied by using models on a single genetic background when no two humans with the same disease are genetically identical. My lab is using genetically diverse mice to determine if inherited genetic variants increase the likelihood of developing CH and that there are population differences in clonal advantages gained by specific mutations in particular genetic and environmental contexts. CH is most commonly driven by somatic mutations in the gene encoding DNA methyltransferase (DNMT3A), so we are testing the hypothesize that variation in genetic background dictates whether DNMT3A-mutant HSCs acquire a selective advantage. The work is still in progress so we will have to wait and see!

Logan’s cat, Eugene!

JH: What do you like to do outside of lab?

LS: Outside of the lab, I enjoy hiking/exploring Acadia national park, running, painting and trivia nights, and taking care of my fifty house plants! A couple of years ago, my friend gave me my first house plant, a snake plant. He told me they were impossible to kill, and somehow I still managed to kill it. I decided to try again, and somehow I was able to keep it alive. After that, it has become a sort of obsession, although I still kill succulents from time to time. The thing I love most about having plants is how much life they can bring into your home. I also love watching them grow and change over time!

Some of Logan’s many house plants!

Humans of Tufts Boston: Noell Cho, “Representation Can Have a Broader Impact”

Humans of Tufts Boston, 12 Mar 2020

Noell Cho, Neuroscience, Second-year Ph.D. “Representation Can Have a Broader Impact”

JH: Thank you so much for taking the time to answer some questions! How did you get your start in science?

NC: My start in science harkens back to my high school on the island of Guam, when I volunteered to work at its endangered species lab under the direction of our AP Bio teacher Dr. Hauhouot Diambra-Odi. For decades, invasive species have completely destroyed Guam’s ecosystems. Of particular interest to our group was the introduced Philippine collard dove, which is threatened by the invasive Brown tree snakes. In the lab we designed experiments to learn more about existing bird migration patterns and behaviors. We delved into “field work,” which involved several camping trips on an uninhabited islet called Alupat island (approximately 200 meters off the western coast of Guam). We eventually presented the data at the International Student Science Fair in Kyoto, Japan. Unfortunately, some of Guam’s endemic bird populations, such as the Guam rail are deemed extinct in the wild and extirpated from the island. I was surprised to find that the New England Aquarium had these birds, a little piece of home right in Boston!

Cetti Bay in the southern region of Guam

JH: What drew you to neuroscience?

NC: I worked as a tech in several different labs and research areas, including cancer biology, immunology, and translational neuroscience. I worked in Clive Svendsen’s lab at Cedars-Sinai in Los Angeles, where I became involved in stem-cell transplantation studies in animal models of neurodegeneration, specifically the SOD1G93A rat model of ALS. I was fascinated that a neurodegenerative disease phenotype was able to be recapitulated in rodents harboring a mutated human ALS gene. Through these studies, I joined Gretchen Thomsen’s lab, whose particular focus was studying the link between repetitive TBI and ALS. My previous experience in immunology research motivated my investigation of selective inflammatory responses related to TBI-induced neurodegeneration. I fully credit working in the Thomsen lab as where I discovered my passion for neuroscience research.

The Thomsen lab at Cedars-Sinai. From left to right: Gretchen Thomsen (PI), Mor Alkaslasi, Patricia Haro-Lopez, Noell Cho

JH: What is your favorite technique that you use in lab?

NC: I’ve become an apprentice of electrophysiology since I joined the Moss laboratory here at Tufts. Tarek Deeb has been profound in imparting his knowledge of ephys and its many applications for neuroscience research. It’s intriguing to use the patch-clamp technique to measure the electrical properties and functional activity of neurons. My research experience has been primarily focused on looking at biochemical changes in neurological disease, so it has been refreshing to learn a new technique and observe electrophysiological changes in the brain. I remember that first moment, not too long ago actually, when I patched onto hippocampal neurons in mouse slices and observing action potential firing patterns. Seeing those spikes is so satisfying!

Members of the Moss lab representing at Relays

JH: Have you been following any fascinating new scientific developments or controversies?

NC: More recently, I’m trying to stay updated on new ephys systems in vivo and ex vivo. There are so many cool videos and photos that pop up on my feed of some of the most insane multipatch ephys rigs. Ed Boyden’s group has made tremendous advances in automated in vivo multipatch recordings. Automated multipatch rigs not only allow for ease of recording multiple neurons simultaneously, but also provide large-scale mapping of brain circuits. Multipatch clamp recordings also reveal more about connectivity between specific cell types in the brain, and automation provides a huge advantage in terms of time and feasibility. It’s always exciting to see the latest innovations that come out from the Boyden lab, but also it seems that robots are an inevitable part of scientific developments.

Noell presenting her repetitive TBI model at her first SFN!

JH: What do you do outside of lab?

NC: Because I’m a Boston transplant from Los Angeles, it was important to me to foster an environment at school that would feel like home. Thankfully, student organizations such as GWiSE and SPINES provided just that. Currently, I am the GWiSE secretary and operate media and communications for our group. As a first-year, I enjoyed the GWiSE coffee & conversations events that feature a woman in STEM and learning of their school and career experiences. I am so thankful for my former PI, mentor and friend, Gretchen Thomsen, who believed in me and is one of the reasons why I am in grad school today. I definitely benefit from the efforts of GWiSE and SPINES that provide programming surrounding diversity and inclusion, because ultimately representation can have a broader impact. You can follow GWiSE and SPINES on Twitter (@TuftsGwise and @TuftsSPINES)!

Checking out the East Coast surf in Montauk, NY