(1) Madhankumar, A. B.; Slagle-Webb, B.; Mintz, A.; Sheehan, J. M.; Connor, J. R. Interleukin-13 receptor–targeted nanovesicles are a potential therapy for glioblastoma multiforme. Molecular Cancer Therapeutics 2006, 5 (12), 3162-3169. DOI: 10.1158/1535-7163.Mct-06-0480 (acccessed 11/3/2022).
(2) Kosmides, A. K.; Sidhom, J.-W.; Fraser, A.; Bessell, C. A.; Schneck, J. P. Dual Targeting Nanoparticle Stimulates the Immune System To Inhibit Tumor Growth. ACS Nano 2017, 11 (6), 5417- 5429. DOI: 10.1021/acsnano.6b08152.
(3) Ellsworth, S.; Ye, X.; Grossman, S. A. Clinical, Radiographic, and Pathologic Findings in Patients Undergoing Reoperation Following Radiation Therapy and Temozolomide for Newly Diagnosed Glioblastoma. Am J Clin Oncol 2017, 40 (3), 219-222. DOI: 10.1097/coc.0000000000000136 From NLM.
(4) Carlsson, S. K.; Brothers, S. P.; Wahlestedt, C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2014, 6 (11), 1359-1370. DOI: 10.15252/emmm.201302627 From NLM.
(5) Gavas, S.; Quazi, S.; Karpiński, T. M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res Lett 2021, 16 (1), 173. DOI: 10.1186/s11671-021-03628-6 From NLM.
(6) Wongpinyochit, T.; Johnston, B. F.; Seib, F. P. Manufacture and Drug Delivery Applications of Silk Nanoparticles. J Vis Exp 2016, (116). DOI: 10.3791/54669 From NLM.
(7) Zhang, M.; Gao, S.; Yang, D.; Fang, Y.; Lin, X.; Jin, X.; Liu, Y.; Liu, X.; Su, K.; Shi, K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B 2021, 11(8), 2265-2285. DOI: https://doi.org/10.1016/j.apsb.2021.03.033.
(8) Aldape, K. D.; Ballman, K.; Furth, A.; Buckner, J. C.; Giannini, C.; Burger, P. C.; Scheithauer, B. W.; Jenkins, R. B.; James, C. D. Immunohistochemical Detection of EGFRvIII in High Malignancy Grade Astrocytomas and Evaluation of Prognostic Significance. Journal of Neuropathology & Experimental Neurology 2004, 63 (7), 700-707. DOI: 10.1093/jnen/63.7.700 (acccessed 10/21/2022).
(9) Pelloski, C. E.; Ballman, K. V.; Furth, A. F.; Zhang, L.; Lin, E.; Sulman, E. P.; Bhat, K.; McDonald, J. M.; Yung, W. K. A.; Colman, H.; et al. Epidermal Growth Factor Receptor Variant III Status Defines Clinically Distinct Subtypes of Glioblastoma. Journal of Clinical Oncology 2007, 25 (16), 2288-2294. DOI: 10.1200/JCO.2006.08.0705 (acccessed 2022/10/20).
(10) Johnson, H.; Del Rosario, A. M.; Bryson, B. D.; Schroeder, M. A.; Sarkaria, J. N.; White, F. M. Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Mol Cell Proteomics 2012, 11 (12), 1724-1740. DOI: 10.1074/mcp.M112.019984 From NLM.
(11) Bonavia, R.; Inda, M. M.; Vandenberg, S.; Cheng, S. Y.; Nagane, M.; Hadwiger, P.; Tan, P.; Sah, D. W.; Cavenee, W. K.; Furnari, F. B. EGFRvIII promotes glioma angiogenesis and growth through the NF- κB, interleukin-8 pathway. Oncogene 2012, 31 (36), 4054-4066. DOI: 10.1038/onc.2011.563 From NLM.
(12) Choi, B. D.; O’Rourke, D. M.; Maus, M. V. Engineering Chimeric Antigen Receptor T cells to Treat Glioblastoma. J Target Ther Cancer 2017, 6 (4), 22-25. From NLM.
(13) Wykosky, J.; Debinski, W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 2008, 6 (12), 1795-1806. DOI: 10.1158/1541-7786.Mcr-08-0244 From NLM.
(14) Lindberg, R. A.; Hunter, T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 1990, 10 (12), 6316-6324. DOI: 10.1128/mcb.10.12.6316-6324.1990 From NLM.
(15) Wykosky, J.; Gibo, D. M.; Stanton, C.; Debinski, W. Interleukin-13 receptor alpha 2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res 2008, 14 (1), 199-208. DOI: 10.1158/1078-0432.Ccr-07-1990 From NLM.
(16) Ogawa, K.; Pasqualini, R.; Lindberg, R. A.; Kain, R.; Freeman, A. L.; Pasquale, E. B. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 2000, 19 (52), 6043-6052. DOI: 10.1038/sj.onc.1204004 From NLM. Liu, F.; Park, P. J.; Lai, W.; Maher, E.; Chakravarti, A.; Durso, L.; Jiang, X.; Yu, Y.; Brosius, A.; Thomas, M.; et al. A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res 2006, 66 (22), 10815-10823. DOI: 10.1158/0008-5472.Can-06-1408 From NLM.
(17) Macrae, M.; Neve, R. M.; Rodriguez-Viciana, P.; Haqq, C.; Yeh, J.; Chen, C.; Gray, J. W.; McCormick, F. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 2005, 8 (2), 111-118. DOI: 10.1016/j.ccr.2005.07.005 From NLM.
(18) Miao, H.; Li, D. Q.; Mukherjee, A.; Guo, H.; Petty, A.; Cutter, J.; Basilion, J. P.; Sedor, J.; Wu, J.; Danielpour, D.; et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 2009, 16 (1), 9-20. DOI: 10.1016/j.ccr.2009.04.009 From NLM.
(19) Debinski, W.; Obiri, N. I.; Powers, S. K.; Pastan, I.; Puri, R. K. Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin Cancer Res 1995, 1 (11), 1253-1258. From NLM.
(20) Sharma, P.; Debinski, W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018, 19 (11). DOI: 10.3390/ijms19113326 From NLM.
(21) Zeng, J.; Zhang, J.; Yang, Y. Z.; Wang, F.; Jiang, H.; Chen, H. D.; Wu, H. Y.; Sai, K.; Hu, W. M. IL13RA2 is overexpressed in malignant gliomas and related to clinical outcome of patients. Am J Transl Res 2020, 12 (8), 4702-4714. From NLM.
(22) Sattiraju, A.; Solingapuram Sai, K. K.; Xuan, A.; Pandya, D. N.; Almaguel, F. G.; Wadas, T. J.; Herpai, D. M.; Debinski, W.; Mintz, A. IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget 2017, 8 (26), 42997-43007. DOI: 10.18632/oncotarget.17792 From NLM. Brown, C. E.; Warden, C. D.; Starr, R.; Deng, X.; Badie, B.; Yuan, Y. C.; Forman, S. J.; Barish, M. E. Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis. PLoS One 2013, 8 (10), e77769. DOI: 10.1371/journal.pone.0077769 From NLM.
(23) Thaci, B.; Brown, C. E.; Binello, E.; Werbaneth, K.; Sampath, P.; Sengupta, S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol 2014, 16 (10), 1304-1312. DOI: 10.1093/neuonc/nou045 From NLM.
(24) Brown, C. E.; Alizadeh, D.; Starr, R.; Weng, L.; Wagner, J. R.; Naranjo, A.; Ostberg, J. R.; Blanchard, M. S.; Kilpatrick, J.; Simpson, J.; et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med 2016, 375 (26), 2561-2569. DOI: 10.1056/NEJMoa1610497 From NLM.
(25) Wykosky, J.; Gibo, D. M.; Stanton, C.; Debinski, W. Interleukin-13 Receptor α2, EphA2, and Fos- Related Antigen 1 as Molecular Denominators of High-Grade Astrocytomas and Specific Targets for Combinatorial Therapy. Clinical Cancer Research 2008, 14 (1), 199-208. DOI: 10.1158/1078-0432.Ccr- 07-1990 (acccessed 10/21/2022).
(26) Sampson, J. H.; Heimberger, A. B.; Archer, G. E.; Aldape, K. D.; Friedman, A. H.; Friedman, H. S.; Gilbert, M. R.; Herndon, J. E., 2nd; McLendon, R. E.; Mitchell, D. A.; et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010, 28 (31), 4722-4729. DOI: 10.1200/jco.2010.28.6963 From NLM. Brown, C.; Starr, R.; Naranjo, A.; Wright, C.; Bading, J.; Ressler, J. Adoptive transfer of autologous IL13-zetakine+ engineered T cell clones for the treatment of recurrent glioblastoma: lessons from the clinic. Mol Ther 2011, 19 (suppl 1), S136-S137.
(27) dos Santos, T.; Varela, J.; Lynch, I.; Salvati, A.; Dawson, K. A. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 2011, 7 (23), 3341-3349. DOI: 10.1002/smll.201101076 From NLM.