Tag Archives: April2017

GSC Committee & Club Updates: April 2017

Tufts Biomedical Business Club (TBBC)

from Aaron BernsteinCMP

Upcoming Events

TBBC Case Study Group: Mondays – 5-7PM, Jaharis 508

Practice solving cases, gain insight and tips, and learn more about the field of consulting.

TBBC Tufts Biomedical Alumni Speed Networking Night: Th Apr 13 — 6-8PM, Sackler 114

TBBC, in collaboration with the Office of Alumni Relations will be hosting a speed networking night! Meet fellow students and Tufts alumni who are working in the biomedical field from across all of Tufts campuses and programs, including Sackler, Fletcher, Medical, Dental, Nutrition, and the Gordon Institute. Mingle with old friends and new. We look forward to seeing you! Food and drinks will be served at this facilitated networking event.

TBBC Biotech BUZZ with Lily Ting: F Apr 14 — 9AM, M&V Lobby (Stearns 108)

Dr. Lily Ting is a life scientist and entrepreneur with 12 years of experience in academia and industry. Lily received her PhD from New South Wales University in Sydney and a post doc in the Gygi Lab at Harvard Medical School. After her experience leading projects in the academic sphere, Lily worked in a business development role at Athletigen and is now an Associate at PureTech Health. PureTech is a venture creation firm focused on bringing innovative solutions to the fields of neuroscience, immunology, and gastrointestinal diseases. She is also an avid dragon boat racer and just won gold, silver, and bronze in Puerto Rico!

TBBC Consulting Seminar Series: ClearView Heathcare Partners: Tu Apr 18 — 5-6:30PM, Sackler 507

Representatives from ClearView Healthcare Partners will speak to students about consulting and ClearView’s Connect to ClearView program for advanced degree candidates. 

TBBC, the Sackler Dean’s Office, GSC “Sackler Speaks” Flash Talk Competition: M Apr 24 — 5PM, Sackler 114

A well-developed flash talk is an effective tool to quickly and easily communicate your work to others. These take time to develop and usually evolve over a series of iterations. Sackler students will have a chance to give their scientific flash talks before a judging panel and other students. All presenters will receive helpful feedback and compete for nice prizes. This will be a low-key, fun event with appetizers and beer, and a chance to network with other students and professionals.

Recent Events

TBBC Biotech Buzz with Joel Batson, PhD, of RA Capital

F Feb 24: TBBC hosted Joel Batson, Science Project Manager at RA Capital. Joel introduced students to a new web-based tool he is developing and offered students the opportunity to collaborate with him and his team.

TBBC Career Seminar: Teresa Broering, Director of R&D, Affinivax

Tu Apr 4: Teresa Broering, current Director of R&D at Affinivax, a Cambridage, MA-based company developing a next generation approach in vaccine technologies, and former Director of Immunology at AbVitro as well as Senior Director of Product Discovery at MassBiologics, joined us for a discussion of her career path and her current role with Affinivax, and the current state of the biotech industry.

CMDB and Genetics Programs Come Together in Portland, Maine

For the first time, the Genetics and CMDB programs came together for a retreat in Portland, Maine for the snow and slush-filled weekend of April 1st. The retreat brought together students from different programs to interact and learn more about one another’s’ research, as well as students from different campuses. Both the Boston and the Bar Harbor Jackson Laboratories contingents made it to Portland to join the Scarborough Maine Medical Research Center Institute (MMCRI) folks for a weekend of science and camaraderie. Students and faculty gave brief talks on their work, followed by a poster session and a fantastic keynote speech on storytelling was given by Christine Gentry. Read on for details on the weekend, written by Jessica Elman (CMDB, Boston Campus), Jessica Davis-Knowlton (CMDB, MMCRI), and Alexander Fine (Genetics, JAX).  

We kicked off the retreat with a marathon of 16 talks given by students in year four and up from the CMDB and Genetics programs. Given the challenge to present a summary of their work in seven minutes or less, the students delivered with presentations that were brief but pointed. Three winners were selected by Philip HInds, Ira Herman, and Rajendra Kumar-Singh for their exceptional clarity, creativity, and concision.

In third place, Melissa LaBonty, a 5th year CMDB student in Pamela Yelick’s lab, presented on her work studying Fibrodysplasia Ossificans Progressiva (FOP). In this rare and severely understudied disease, an abnormal wound repair mechanism results in bone ossification in soft tissue after damage or injury. LaBonty is working with zebrafish to create a model of FOP, which will help to better characterize the disease and understand the underlying mechanisms that drive its progression. In her presentation, LaBonty spoke clearly and at an even pace, with assisting powerpoint slides that displayed only the most essential words: together this style helped keep the group focused on her story and contributed to her ranking as one of the best speakers of the day.

 

Siobhan McRee, a 5th year Genetics student in Philip Hinds’ lab, came in second among the student presenters. McRee talked about her work in which she is elucidating the roles of different Akt isoforms in BRAF-mutant melanoma. Though this cancer is initially responsive to the drug Vemurafenib, which specifically targets cells with a BRAF-mutation, cells with other driving mutations manage to survive the drug treatment and clonally expand, resulting in significant and potentially deathly relapse of disease. Ultimately, McRee’s work will help to better understand how the Akt signaling pathway is involved in this disease and may result in more therapeutically targetable molecules. McRee’s story logically built from general facts and understanding of BRAF melanoma to ultimately culminate on more specific data showing her findings thus far as well as their implications. Furthermore, her even pace and well-organized slides made her an especially great presenter that day.

Coming in first place was Kayla Gross, a 4th year CMDB student in Charlotte Kuperwasser’s lab. Gross’s work involves understanding how aging contributes to the breast cancer development, and why certain subtypes of breast cancer are more prevalent in the aging population. Given the prevalence of breast cancer, the impactfulness of Gross’ research is immediately obvious. She worked with an aging mouse model to characterize their mammary tissue as well as performed an RNAseq experiment to uncover molecular mechanisms that might be differentially expressed in young and aging mouse tissue. Gross presented her data in a logical progression, and used illustrative cartoons and animations to her advantage to keep her audience focused and to get her point across. Besides for her brilliant and captivating powerpoint, Gross stood out for her speaking style: she had clearly chosen her words to be concise and to the point, which allowed her to make the most of the seven minutes allotted to her.

All in all, the student presentations were remarkably impressive: in just seven minutes, all the participating students managed to convey the most critical and interesting components of their research. This was a great opportunity for everyone to learn a little bit more about what our colleagues are working on, as well as a chance to practice our “flash talk” skills, which will come in handy whether it’s at a job interview or at Thanksgiving table when your uncle asks you to explain what you’re doing in graduate school for the third time.

The Story Collider’s Christine Gentry, PhD as keynote

It was suggested by Terry Pratchett, Ian Stewart, and Jack Cohen in The Science of Discworld II: The Globe that perhaps Homo sapiens as a name for our species is a bit of a misnomer considering we are not omnipotent beings. They suggest Pan narrans, the storytelling ape, because we gain understanding by fitting facts into a larger narrative rather than collecting and storing millions of pieces of disparate information.

As communicators of new knowledge to the world (i.e. our scientific findings), it is important for us to keep the nature of our listeners in mind. In her keynote presentation to the retreat, Story Collider’s Christine Gentry, PhD encouraged us all to think about how to frame our narratives to be more approachable and demonstrated some methods of drawing in an audience.

She immediately captured our attention and sympathy by describing the challenges she faced in a wending career path that started with her geek excitement to bring a black widow spider to her Texas elementary school show-n’-tell, traversed through public outreach on the topic of zoology, and has landed at teacher/storyteller in Boston.

She required us to engage with her material by highlighting snippets of stories that we examined in small groups to find the element that made them compelling. We saw that admitting to vulnerability helps to humanize us to our audience in the story from a researcher who relies on fresh donor tissue, that self identity makes us more honest in the story from a researcher who decided not to cover her tattoos, and that we can surprise our audience by not sticking to script in the story from David who refused to tell the inspiration arising from conflict story that reporters sought to box him into. The thread tying all these stories together is that at the core they are about relationships with others, ourselves, our work, and with the larger community.

Perhaps the most memorable take-home point from her talk is that anecdotes do not equal stories. The response to most anecdotes is naturally “so what?” In order for an event or experience to be a story, it must have changed you: “I was callus, this event happened, and now I am more thoughtful” rather than “I am amazing, I did this, and I am still amazing!”

Scientific inquiry must be done in an objective manner and it is imperative that we remain unbiased as possible when we review scientific evidence, but there is room for us to inject our personalities into our presentations and relate our findings to the people who care. Now it remains to us to decide when to do so and to what degree.

On Sunday morning, we took a break from data and lectures; it was time to start working together. The purpose of this retreat was cross-program cooperation, and in our final event of the weekend, we put that goal into action. We separated into breakout sessions, not by program or campus, but by what we are interested in. These small group discussions were designed to get people together with various strengths and experiences to think about how to solve some of the challenges that graduate students face.

So what are graduate students at Sackler interested in discussing? The topics of these breakout sessions varied. Some sessions focused on day-to-day problems that a graduate student might face, like using CRISPR/Cas9 or selecting a sequencing platform. In the CRISPR discussion, participants came to the conclusion that there are no specific shared standards for all the applications of CRISPR and identified strategies to address potential off-target effects.

Other discussions centered on how to accomplish broader training goals, including grant writing, mentoring, and communicating in science. The grant writing section reviewed general writing strategies, like setting short-term, realistic goals, and shared a need for a formalized grant-writing course at Sackler. The mentoring/leadership session discussed existing programs at Sackler where a student can find a mentor, like the Tufts Mentoring Circles and the Tufts Biomedical Business Club. Students expressed a need for a more accessible alumni network, including cross-institutional resources. In the scientific communication group, students were urged to get on social media platforms like LinkedIn, Twitter, and ResearchGate.

In two of the largest breakout sessions, participants concentrated on solving larger scale problems: designing coursework for a modern graduate program in biology and bridging the gap between science and medicine. To help bridge the gap between scientific research and medicine at Tufts, the discussion group recommended that faculty members be identified that can connect labs with clinicians and tissue banks. In addition, access to a course that provides a basic orientation to clinical research would benefit many students at Sackler. In the session on coursework for a modern graduate program, one topic became the clear center of the discussion: computational biology! Whether students had struggled through teaching themselves or were currently stuck with a dataset they didn’t know how to analyze, everyone in the room agreed that coursework in computational biology was crucial for a graduate student’s success in modern biology. In addition to new coursework, students from both programs expressed a need for a revision and update of their first year coursework.

While all of the breakout sessions at the retreat were productive, they are meant to be starting points for continued discussion and collaboration. This retreat should be the springboard that leads to action across programs and institutions. Sackler students are lucky to be in programs that span multiple states, campuses, and research focuses. The cross talk between these groups will make each of our programs stronger and better prepare us for our careers in the future.

What Scientists Can Learn From Fiction Writers

Scientists don’t often think of themselves as writers. Our employment responsibilities do not include crafting characters or building worlds from words, nor investigating the latest political scandal, nor travelling the globe and composing reflections on our experiences. Yet, we do write: grants, reports, manuscripts. It is how we distribute our knowledge and the science we have done, because graphs and images and data have little impact if not shared. We write and revise as much as any journalist or novelist; still, writer isn’t an identity most scientists would primarily claim.

We are, though. Scientists are writers. Scientists are storytellers. Each graduate student, post-doc, faculty member has a story they are telling through their science. The scale and impact differs, but the fact remains: we must spin a tale convincing enough for our science to be funded, to be published, to matter. We are  writers, and we don’t even realize it.

I was trained to be a writer in the classical sense, specifically fiction writing. There were certain lessons that we learned over and over again, because they were fundamental to crafting even the most basic story. What fascinates me is that I have encountered these components informally in my graduate school training, just in the guise of doing good science.

We use basic story structure in writing articles: our beginnings ask a question, which we then try to answer in the middle, and our ends show how we have changed our little corner of the science world with our answer. There may even be a cliffhanger in there–alluding to a sequel coming soon to a journal near you!–if we’ve created even more questions with our answer. Grant writing uses a similar structure, with more emphasis on the cliffhanger. Leaving your reader on the edge of his seat, wondering what could come next, is something both scientists and fiction writers want (equally for the validation of having intrigued your audience and the satisfaction that such engagement often results in financial investment).

Show, don’t tell. Rather than telling a reader that a character is angry or sad, a writer should describe the character’s balled-up fists or tear-stained cheeks. For scientists, our equivalent of ‘telling’ is ‘data not shown’–and we all know how much we should avoid that. We do our showing in our figures. A scientist knows that the more data you can include, all the better. A scientist also knows that the more visually appealing your data is, the better it represents your conclusions. No one likes to read tables, right? Those data become so much more interesting as a pie chart, a graph, or a schematic. We show as much as we can, and tell as little as possible, because the best case scenario is when the data speaks for itself, instead of the scientist speaking for it.

Stories are much more interesting when they start in media res, or in the middle: no boring leadup, no extensive exposition. It is why publications often start with describing a hit or two they discovered from a screen, instead of the million little steps that led up to and happened during the screen itself. Good papers do that, and so does good fiction. The first Harry Potter book does not walk the reader through Harry’s childhood; it just starts right at the moment his life is about to change. Relevancy and immediacy are key components to telling any story, and scientists know and practice these principles to the best of their ability.

Crafting things out of thin air to make a story is a staple of fiction, but we know that as data fraud in the science world. The ‘characters’ in our scientific writing, the ‘plot’, the ‘setting’, the ‘rising action’, the ‘falling action’, all of those things have to be based on facts and evidence, on carefully planned and painstakingly executed experiments. They are based on reality. We know this; every scientist knows this. What we as scientists may not realize, however, is the extent to which fiction writing is also rooted in reality. Creating characters or worlds out of thin air is in actuality rarely done. The foundation of so many characters–ordinary or fantastical–come from experiences and observations within the writer’s own realm. It is a different way of collecting and representing evidence, a different way of asking or answering a question about the world. This reality-turned-fiction is one of the best ways a novel writer can build a sense of believability even in the most far-fetched fiction. It also builds trust between author and reader, one of the most important–and difficult–parts of fiction writing. Scientists have these components within their works as well, though constructed and strengthened in a different manner. Trust in science is built through executing proper and thorough controls, validating via different experimental methods, and considering (and hopefully, systematically eliminating) alternate theories or explanations. So regardless of the method in which they are built, that believability and that trust are critical components to any story, be it science or fiction.

Fiction writing, creative nonfiction writing, journalistic writing are all still very different beasts than scientific writing. Still, it would benefit scientists to focus less on the differences and more on where our often polarized fields actually do intersect. So much of our work is to provide convincing answers to difficult questions, and that type of evidence-based persuasion can be drastically more powerful if we use the same tools that traditional writers do. Scientists need to learn these tools as undergraduate and graduate students through formalized, structured, specified, and required coursework. That training will carry us, and our work, miles farther in graduate school and in our careers beyond. We need to be trained as writers, maybe as much as we are trained as scientists. Communicating our work in a persuasive and captivating manner is more important the ever, given the disturbing loss of faith in evidence-based arguments. We, as scientists, need to win that trust back, and to do so, we better be able to tell one hell of a story–to our funding institutions, to our public–about our science. For science to progress, we need our stories to be loud, to be spellbinding, to be believed and trusted by the public. We need to be writers, otherwise we might one day read a story about science that starts with once upon a time…

 

 

 

 

 

 

 

 

 

 

 

PubMed Tip of the Month…Search or Filter by Funder

Funding information is recorded in two fields in a PubMed record: Grant Number and Publication Type. Limiting a search to these fields can help you find articles that were supported by a specific grant, funder or type of funder (e.g. non-U.S. government).

  • Grant Number: The Grant Number field records grant or contract numbers as published in the article, or derived from PubMed Central as a result of the NIH Public Access Policy. To find articles funded by a particular organization, search the Grant Number field for the organization’s name, acronym or 2-letter code (click on link above for complete list funding agency names, acronyms and codes). For example, to find studies supported by the National Institute on Aging, search PubMed for: AA[gr].
  • Publication Type: Medical Subject Headings (MeSH), the standardized terms used to describe articles for MEDLINE, include Publication Types to identify financial support when that support is mentioned in the article. A list of publication types, including those for Research Support, can be viewed from the link above. To filter a search by one of the funding Publication Types: in the left-hand column of a results page, click ‘Customize’ under Article types. Scroll down and check the box next to the types of Research Support you would like to view. Click ‘Show’. The types of research support that you selected should now be visible under Article types. Click the research support type to filter your results.

Notes from the Library…Finding Funding & Writing Grant Proposals

Finding funding and writing grant proposals is a necessary, time-consuming, and at times frustrating, part of doing research. Our ‘Finding Funding & Writing Grant Proposals’ guide lists resources available at Tufts and beyond for locating funding opportunities, discovering projects that have been funded, and writing grant proposals. The full guide can be viewed at: http://researchguides.library.tufts.edu/findfunding. Here are a few highlights from this guide:

Finding Funding

  • COS Pivot: Comprehensive database of national and international funding opportunities from government and private funders. Advanced search features allow you to restrict your search to a particular funder, funding type or applicant type (e.g. graduate student). Profiles section may help you identify potential collaborators within or outside of Tufts. Use your Tufts email address to create an account, which will allow you to build a profile, view potential funding matches, save searches and schedule funding alerts.  Log in with Tufts username and password for off campus access.
  • Graduate & Postdoctoral Extramural Support (GRAPES): Compiled by the University of California at Los Angeles, GRAPES is a database of scholarship, grant, award, and fellowship opportunities for graduate students and postdocs.

Discovering Funded Projects

  • National Institutes of Health RePORTER: Research Portfolio Online Reporting Tool Expenditures and Results (RePORTER) is a searchable database of research projects funded by the NIH as well as the Centers for Disease Control (CDC), Agency for Healthcare Research and Quality (AHRQ), Health Resources and Services Administration (HRSA), Substance Abuse and Mental Health Services Administration (SAMHSA), and Department of Veterans Affairs (VA).
  • National Science Foundation (NSF) Award Search: Complete data on active and expired NSF awards from 1976 to present; some information available for pre-1976 awards.

Books on Writing Grant Proposals

  • The Grant Application Writer’s Workbook: This popular workbook guides applicants through a NIH grant application, providing examples of each component of the application. Updated to reflect recent changes to application requirements.
  • Guide to Effective Grant Writing: How to Write a Successful NIH Grant Proposal: Covering all aspects of the proposal process, from the most basic questions about form and style to the task of seeking funding, this book offers clear advice backed up with excellent examples. Based on the author’s experience serving on NIH grant review panels, it covers the common mistakes and problems he witnessed while reviewing grants.
  • Writing the NIH Grant Proposal: Hands-on advice that simplifies and demystifies writing a NIH grant proposal.

On the Shelf…The New York Times

The New York Times

Tisch Library in Medford recently subscribed to The New York Times academic pass program. This means that Tufts students, faculty and staff can register for a personal account to access The New York Times from their computer or mobile device, on and off campus. For instructions on creating a personal account using the Tufts academic pass and answers to FAQ about our access, see this page: http://researchguides.library.tufts.edu/nytimes.   Note: When creating an account, be sure to choose the correct link based on your location when registering (i.e. on or off campus).

CAR-T from A to Z

Often touted as a “miracle therapy” for certain cancers, CAR-T treatment has created a lot of buzz in the immuno-oncology field. There are over a hundred CAR-T clinical trials open in the U.S. and the first commercial CAR-T could possibly be approved by the end of this year. Initially, the introduction of the therapy in 2012 had some warranted safety concerns. The technology is inherently aggressive and can become unruly if not it’s not properly monitored. For this reason, the first clinical trials of CAR-T created damaging side effects and in some cases the therapy was associated with patient deaths. However, therapy design has been revamped over the past five years and researchers are finding ways to dampen the level of toxicity the therapy produces. Despite the risks associated with CAR-T, clinical trials have shown to be effective at treating the targeted cancer. Recently, clinical trials have shown remission rates of up to 94% and as a result the therapy has attracted millions of dollars from investors. Although the technology is not perfect, there is optimism in the field that CAR-T can radically improve cancer patient care.

CAR-T treatment involves the infusion of transgenic T-cells that express a Chimeric Antigen Receptor (CAR) on their cell membrane into the patient. The most common procedure involves isolation of the patient’s own T-cells, which are then genetically modified and expanded in vitro. These transgenic T-cells are then infused back into the patient to specifically target tumor cells. The CAR-T receptor of the transgenic T-cell contains three domains: (1) a target-binding domain externally exposed to the extracellular environment, (2) a transmembrane domain, and (3) an activation domain that is intracellularly contained.

The target-binding domain is engineered to be structurally different than endogenous T-cell receptors because it recognizes antigens that are independent of major histocompatibility complex (MHC) antigens. Instead, CAR-T recognizes antigens that are either proteins, carbohydrates, or gangliosides on the tumor cell surface. The transmembrane and activation domains of the CAR-T receptor are responsible for activating and triggering T-cell proliferation when the receptor binds to its target antigen. When activated, the T-cells mediate killing of tumor cells by two mechanisms: (1) secretion of granzymes and (2) activation of death receptor signaling in the tumor cell. These killing strategies are potentiated by additional signaling receptors on the T-cells that can improve T-cell proliferation and cytokine release. As of now, research teams have designed third-generation CAR-Ts that contain costimulatory receptors that ameliorate antitumor activity and proinflammatory cytokine secretion.

The high success rate of CAR-T therapy in clinical trials has prompted several companies to compete for commercialization and introduction of the therapy into the market. At the moment, Novartis is leading in the race of clinical development and commercialization. In November, the company successfully completed Phase II trial of the CAR-T candidate for B-cell acute lymphoblastic leukemia (ALL). Novartis is currently preparing to submit applications to the FDA this year. Kite Pharma also recently completed their Phase II clinical trials for CAR-T therapy against lymphoma and has also submitted regulatory applications with the FDA. The progress made by these companies has created a great amount of excitement around their respective CAR-T therapies. However, some researchers are skeptical that FDA approval will be granted for the therapy. Severe side effects still exist and deaths have been reported in some clinical trials. Juno Therapeutics, a company that was initially in the stiff CAR-T race, terminated their clinical trial after 5 patients died of cerebral edema caused by the therapy. Some pharmaceuticals have  taken steps to mitigate harmful CAR-T side effects. For example, Cellectis has developed a CAR-T therapy with a switch control system that only activates the transgenic T-cells when rampamycin is present. This therapy is currently in Phase I clinical trails and has already shown a lot of promise after saving two infants from leukemia. Similarly, Bellicum Pharmaceuticals is developing a technology that requires rimiducid to be present for CAR T-cell activation.

A technical limitation of CAR-T technology is that it is challenging for CAR T-cells to target solid tumors. At the moment, the therapy is most effective against hematological (blood) cancers but not solid tumors. To solve this problem, the biopharmaceutical Celyad is developing a CAR-T that expresses Natural Killer Receptors (NKR) that can bind ligands of solid tumors. The company is currently beginning clinical trials with these NKR-expressing CAR-Ts. Researchers have also suggested combining checkpoint inhibitor drugs such as PD-1 with CAR-T therapy as a multi-pronged method to attack solid tumors; however the side effects of this combination therapy are currently unknown.

From a patient’s  point of view, another limitation of CAR-T therapy is that it is an expensive and lengthy process because CAR-Ts are developed from the patient’s own cells. Cellectis and Celyad are offering a solution to this problem by developing an allogeneic CAR-T therapy—that is, the T-cells are derived from a healthy donor and are immediately available when they are needed. This technology is still at its early stages and is scientifically challenging to develop since foreign donor T-cells can be readily attacked by the patient’s immune system. Additionally, the manufacturing, transportation, and banking of the allogenic CAR-T would also prove to be tricky.

The plethora of different CAR-Ts in clinical trials has given hope to patients and physicians that the therapy will be introduced to the market fairly soon. Although a few limitations exist for CAR-T, ongoing research and clinical development continues to refine the therapy and encourage the public that CAR-T has the potential to transform the immuno-oncology field.

References

  1. Yu et al. Journal of Hematology & Oncology(2017) 10:78
  2. Fernandez, C. (2017, January 16). A Cure for Cancer? How CAR-T Therapy is Revolutionizing Oncology. Retrieved from http://labiotech.eu/car-t-therapy-cancer-review/
  3. Harris, D. (2016, December 15). Opinion: Balancing Risks and Rewards of CAR T-Cell Therapy. Retrieved from https://www.the-scientist.com/news-opinion/opinion-balancing-risks-and-rewards-of-car-t-cell-therapy-32352
  4. Bock, E. (2016, November 18). CAR T-Cell Therapy Moves Closer to FDA Approval. Retrieved from https://nihrecord.nih.gov/newsletters/2016/11_18_2016/story1.htm
  5. Keshavan, M. (2016, August 23). Experimental cancer therapy holds great promise—but at great cost. Retrieved from https://www.statnews.com/2016/08/23/cancer-car-t-side-effects/
  6. Brower, V. (2015, April 1). The CAR T-Cell Race. Retrieved from http://www.the-scientist.com/?articles.view/articleNo/42462/title/The-CAR-T-Cell-Race/