Category Archives: Community

Notes from the North: Review of Online Course “Scientists Teaching Science”

Scientific graduate programs all over the country do a wonderful job training their students to become critical thinkers able to design experiments, write fellowship grants, write peer reviewed papers, and grasp complex scientific systems. Nearly all programs, however, struggle to provide career training. Traditionally, skills such as mentoring, teaching, and leadership have been learned by observing others. This has generated many excellent scientists, mentors, teachers, and leaders, but how many more could we have developed had students received directed training? And how much better would our current scientific leaders be had they not had to reinvent the wheel for themselves?

One of the dangers of requiring students to learn through osmosis is that we tend to recapitulate what we see, even if it is not the most effective method. Partly this is because many of us do find this an effective way of gaining skills and knowledge, but there is also a mentality of initiation: we had to struggle, the next generation should experience this too. There are many answers to this paucity of career development training, however, in the form of business clubs, student and postdoc association lead career workshops, and online extracurricular courses.

Some of us at Sackler interested in a teaching career have taken advantage of a short course entitled “Scientists Teaching Science” which teaches best practices in science education, based on the latest research on teaching and STEM ed sol logolearning by STEM Education Solutions (http://stem-k20.com/). This is a completely online course that runs about nine weeks with a different module every week. Depending on the week, the time commitment is about 3 hours per week for light weeks and as much as 8 hours per week on heavy weeks (depending on how assiduous a note taker you are when doing readings and how detailed you are in written assignments).

I found the intro to the course very illustrative and memorable. We were asked to read several articles on how science has traditionally been taught and how active learning has repeatedly been shown to improve learning outcomes, then Barbara Houtz started her own narrated lecture in the traditional “Sage on the Stage” style. My heart immediately sank as I envisioned the next nine weeks writing dense, jargon filled notes on topics that seemed esoteric and non-practical. This was not what I thought I was signing up for! Then she paused and asked the question, “what are you thinking?”

That’s when the real lecture began. The narrated lectures were fantastic! Available 24/7 and provided as both narration and transcript. Methods that make participants stop to think about what they are being told were used liberally to retain participant attention. This meant that we were being shown how to effectively employ all the skills we were being taught as they were being taught to us. The modules covered learning/teaching styles, generating effective assessments, Bloom’s Taxonomy of Learning, writing your teaching philosophy (a part of faculty application materials that I only learned about last year despite years of aspiration to teach), cultural awareness, active learning and inquiry based teaching, writing course objectives, teaching online, course development, and syllabus compilation. Each module was comprised of a narrated lecture, readings, and a written assignment or discussion board post requirement. Additional resources were also provided on the Virtual Learning Environment and Barbara Houtz frequently sent out class announcements about recent articles on STEM education and careers for PhDs.STEM

I embarked on this online only course with a great deal of trepidation. Would I have the self-discipline to keep up with the material? Would I feel comfortable reaching out to the instructor with questions and comments? The answer is that with the help of an instructor devoted to keeping her participants involved and getting the most out of her course I was able to gain practical teaching skills in a remarkably short time.

ICYMI: New DMCB/MORI Seminar Series Kickoff

This month I’ll be giving you the low-down on a seminar that kicked off a new weekly meeting, hosted by by MORI (Molecular Oncology Research Institute) and the DMCB (Developmental, Molecular, & Chemical Biology) department. The inaugural meeting took place on Thursday, January 26, 2017, with talks presented by Jerrica Breindel, Ph.D. and Thomas Ni, Ph.D., both postdoctoral researchers in the Kuperwasser lab, which focuses on breast development and cancer research.

Before the realization of this new series, MORI hosted a pizza-catered weekly seminar on Friday afternoons at 75 Kneeland. Graduate students and postdocs from the Hinds, Kuperwasser, Hu, Tsichlis, Kuliopulos and other members of the institute would participate in the meetings for the opportunity to share their work and receive feedback from other scientists working in the cancer field. Thanks to the initiative of several professors, the once exclusively-MORI meeting has now joined forces with interested labs in the DMCB department to bring together more scientists on a weekly basis.

At this first meeting, Jerrica presented to talk about her work on elucidating whether certain oncogenes drive the formation of specific subtypes of breast cancer. Her approach involves breeding mice with mammary gland driven oncogenes and observing the phenotypes of their mammary epithelial development and tumorigenesis. In collaboration with Piyush Gupta’s lab at MIT, she is also experimenting with growing human primary mammary organoids that are infected with viruses that cause the expression of various oncogenes of interest in 3D hydrogels. The structures generated in these gels look incredible as they grow into biologically relevant ductal networks that can be assessed with immunofluorescence. Pro tip: if you happen to be in Kendall Square, walk by the Koch Institute’s first floor where you can see a picture of one of these beautiful structures on display!

Next up, Tom presented his unique and innovative quest to define a novel method for identifying putative tumor suppressor genes and oncogenes. Following up on a hit from a screen he conducted as a graduate student at Yale University, he identified that an alternative isoform of a protein called MAGI3 acts as an oncogene that can promote breast cancer by permitting Hippo signaling that causes malignant transformation of mammary epithelial cells. After uncovering that premature poladenylation is responsible for the production of this alternative isoform, he started to investigate whether other cancer-related genes have the same premature poladenylation signal. Intriguingly, it appears that the mechanism behind MAGI3’s alternative isoform is not a one-off event, but something that might be behind the formation of many known (and very likely unknown) genes that are involved in tumorigenesis!

Overall, this first meeting was a great success: we drank, we snacked, and we learned about some truly exciting work from the members of the Kuperwasser lab. Everyone is welcome to attend these series, held every Thursday at 4PM in M&V412. Emily Michael of the Kuliopulos Lab spoke at the subsequent meeting on February 2nd and we are all looking forward to hearing from other members of MORI and DMCB in these upcoming months!

 

21st Century Cures Act: Boosting biomedical research, but at what cost?

Co-authored by Andrew Hooper & Nafis Hasan

In a remarkable display of bipartisanship, the Senate passed HR 34 and President Obama signed the 21st Century Cures Act into law on Dec. 13, 2016. The original bill was introduced and sponsored by Rep. Suzanne Bonamici (D-OR) on Jan 2015 and garnered co-sponsors from both sides of the aisle, including the support of Rep. Lamar Smith (R-TX), Chairman of the House Committee on Space, Science and Technology. The House approved the original bill in Oct 2015 and after a year on the Senate floor where the bill underwent several amendments proposed by both Democrats and Republicans, the Senate approved the bill on Dec 6 2016 and passed the bill on to President Obama to be signed into law.

This law is meant to accelerate drug development and bring cutting edge treatment to patients, revise the current status of mental health research and treatment for disorders, with a strong focus on the current opioid crisis sweeping across the nation. The law is also of significant importance to biomedical scientists as it will expand funding  for certain fields, keeping in line with the Precision Medicine Initiative launched in 2015. More specifically, the Cures act will provide funding for specific NIH innovation projects such as the Precision Medicine Initiative ($4.5 billion through FY 2026), the BRAIN initiative ($1.51 billion through FY 2026), the Cancer Moonshot project ($1.8 billion through FY 2023) and the Regenerative Medicine (stem cells) program (30$ mn through FY 2026). In addition, this law will stimulate innovative research by awarding investigators with the Eureka Prize for “significant advances” or “improving health outcomes”. The law also seeks to promote new researchers through its Next Generation of Researchers Initiative, an attempt to solve the postdoc crisis in academia. As a response to the lack of women and underrepresented minorities in STEM fields, the law also contains provisions that will attract and retain such scientists in “priority research areas”.  Finally, to further encourage early-stage researchers, the law authorizes the establishment of programs to help in the repayment of student loans and raises the cap on the repayment assistance available to the researchers.

Besides ensuring funding for biomedical research, this law aims to address privacy concerns brought up by experts regarding patient information in the era of precision medicine (for more details, check out our analysis of the precision medicine initiative). Under this law, certificates of confidentiality will be provided to all NIH-funded researchers whose studies involve collection of sensitive patient information. This information will be withheld by the NIH, but can be accessed upon requests filed under the Freedom of Information Act. On the other hand, in order to make sure data sharing is made easier for scientists, this law will allow NIH to break out of red tape and regulations that obstruct scientists from attending scientific meetings and sharing data.

Despite the generally positive reception of the Cures Act by NIH officials and research scientists, the bill was not without its critics. The principal criticism of the final product is that it constitutes a handout to pharmaceutical and medical device companies by substantially weakening the FDA’s regulatory check on bringing new treatments into the clinic.

For example, Sydney Lupkin and Steven Findlay point to the $192 million worth of lobbying collectively expended by over a hundred pharmaceutical, medical device, and biotech companies on this and related pieces of legislation. The goal of this lobbying, Lupkin and Findlay assert, was to give the FDA “more discretion” in deciding how new drugs and other treatments gain approval for clinical use – presumably saving a great deal of money for the companies that develop them. Adding weight to their assertion is the fact that President Trump is reportedly considering venture capitalist Jim O’Neill for FDA commissioner. Mr. O’Neill is strongly supported by libertarian conservatives who see FDA regulations as inordinately expensive and cumbersome, so it seems reasonable to worry about how Mr. O’Neill would weigh safety against profit in applying his “discretion” as head of the FDA. On the other hand, under a wise and appropriately cautious commissioner with a healthy respect for scientific evidence, we might hope that maintaining high safety standards and reducing the current staggering cost of drug development are not mutually exclusive.

Additionally, Dr. David Gorski writes of one provision of the Cures Act that appears to specifically benefit a stem-cell entrepreneur who invested significantly in a lobbying firm pushing for looser approval standards at the FDA. Once again, it is not unreasonable to suspect that there is room to reduce cost and bureaucratic red tape without adversely impacting safety. And in fairness to the eventual nominee for FDA commissioners, previous commissioners have not been universally praised for their alacrity in getting promising treatments approved efficiently… at least, not within the financial sector. Still, the concerns expressed by medical professionals and regulatory experts over the FDA’s continued intellectual autonomy and ability to uphold rigorous safety standards are quite understandable, given the new administration’s enthusiasm for deregulation.

It appears that this law will also allow pharmaceutical companies to promote off-label use of their products to insurance companies without holding clinical trials. Additionally, pharma companies can utilize “data summaries” instead of detailed clinical trial data for using products for “new avenues”. It is possible that these provisions were created with the NIH basket trials in mind (details here). However, as Dr. Gorski argues, without clinical trial data, off label use of drugs will be based on “uncontrolled observational studies”, which, while beneficial for pharma companies, are risky for patients from the perspective of patient advocacy groups. These fears are not without evidence – a recent article from STAT describes how the off-label use of Lupron, a sex hormone suppressor used to treat endometriosis in women and prostate cancer in men, is resulting in a diverse array of health problems in 20-year olds who received the drug in their puberty.

Another “Easter egg”, albeit unpleasant, awaits scientists and policy-makers alike. Buried in Title V of the law is a $3.5 bn cut on Human and Health Services’ Prevention and Public Health fund, without a proper explanation added to such an act. Given the outcry on the lack of public health initiatives in the Precision Medicine Initiative, one is again left to wonder why 21st century cures are focusing only on treatment and drug development and not on policies directed towards promoting public health and prevention of diseases.

In conclusion, the implementation of this law will largely depend on the current administration. With the NIH budget for FY2017 still up in the air, the confirmation of nominees still hanging in balance, this law is far from being implemented. Based on the provisions, it appears that overall biomedical funding will be boosted in particular fields, designated “priority research areas”. However, it shouldn’t fail an observant reader that this bill also seems to allow pharma companies a higher chance to exploit the consumers. It, therefore, still remains a question of whose priorities (consumers/patients vs. investors/corporations) are being put forward first and the answer, in our humble opinion, will be determined by a dialogue between the people and the government.

Sources/Further Reading –

Humans of Sackler: Nafis Hasan, “I Refused Determinism”

Humans of Sackler, 30 January 2017

Nafis Hasan, Cell, Molecular & Developmental Biology, Fourth-Year Student: “I Refused Determinism”

This month I present, for your reading pleasure, excerpts from my interview with Nafis Hasan from CMDB. Nafis and I had a remarkably wide-ranging conversation covering existential philosophy, cultural differences between Bangladesh and the US, the exquisite symmetry between ecology and cell biology, and current controversies in carcinogenesis research. I can only hope to capture in the space below a mere whisper of his deeply-considered intellectual convictions and passion for social justice. Fortunately, Nafis has also authored an editorial on Science Activism in this very issue, and I strongly urge you, dear reader, to check that out next!

 

Having a grand time in Dhaka
Having a grand time in Dhaka

AH: Where did you grow up?

NH: I grew up in the house that my father and his brothers built in Dhaka, Bangladesh, and moved to the U.S. when I was 18. Most of my dad’s siblings and their families lived with us in Dhaka. As kids, we didn’t really have the notion of “privacy” for the longest time: the elders would each get a room and the kids would sleep in the living room on a big mattress. My cousins and I would all get into trouble at the same time… it was fun!

 

On the road with college friends
On the road with college friends

AH: Have you had any opportunities to travel around the States?

NH: For F1 visa (student visa) holders, you have a 3-month window where you have to find a job or get into school. After graduating from Lafayette College [in Easton, Pennsylvania], I thought, “If I have to leave the country, I might as well see it.” So when one of my friends said, “Let’s do a road trip,” I said “Let’s do it!” We started from Pennsylvania, went down to Virginia, our first stop was Shenandoah – I had actually never been camping before that, it was all a very new experience. We had two American kids, a Colombian kid, and a kid from South Africa… It was very liberating, and I started to see the country as it really is. At the same time, on the road, I was interviewing for jobs. I remember doing a job interview [by video phone] at a McDonalds in Idaho. I borrowed a shirt from one of my friends who dresses nicer than I do, since the interviewer could only see the top half of me… Over the course of two months, I think I applied to 200 jobs. Finally, I ended up getting a research tech job at Thomas Jefferson University in Philly.

 

Basking in the beauty of nature at Yellowstone
Basking in the beauty of nature at Yellowstone

AH: What was it like adjusting to American culture?

NH: When I came to America, I had no idea what to expect, I had only heard things from my cousins who came here for college and what was on TV. One thing that I had in my mind was that I was going to try and meet as many people of different nationalities as I can. But there was a big cultural divide, how they grew up versus how I grew up. I think the road trip really helped me to understand the diversity of American people and especially during these times when people are so polarized, I reach out to that experience. We grew up seeing this version of America as the land of opportunity, the land of freedom, but America is not the government, is not their foreign policy, is not the consumerism that has taken over the world… America is more about the people that you meet here, and that’s how I see the country. America encapsulates the dichotomy of homogeneity versus heterogeneity, and I think that’s so beautiful.

 

The scholar/activist as a young man
The scholar/activist as a young man

AH: When did you begin to discover your interest in biology research?

NH: In Bangladesh I went to a private school that taught everything in English. The division of sciences starts in 7th grade, and biology was definitely the most interesting to me. At the same time, I was caught up in the process of deconstructing my religious identity, because I was reading biology which has hard facts about how your body works, which calls into question how life was created… I found that more fascinating than having a set answer imposed by some superior being.

 

Positive work environment!
Positive work environment!

AH: How did you choose your field of study for grad school, and why is it so interesting?

NH: I started reading a lot of scientific nonfiction, presenting cancer as a very complex biological phenomenon, which was fascinating to me. I also had a solid foundation in breast cancer by the time I applied for grad school and I wanted to pursue that… I had seen lots of tumors, but no mammary glands. The more I learn about the mammary gland, the more I am fascinated by it. It develops throughout life: initially it’s just a branched structure that looks like sticks; when you get pregnant, it almost flowers, with grape-like clusters that come up through alveologenesis and these alveoli then revert back to the branched structure after weaning. It’s comparable to how trees shed leaves in the Fall, except in reverse: this course of nature – the seasons that you see – the same dynamic is there in animal tissue. And all of this is happening through the lifetime, after the majority of the organs are already fully developed!

 

100 miles?!
First Century – Repping Sackler at 2015 Tufts Century Ride

AH: What is one of the big challenges or controversies in your field at the moment?

NH: Traditionally, cell culture is done in two dimensions, on plates that are usually plastic – and plastic is not a natural substrate for cells to grow on, so you can’t recapitulate the same 3D environment where the cells are growing inside an organism. You can either try to mimic the natural environment as much as possible, or try to make a scaffold that is biocompatible… Cells need to be able to manipulate their environment, just as the environment should be able to provide them with physical or chemical cues to make them grow or organize in certain ways. Our lab has a very organic approach to it: we do 3D cultures in type 1 collagen, the predominant structural protein found in the mammary gland stroma. We believe that “organicism is greater than reductionism.” This is where we’re at odds with a lot of others in the cancer field, where reductionism is still the predominant philosophy. And we’re not saying it’s bad! It’s just insufficient to explain carcinogenesis.

Educate & Communicate: A Science Activism Manifesto

Science is often thought of as a monolithic entity, but it is actually a complex composition of a discipline, an institution, and a community, all focused on finding truth and knowledge in data and the natural world. Science as a community consists of people of all ethnicities and from all socioeconomic classes; talent is found everywhere, and we as scientists do not and should not limit our number to those with a privileged pedigree. Science as an institution is a pillar of modern society, supporting and enabling growth and progress previously impossible to achieve. Science as a discipline is an investigative practice that demands rigor, critical analysis, and substantive evidence to support the conclusions that we draw from the data. Science as a discipline to formulate theory may be apolitical, but as an institution and a community that is an integral part of modern civic society, science cannot simply be an idle observer. Atrocities have been committed in the name of science when the idea of the pure monolith prevails and is exploited by political regimes to suppress minorities, such as the Tuskegee syphilis experiments and Nazi human trials. However, science has also been used to fight for the welfare of all people and to resist such regimes: Rachel Carson, Albert Einstein, Linus Pauling, Max von Laue all used their privilege as scientists to fight for justice and the greater good. While the scientific discipline provides a path for pure theory, we are human, each with our own biases that guide our investigation, influence our analysis, and may even blind us to the truth. Ultimately, the application of scientific theory to society bears the imprint of our ideas and our biases, and we as a community bear responsibility for the results. It is therefore imperative that we distinguish the apolitical discipline of science from the institution and community of science, which are a part of civic society and inherently political. We currently hold privileged positions in society that are at risk in the contemporary political climate. The defense of science is our moral and civic duty. Furthermore, in defending ourselves, we should also take a stand to give a voice to those who cannot do so for themselves.

It has been three weeks since President Trump has entered office. It has been three weeks of chaos and confusion. In these three weeks, President Trump’s actions have threatened to tear apart the fabric of American society, wrought and held together for so long by people of all ethnicities, sexual, religious and political orientations. However, whereas his actions have largely focused on promoting protectionist values, it also appears that he and his cabinet nominees are determined on ignoring scientific evidence and denying the real dangers of climate change, as well as showing utter disregard for environmental protection. Their plans to dismantle the Environmental Protection Agency, with the help of the Republican Party, and the threat to abolish the Endangered Species Act all point to their contempt towards protecting biodiversity, the very proof of evolution. Their intention to deregulate the pharmaceutical industry, under the illusion of lowering drug prices, will risk the lives of patients. Their attempts to champion creationism and intelligent design over evolution in public education will risk the credibility of scientific facts. Meanwhile, the House committee on science, space and technology appears more eager to accept the President’s words despite what multiple media outlets have to say in their defense, even as President Trump proclaims any media outlet as “fake news” if they fail to agree with him. In addition, Trump’s hobnobbing with the most prominent anti-vaxxer, Andrew Wakefield, should already raise concerns about how decades of public health work to minimize infectious diseases and maintain public support will be undermined because of his ideology, especially when the anti-vax movement is gaining momentum. Even further, his claims to “totally destroy” the Johnson Amendment, the law that upholds the separation of Church and State, also pose a major threat to the scientific endeavor.

The U.S.A, the country that still puts the highest amount of taxpayer money into scientific research compared to other Western nations, is currently being ruled by an administration that would rather shape policy based on pre-existing ideologies than hard evidence. Since this administration ignores scientific data regarding the dangers posed by climate change, restricts dissemination of scientific data to the populace who funded the research, subjects its doctors and scientists to a travel ban in the guise of “protectionism” when data clearly show that homegrown terrorists have caused far more deaths in the U.S. than immigrants from any of the seven countries on the ban list, it is our duty as scientists to stand up and take a stance. We can no longer afford to look away. We can no longer afford to remain in our comfortable positions as biomedical scientists whose careers are not currently threatened. We should use our privilege to stand up for those whose voices have been muted.

In these times when the foundations of the scientific community are threatened and evidence-based policies disregarded, the outpouring of support has solidified our unity. Already, scientists are taking action – a nation-wide and possibly global March for Science rally has been planned for April 22 (Earth Day). Prominent scientists across the U.S. have petitioned against the travel ban, and European scientists have offered laboratory space to scientists stranded due to the travel ban. Scientists from all walks of life are organizing to protect their communities; scientists are actively thinking about running for office and other positions to influence policy-making. These are all very encouraging, however, these actions are missing a key point – this is a battle of ideology, not policy or scientific literacy. As a recent study has shown, the public does not consider scientific questions that raise moral or ethical concerns as “science” questions. Another recent excellent article on how science journalism can combat this issue reports that science journalists should “listen, be curious and consider the non-science factors that shape people’s beliefs – because people’s beliefs shape policy, our society, and the world”. One may imagine that increasing scientific literacy should take care of such issues, however, that has not been the case. All too often, scientists  fail to properly communicate with the masses and are  unable to get the message across because they were too focused on explaining the basic science without taking into consideration the presentation of  facts.

This is not a temporary issue. Trump is not the only President who has or will challenge evidence-based policy and threaten the scientific community. However, it is crucial that we take action now because the dangers of climate change are imminent and we cannot afford to deny it anymore. Therefore, it is imperative that scientists come forward to educate and communicate with the public in a language and tone sufficient to start a dialogue. We start by communicating with each other, educating each other about our work. From there, we communicate and educate our family members and relatives, our friends, our communities and beyond. This has to be a grassroots movement – no top-down policy will fix the scientific literacy issue and lead American society toward a future where policies are based on hard evidence as  opposed to blind faith. This is how we can give back to the public, who provide the majority of funding for our work, and ensure that science does not belong to an elite population, but in the hands and minds of the people.

This is why we are calling on you, each and every scientist, ranging from technicians to postdocs, graduate students to faculty, to action. Educate and communicate with your science. Explain why it is necessary. Even if you talk to just one person a day, that can make a difference. That is where we start. If you want to do more, organize. Rally behind policymakers who heed scientific evidence and will champion such causes. Volunteer at high schools and colleges. Take part in science festivals. Celebrate science and its achievements sans the elitism. It is not about funding, or whose research is more important. It is about making science accessible to the masses, who have tirelessly supported and benefited from our work for decades and will continue to do so. It is about rescuing science from the clutches of political partisanship. It is about freedom to communicate our science, the protection of our community, and the advancement of our society.

For too long academics have been cooped up in their self-imposed exclusive isolation from the masses. For too long we have assumed that Science exists in a vacuum. We cannot afford this axiom anymore. We have to consider the social, political, and economic forces that affect the direction of scientific research. We have a moral and civic duty to fight for what is right and to prevent the use of science to advance fascist ideology. The time to take action is now. 

Here are some resources to help you take action in the short term –

Sincerely,

The Sackler Insight Team

Humans of Sackler: Stacie Clark, “Full of Surprises”

Humans of Sackler, 1 December 2016

Stacie Clark, Molecular Microbiology, Third-Year Student: “Full of Surprises”

For this issue of Humans of Sackler, I had the chance to chat with Stacie Clark from the Microbiology program. As someone who mostly socializes within Neuroscience, it’s a real privilege for me to meet students from other programs and learn about some of the incredible, borderline-science-fiction work that’s going on right under my nose here at Sackler! Equally striking, I’ve found, is the treasure trove of unique passions and fascinating life experiences that lie just below the surface of our fellow students when we really get to talking. I’m grateful to Stacie for sharing a few of hers, and hope that you, dear reader, enjoy our conversation!

 

001
Hiking through Glacier National Park, Montana

AH: When did you realize that you wanted to pursue a career in science?

SC: My parents told me they always knew I’d end up in science. From the moment I could walk, I was outside digging for beetles and worms and building terrariums. I was in the honors science program in high school, and I did a year-long project on hand sanitizer and bacterial survival. I was working in a lab as a high school student, and realized I really liked doing that. I think I was born for science, and my parents were super-supportive. When I was growing up, we went hiking all the time, they took us to the EcoTarium in Worcester, and we were members at the Museum of Science and Aquarium. So I was always exposed to all sorts of science.

 

002
Swimming at a waterfall in El Yunque rainforest, Puerto Rico

 AH: What places have you traveled to outside of Massachusetts?

SC: I studied abroad in Puerto Rico. Worcester Polytechnic Institute does this differently: they call it the IQP, Interactive Qualifying Project. The point of this project is to teach you how to work effectively in groups and communicate with people outside the university. I worked in the rainforest in Puerto Rico, and we did a project evaluating stream crossings. We wanted to look at how their bridges were affecting stream flow and water quality, so we got to hike all through the [El Yunque] rainforest and evaluate all these different stream crossings. We got to see parts of the rainforest that no one gets to see!

 

003
With Pablo the capuchin monkey in Costa Rica

 AH: What did you do between graduating from WPI and starting your Ph.D. at Sackler?

SC: Before I started grad school, I had always wanted to work with exotic animals. So I literally just Googled ‘volunteer experience in Costa Rica’ and this small remote place in Costa Rica popped up. I booked a two-week trip, went by myself back-packing in Costa Rica, and volunteered at an animal rehabilitation center. It was quite an adjustment: I was on a mountainside in southern Costa Rica, and it got pitch-black at 6 o’clock at night. I would go into the rehabilitation center, clean the cages, prep all the food, and then feed and play with the animals. The monkeys were my favorite, and there was also an anteater. His name was Gomer; if you went into his cage and just yelled out ‘Hey Gomer!’ he’d come crawling out, and he loved being held. We’d do enrichment activities for some of them too – so with the anteater, I would walk with him out in the jungle and let him go searching for termites and ants on his own, and then I’d go bring him back to his cage. I think everyone should go on at least one trip by themselves, because you learn a lot about yourself and it’s just a good experience!

 

004
At the beach with Kid Rock

AH: What do you like to do when you’re not working in the lab?

SC: I volunteer at the animal shelter in Quincy; I’ve been doing that every Monday for four years. I take the dogs out for walks, play with them, cuddle with them if they want to… They only get to go outside twice a day, that’s the only time they get to really play with people. I understand that work-life balance is really important to your mental health, so volunteering on Mondays is the one thing that I won’t let grad school take away from me. It’s something that I do for me that I enjoy – and I’m also a big dog person. 

 

005
Group photo with the Leong Lab (middle row, second from right)

 AH: There are so many disciplines within biology – what got you interested in studying bacteria specifically?

SC: I’ve always been fascinated that an organism so small can have such a large impact on humans – that still blows my mind! They’re incredible organisms that can mimic the proteins we have, which I find pretty amazing. We’re full of bacteria, they do a lot for us – and the microbiota is a huge field now. Everyone is fascinated in studying microbiota and the impact they have on our health in general. 

 

006
Out on the town with friends

 AH: What particular species of bacteria do you study, and what makes it so interesting?

SC: Yersinia pseudotuberculosis is a model pathogen that we use to study community behavior of bacteria within its host. Yersinia can establish a distinct niche within the spleen of a mouse, and once it forms a microcolony, it can replicate to high numbers despite the presence of the immune system. You get a recruitment of innate immune cells to the site of infection, triggering a response in the bacteria to create specialized populations within that distinct cluster; I always thought that was cool, the response between the bacteria and the host cells.

On Unity Found in Biomedical Research

The Diversity and Inclusion page of the Tufts website includes colorful bar graphs on the university population. Sackler is 62% female and over 15 different countries are represented. Much beauty can be found in exploring our diversity, but much can be also gained from learning what unifies. Here at Sackler, many of us study this unity.

My research focuses on the disease of epilepsy, but I find the work rewarding and worthwhile because of the potential to find common mechanisms on how human brains work. Many unifying discoveries on the human system have come from study of disease. Take the textbook case of Patient HM, who had both sides of his temporal lobe surgically reduced to cure his epilepsy. Through studying him during learning tasks, Dr. Brenda Milner demonstrated in the 1950s the existence of episodic and procedural memory. In neuroscience today, cognition and consciousness are two remaining Holy-Grails, and both are affected in epilepsy. Epileptic individuals often suffer from cognitive disorders. In studying consciousness, investigators such as Dr. Hal Blumenfeld at Yale have used the transient impairments of consciousness observed in epilepsy to discover a “consciousness system” network in the functioning brain. The study of disease unveils the nature of the working machine.

Many different diseases are studied at Sackler, but looking at the big picture, what many of us are engaged upon is a search for unifying truths about the human condition. We are creating knowledge of what unifies. If you discover one truth, one singular truth of how the human body works, it is a truth that applies to all, to every group represented on the Tufts Diversity and Inclusion page. This is an empowering thought.

Take Part!

Remember student council elections in high school? Typically the most popular student running would win, but everyone was full of enthusiasm and excitement to attain those coveted positions! Fast-forward a decade or so to filling positions in organizations like the student council during graduate school and the picture looks dramatically different. We each take a turn, but we tend to do so grudgingly. High school was grueling, don’t get me wrong, but as the years progress the demands on our time change, the expectations are different, and the student body is less diverse (no more Poli Sci majors to eagerly take on the class president position).

Organizations that support fellow trainees and coworkers are typically run by volunteers. Each year we need people with a fresh perspective to step up and help with maintaining organizations such as the Graduate Student Council, the Sackler InSight, the Post-Doc Association, and, up here in Maine, the Research Fellows Association. There are so many important career and social events that just would not happen if these organizations were to disappear, not to mention how much smaller our voice within the school would be.

Teamwork

If you find yourself holding back from taking part in one of these community serving groups because you simply don’t have time between experiments, think of participation as a convenient way to get some career development in. Those of us who have been shoehorned into leadership positions can tell you firsthand how much rigorous practice we get in using the “soft skills”. In the business vernacular these include but are not limited to social and emotional intelligence, ability to develop people, delegation, structure and tactile development (how you get stuff done and how you tweak things to make sure it keep s getting done), style flexibility, and focus1.

Experience on a leadership team will create a tangible CV bullet that is particularly important for anyone interested in going into industry, but such experience will also be very helpful for people staying in academia (think committee and ancillary duties). It’s all in how you frame your skills to your audience.

Any of the students currently serving on committees or volunteering in other capacities will be more than happy to share their experiences, what their responsibilities and time commitments have been, contacts they have made, and what they have gotten out of their service in terms of personal and professional development.

  1. For a more in depth explanation on these soft skills, see SciPhD competencies and SCIPHD.com

ICYMI: Career Exploration Panel

In this month’s edition of ICYMI, I’ll be giving you the low-down on a career exploration panel that took place on November 3rd in Sackler 114, sponsored by the GSC, TBBC, and the Sackler Dean’s office. Like every great event at Tufts, there was plenty of cheese, crackers, and booze to go around. Aaron Bernstein (CMP) took the stage as emcee and introduced the eight panelists and their intended career paths, which ranged from teaching to healthcare consulting.

I’ve made you all a little cheat sheet that summarizes the main takeaway for each career path and some of the great resources provided by the panelist that can help you learn more about and prepare for the job. Hopefully one or more of these professions spark your interest and inspire you to join a club, participate in an event, or simply give you something new to think about!

  1. Joslyn Mills-Bonal (CMP), teaching

Inspired by her great experience at a small liberal arts college, Joz participated in the panel as an advocate for a teaching-heavy career at a community college, liberal arts college, or university.  

Teaching experience, which might seem hard to find at Sackler, is critical for preparing you for this job. Take advantage of student seminars and treat them as an opportunity to practice teaching. You can work on your curriculum design skills by getting involved in behind the scenes efforts for the various teaching opportunities you participate in. For example, if you get involved with Biobugs you can also take part in designing the labs.

It’s important to think about what kind of institute you want to work for- a liberal arts college? A state university? A research I institute? These decisions will inform the steps you take during and after graduate school as you work towards your career as a teaching professor. For example, a postdoc is usually required for a job at a liberal arts school and above, whereas community college professors don’t need a PhD. Also keep in mind that if you don’t want to continue to do research, your publication list isn’t so important. If you do want to continue to do research, however, you need to keep in mind that prolific publishing is paramount.

Opportunities/resources of interest:  

If you’re interested in any of the above opportunities or simply want to learn more about this track, feel free to contact Joz!

  1. Laura Stransky (CMP), academic/industry science

In academia we aim to better understand some disease or mechanism, whereas those in industry work to make some therapeutic or drug that can be marketed and sold. For both jobs, however, Laura loves the fact that you get the luxury of thinking for a living!

As a graduate student at Tufts, you’re already actively in training for a career as a scientist! To make the most of your time in graduate school, go to seminars as often as possible and learn from how other people present. Remember that for many of the visiting speakers there is a lunch you can attend with the speaker at which you can network and learn about their career path. Take any and all opportunities to write! There are plenty of grants travel awards, abstracts, and conferences that give you the chance to practice writing. By taking mentoring opportunities—volunteering to work with rotating students, for example—you can develop the management skills that are critical to being a good scientist, regardless of whether you’re in industry or academia.

After graduate school you must become a postdoc if you intend to get a job in academia. You need to demonstrate your ability to accrue funding and publish high impact papers. If you’re leaning more towards becoming a scientist in industry, a postdoc isn’t absolutely essential but can certainly get you started a little higher on the ladder. Furthermore, a postdoc before industry can help you expand your skills, fill in any gaps that you may have, and perhaps give you the opportunity to get involved in more translational research and develop project management skills.

  1. Kayla Gross (CMDB), science communication

This field encompasses more than just one kind of job—you can be a medical writer, a publisher, a communicating officer at a brand, or even a journalist. While at Tufts, find ways to improve and practice your writing and communication skills! Look for as much feedback as you can on your manuscripts, abstracts, posters, presentations and even committee reports to help you sharpen your skills and hone in on what needs to be improved. You need to practice adaptability to different scientific fields, since as a writer you are unlikely to be limited to just one topic. Furthermore, you need to be able to speak to those who aren’t well versed in the field you are writing about.

For a job in science writing, there is no hard and fast rule on whether you need to postdoc or not. The only track in which working as a postdoc is encouraged is in being an editor. If journalism is your goal, keep in mind that making the shift from grad school to journalism can be tricky—you may have to do some freelance writing for a while to build up your portfolio and break into the field.

Opportunities/resources of interest:  

  • Join the INSIGHT newsletter/blog! You can participate as much or as little as your time permits, and it’s a great opportunity to practice your writing and communication skills. Contact Kayla to join!
  • Tufts also has a collaboration with Emerson College in which you can work with an undergraduate communications student whose project is to assemble a science-centric media piece in which your research is explained to the general public. This is a great way for you to practice making the science that we think so deeply about a digestible subject for the general public!
  1. Andrew Hooper (Neuro), science policy

A job in science policy often involves advising policy makers on important scientific matters. This is a great way to have impact on our government and every day lives by helping educate people, especially politicians, who often have very minimal science knowledge. Because part of the job also often involves putting budgets together, it’s important for you to have some financial savvy. Finally, communication skills are essential, as you’ll be translating complicated scientific concepts to people completely untrained in the field.

There are many organizations that offer policy fellowships that can support you while you work in D.C. and learn the ropes, most of which require a postdoc. Applications are usually due in January and start dates are in the fall.

Andrew suggested you contact him if you’re interested in science policy!  

  1. Matthew Kelley (Neuro), data science

Data science merges statistics, math, and programming to help get insight from large databases, generate correlations, and make predictive models.

Hard skills you need for a job in data science include statistics, programming—many things you are already doing regularly as a PhD student. It’s important to learn how to code, which you can do on your own! While you’re at Tufts, try to integrate data science in your PhD project to practice applying your skills.

Opportunities/resources of interest:  

  • The Insight Science Data Fellowship, designed to bridge the gap between a non-computational graduate degree and a career in health data science (http://insighthealthdata.com/). In this program, you’re funded for 7 weeks to learn from industry leaders and even interview with some of the top companies in the industry!
  • Check out the newly formed Data Science Club—there have only been two meetings so far so get in early! The club plans on bringing in speakers and learning applicable skills together.
  • MIT edX has a course on analytics: https://www.edx.org/course/analytics-edge-mitx-15-071x-2
  1. Jaclyn Dunphy (Neuro), entrepreneurship

A job as an entrepreneur is exciting because it involves brainstorming and sharing ideas with other people to start something completely novel. A job at a start-up company might seem high risk, but it offers the opportunity to make a big impact, as teams are usually small. If you’re interested in being a “big piece of a small system,” this field might be for you!

Firstly, to be more proactive, reach out to others—contact experts who can assess your idea and help you decide how feasible it is. Secondly, demonstrate leadership skills! Take the lead with rotation students and get involved in student-run groups where you can take some charge! Thirdly, practice your interpersonal and networking skills. You must practice the formula to successful networking: reaching out to your person of interest the day after meeting them, be it via e-mail or LinkedIn, and setting up a time and day for a coffee meeting where you can learn more about their job and solidify your professional relationship. To get started as an entrepreneur, the best thing you can do is… be an entrepreneur! Think of an idea and start a company!

Opportunities/resources of interest:  

  • Cross register for classes in the entrepreneurial management program at the Medford campus
  • Engage in IDEAS competitions
  • Participate in Mass Challenge!
  • Venture Café: A networking event that happens every Thursday evening at the Cambridge Innovations Center (1 Broadway, Kendall Square, Cambridge MA) where you can have a (free!) drink and socialize with other entrepreneurial-minded people. This can be a great opportunity to find collaborators or just bounce your ideas off other people in a social and friendly environment.
  1. Michaela Tolman (Neuro), healthcare consulting

Michaela aptly nicknamed healthcare consulting “rent-a-brain”—a perfect summary for a job in which you are hired to consult non-experts in a healthcare related venture. Many of us are in biomedical research because we want to help people, but as we all know, research can be slow and it might take years or even decades before a discovery you make in lab actually benefits someone in the clinic. As a consultant you are involved in helping bring people the best healthcare much more rapidly.

It’s extremely important to develop interpersonal and networking skills for a successful career in consulting! The job involves a lot of interactions with non-scientists and you need to be able to fit in and make them feel comfortable. It’s also important that you have business acumen and learn the jargon of the business world. Do you know what people are talking about when they say percent market share, market size, or competitive landscape?

To go on consulting interviews, you have to be able to say that you can graduate within a year. Postdocs are not recommended as consulting firms are typically looking for someone fresh out of graduate school. It’s also critical that you know how to do a case interview, which typically the process one goes through before getting a consulting job.

Opportunities/resources of interest:  

  • Join the case study groups, which take place every Monday!
  • Participate in TUNECC- this is a highly attended case-competition event at which you can show off your consulting skills and get the attention of potential hirers!
  • Come to Biotech Buzz and Tufts Advisory Partners (TAP)!
  • Michaela also had some book recommendations, including Case Interviewing Secrets and Case In Point.
  • A website that might interest you is Seeking Alpha.
  • The “Mini MBA” program at Harvard can be great for your resume
  • Just like for any other career path, network, network, network!
  1. Christina McGuire (Biochem), venture capital

Though there are venture capital firms that solely exist to provide funding for start up companies that already have a formulated product or idea, Christina’s goal is to find a job in a venture capital company that creates ideas in-house. To get that kind of position, you need to have a deep understanding of science and you definitely need good analytical skills. Continue to practice reading primary literature to develop these skills and also keep in mind the importance of acquiring business acumen. Often times, to get a job at a VC firm, you need to get involved in business or consulting first. Demonstrate your entrepreneurial abilities by getting involved in successful projects and familiarizing yourself with the business world, much like when you are preparing for a career in entrepreneurship and consulting!

Opportunities/resources of interest:  

  • Tufts Biomedical Business Club (TBBC) and Biotech Buzz.
  • Christina’s book recommendations: Venture Deals by Brad Feld and Jason Mendelson.
  • Subscribe to: Fierce Biotech and XConomy

Overall, the event was a great success and attendees walked away with a wealth of knowledge and tips for how to better prepare for a slough of career options. A major recurring theme throughout the night was the importance of networking, so as intimidating as it may seem, the next time you hear about a networking event, grab a friend and go! You never know if the next person you meet will help open the door to your dream career.

2016 Voter Registration Deadlines Are Approaching

The 2016 General Election will be held Tuesday, November 8, but in order to participate, you must be registered to vote by the registration deadline.

The voter registration deadlines vary by state, so it is important to check these dates and also to make sure you’re registered. A free, online service that can help is TurboVote, a project by the non-partisan nonprofit Democracy Works that aims to make voting easier. TurboVote will direct you to the appropriate Secretary of State’s website to check your registration or register to vote. Many states, including Massachusetts, offer online voter registration if you are a legal resident and have a state driver’s license or identification card. You can also sign up to have TurboVote send you election day reminders by text or e-mail.

In Massachusetts, the voter registration deadline for this year’s election is Wednesday, October 19. Election-related information is available on the website of the Massachusetts Secretary of State (http://www.sec.state.ma.us/ele/eleidx.htm). Many resources are available, including to check your registration status, find your polling location, request an absentee ballot, find information on candidates and ballot questions, and register to vote if you are eligible.

Disclosure: Neither I nor the InSight were asked to publicize TurboVote and Democracy Now, and we are not receiving compensation for doing so.