droppedImageTim Atherton has recently taught the following courses in the Physics and Astronomy department at Tufts:

Physics 0013 Modern Physics (Fall 2011 and 2012)

This class introduces two of the theories that revolutionized 20th century physics, namely Special Relativity and Quantum Mechanics. Because these theories have been extensively validated experimentally, they underpin most of contemporary physics: this course is therefore one of the foundations of the physics major.

Physics 0146 Electromagnetic Theory II (Spring 2012 and 2013)

The second part of the graduate electromagnetism curriculum, this class develops the ideas introduced in Physics 0145 to  explain dynamic phenomena in electromagnetism, such as light waves and how they propagate. Significant emphasis is placed in interpreting the physical content of the mathematical theory, which has changed considerably from its first publication in 1864. The relationship of Electromagnetic theory to areas of contemporary interest, such as superconductors, the Ahranov-Bohm effect, topological insulators, photonic crystals, metamaterials and cloaking devices is also discussed.

Innovation in Physics Education

Tim is strongly committed to the quality of his classes, and welcomes feedback from students on how to improve them both through formal and informal mechanisms. Using principles from Physics Education Research in his classes, he’s implemented the following innovative elements:

Integrating Mathematica into the Physics Classroom: I get students to learn to program in Mathematica, a package for mathematics that convenient combines analytical calculations, numerics and easy visualization. Examples of how I use it to teach Quantum Mechanics visually, to engage students with exciting anaglyphs for use with 3D glasses  and help other faculty use it in their classes are on the group blog. We also contribute to the Wolfram Demonstrations Project.

Digital Storytelling: Students in my introductory classes create group video projects explaining science concepts from the course to the general public. See some of the results from Fall 2012 and Fall 2011.

Collaborative approach to Graduate classes: In Spring 2013, I tried a new approach to graduate education on Electromagnetic Theory. Instead of just doing calculations, we actually did experiments—more details to follow soon!