Kaitlyn Szalay, Julia Silberman, Astrid Larson, Elizabeth Goldstein, Sophie Corbett

References

(1) 

Smith, D. B.; Cannon, W. F.; Woodruff, L. G.; Solano, F.; Ellefsen, K. J. Geochemical and Mineralogical Maps for Soils of the Conterminous United States; Open-File Report; Report 2014–1082; Reston, VA, 2014; p 399. https://doi.org/10.3133/ofr20141082.

(2) 

Vetter, S. W.; Leclerc, E. Novel Aspects of Calmodulin Target Recognition and Activation. Eur J Biochem 2003, 270 (3), 404–414. https://doi.org/10.1046/j.1432-1033.2003.03414.x.

(3) 

Emsley, J. The Elements, 3rd ed.; Clarendon Press ; Oxford University Press: Oxford : New York, 1998.

(4)

Kursula, P.; Majava, V. A Structural Insight into Lead Neurotoxicity and Calmodulin Activation by Heavy Metals. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007, 63 (Pt 8), 653–656. https://doi.org/10.1107/S1744309107034525.

(5) 

Goodsell, D. S. Lead Poisoning. RCSB PDB 2016. https://doi.org/10.2210/rcsb_pdb/mom_2016_4.

(6) 

Morales, K. A.; Lasagna, M.; Gribenko, A. V.; Yoon, Y.; Reinhart, G. D.; Lee, J. C.; Cho, W.; Li, P.; Igumenova, T. I. Pb 2+ as Modulator of Protein–Membrane Interactions. J. Am. Chem. Soc. 2011, 133 (27), 10599–10611. https://doi.org/10.1021/ja2032772.

(7) 

Suszkiw, J. B. Presynaptic Disruption of Transmitter Release by Lead. NeuroToxicology 2004, 25 (4), 599–604. https://doi.org/10.1016/j.neuro.2003.09.009.

(8) 

Verdaguer, N.; Corbalan-Garcia, S.; Ochoa, W. F.; Fita, I.; Gómez-Fernández, J. C. Ca2+ Bridges the C2 Membrane-Binding Domain of Protein Kinase Cα Directly to Phosphatidylserine. EMBO J199918 (22), 6329–6338. https://doi.org/10.1093/emboj/18.22.6329.

(9)

Morales, K. A.; Lasagna, M.; Gribenko, A. V.; Yoon, Y.; Reinhart, G. D.; Lee, J. C.; Cho, W.; Li, P.; Igumenova, T. I. Pb 2+ as Modulator of Protein–Membrane Interactions. J. Am. Chem. Soc.2011133 (27), 10599–10611. https://doi.org/10.1021/ja2032772.

(10)

Wilson, M. A.; Brunger, A. T. The 1.0 Å Crystal Structure of Ca2+-Bound Calmodulin: An Analysis of Disorder and Implications for Functionally Relevant Plasticity. Journal of Molecular Biology2000301 (5), 1237–1256. https://doi.org/10.1006/jmbi.2000.4029.

(11)

Kursula, P.; Majava, V. A Structural Insight into Lead Neurotoxicity and Calmodulin Activation by Heavy Metals. Acta Crystallogr F Struct Biol Cryst Commun200763 (8), 653–656. https://doi.org/10.1107/S1744309107034525.

(12)

Maximov, A. Synaptotagmins. In Encyclopedia of Neuroscience; Elsevier, 2009; pp 819–821. https://doi.org/10.1016/B978-008045046-9.01358-9.

(13) 

Katti, S.; Her, B.; Srivastava, A. K.; Taylor, A. B.; Lockless, S. W.; Igumenova, T. I. High Affinity Interactions of Pb 2+ with Synaptotagmin I. Metallomics 2018, 10 (9), 1211–1222. https://doi.org/10.1039/C8MT00135A.

(14) 

Bouton, C. M. L. S.; Frelin, L. P.; Forde, C. E.; Godwin, H. A.; Pevsner, J. Synaptotagmin I Is a Molecular Target for Lead: Synaptotagmin I Is a Molecular Target of Lead. Journal of Neurochemistry 2001, 76 (6), 1724–1735. https://doi.org/10.1046/j.1471-4159.2001.00168.x.

(15) 

Oxidative Stress and Free Radical Damage in Neurology; Gadoth, N., Göbel, H. H., Eds.; Humana Press: Totowa, NJ, 2011. https://doi.org/10.1007/978-1-60327-514-9.

(16) 

Gurer, H.; Ercal, N. Can Antioxidants Be Beneficial in the Treatment of Lead Poisoning? Free Radical Biology and Medicine 2000, 29 (10), 927–945. https://doi.org/10.1016/S0891-5849(00)00413-5.

(17) 

Flora, G.; Gupta, D.; Tiwari, A. Toxicity of Lead: A Review with Recent Updates. Interdisciplinary Toxicology2012, 5 (2), 47–58. https://doi.org/10.2478/v10102-012-0009-2.

(18) 

Salim, S. Oxidative Stress and the Central Nervous System. J Pharmacol Exp Ther 2017, 360 (1), 201–205. https://doi.org/10.1124/jpet.116.237503.

(19) 

Roy, A.; Dey, S. K.; Saha, C. Modification of Cyto- and Genotoxicity of Mercury and Lead by Antioxidant on Human Lymphocytes in Vitro. Current Science 2013, 104 (2), 224–228.

(20) 

Liu, X.; Wu, J.; Shi, W.; Shi, W.; Liu, H.; Wu, X. Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells. Med Sci Monit 2018, 24, 4295–4304. https://doi.org/10.12659/MSM.908425.

(21) 

Tangpong, J.; Satarug, S. Alleviation of Lead Poisoning in the Brain with Aqueous Leaf Extract of the Thunbergia Laurifolia (Linn.). Toxicology Letters 2010, 198 (1), 83–88. https://doi.org/10.1016/j.toxlet.2010.04.031.

(22) 

Mah, V.; Jalilehvand, F. Lead(II) Complex Formation with Glutathione. Inorg. Chem. 2012, 51 (11), 6285–6298. https://doi.org/10.1021/ic300496t.

(23) 

Sugawara, E.; Nakamura, K.; Miyake, T.; Fukumura, A.; Seki, Y. Lipid Peroxidation and Concentration of Glutathione in Erythrocytes from Workers Exposed to Lead. Occupational and Environmental Medicine 1991, 48 (4), 239–242. https://doi.org/10.1136/oem.48.4.239.

(24)

Ayala, A.; Muñoz, M. F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity 20142014, 1–31. https://doi.org/10.1155/2014/360438.

(25) 

IJsselmuiden, A. J.; Musters, R. J.; de Ruiter, G.; van Heerebeek, L.; Alderse-Baas, F.; van Schilfgaarde, M.; Leyte, A.; Tangelder, G.-J.; Laarman, G. J.; Paulus, W. J. Circulating White Blood Cells and Platelets Amplify Oxidative Stress in Heart Failure. Nat Rev Cardiol 20085 (12), 811–820. https://doi.org/10.1038/ncpcardio1364.

(26) 

Ahamed, M.; Siddiqui, M. K. J. Low Level Lead Exposure and Oxidative Stress: Current Opinions. Clinica Chimica Acta 2007, 383 (1–2), 57–64. https://doi.org/10.1016/j.cca.2007.04.024.

(27) 

Jaffe, E. K.; Martins, J.; Li, J.; Kervinen, J.; Dunbrack, R. L. The Molecular Mechanism of Lead Inhibition of Human Porphobilinogen Synthase. Journal of Biological Chemistry 2001, 276 (2), 1531–1537. https://doi.org/10.1074/jbc.M007663200.

(28) 

Monteiro, H. P.; Abdalla, D. S.; Arcuri, A. S.; Bechara, E. J. Oxygen Toxicity Related to Exposure to Lead. Clin Chem 1985, 31 (10), 1673–1676.

(29) 

Monteiro, HugoP.; Bechara, EtelvinoJ. H.; Abdalla, DulcineiaS. P. Free Radicals Involvement in Neurological Porphyrias and Lead Poisoning. Mol Cell Biochem 1991, 103 (1). https://doi.org/10.1007/BF00229595.

(30) 

Cardoso, V.; Dutra, F.; Soares, C.; Alves, A.; Bevilacqua, E.; Gagioti, S.; Penatti, C.; Bechara, E. Liver Damage Induced by Succinylacetone: A Shared Redox Imbalance Mechanism between Tyrosinemia and Hepatic Porphyrias. J. Braz. Chem. Soc. 2016. https://doi.org/10.21577/0103-5053.20160294.

(31) 

Douki, T.; Onuki, J.; Medeiros, M. H. G.; Bechara, E. J. H.; Cadet, J.; Di Mascio, P. Hydroxyl Radicals Are Involved in the Oxidation of Isolated and Cellular DNA Bases by 5-Aminolevulinic Acid. FEBS Letters 1998, 428 (1–2), 93–96. https://doi.org/10.1016/S0014-5793(98)00504-3.

(32)

Monteiro, H. P.; Abdalla, D. S.; Augusto, O.; Bechara, E. J. Free Radical Generation during Delta-Aminolevulinic Acid Autoxidation: Induction by Hemoglobin and Connections with Porphyrinpathies. Arch Biochem Biophys 1989, 271 (1), 206–216. https://doi.org/10.1016/0003-9861(89)90271-3.

(33) 

Adhikari, A.; Penatti, C. A. A.; Resende, R. R.; Ulrich, H.; Britto, L. R. G.; Bechara, E. J. H. 5-Aminolevulinate and 4, 5-Dioxovalerate Ions Decrease GABAA Receptor Density in Neuronal Cells, Synaptosomes and Rat Brain. Brain Research 2006, 1093 (1), 95–104. https://doi.org/10.1016/j.brainres.2006.03.103.

(34) 

Douki, T.; Onuki, J.; Medeiros, M. H. G.; Bechara, E. J. H.; Cadet, J.; Di Mascio, P. DNA Alkylation by 4,5-Dioxovaleric Acid, the Final Oxidation Product of 5-Aminolevulinic Acid. Chem. Res. Toxicol. 1998, 11 (2), 150–157. https://doi.org/10.1021/tx970157d.

(35) 

Giardina, B. Hemoglobin: Multiple Molecular Interactions and Multiple Functions. An Example of Energy Optimization and Global Molecular Organization. Molecular Aspects of Medicine2021, 101040. https://doi.org/10.1016/j.mam.2021.101040.

(36) 

Debler, E. A.; Sershen, H.; Lajtha, A.; Gennaro, J. F. Superoxide Radical-Mediated Alteration of Synaptosome Membrane Structure and High-Affinity Gamma-[14C]Aminobutyric Acid Uptake. J Neurochem 1986, 47 (6), 1804–1813. https://doi.org/10.1111/j.1471-4159.1986.tb13092.x.

(37) 

Jaffe, E. K. The Remarkable Character of Porphobilinogen Synthase. Acc. Chem. Res. 2016, 49 (11), 2509–2517. https://doi.org/10.1021/acs.accounts.6b00414.

(38) 

Heinemann, I. U.; Jahn, M.; Jahn, D. The Biochemistry of Heme Biosynthesis. Archives of Biochemistry and Biophysics 2008, 474 (2), 238–251. https://doi.org/10.1016/j.abb.2008.02.015.

(39) 

Franken, A. C. W.; Lokman, B. C.; Ram, A. F. J.; Punt, P. J.; van den Hondel, C. A. M. J. J.; de Weert, S. Heme Biosynthesis and Its Regulation: Towards Understanding and Improvement of Heme Biosynthesis in Filamentous Fungi. Appl Microbiol Biotechnol 2011, 91 (3), 447–460. https://doi.org/10.1007/s00253-011-3391-3.

(40)

Erskine, P. T.; Senior, N.; Awan, S.; Lambert, R.; Lewis, G.; Tickle, I. J.; Sarwar, M.; Spencer, P.; Thomas, P.; Warren, M. J.; Shoolingin-Jordan, P. M.; Wood, S. P.; Cooper, J. B. X-Ray Structure of 5-Aminolaevulinate Dehydratase, a Hybrid Aldolase. Nat Struct Mol Biol 1997, 4 (12), 1025–1031. https://doi.org/10.1038/nsb1297-1025.

(41) 

Erskine, P. T.; Duke, E. M. H.; Tickle, I. J.; Senior, N. M.; Warren, M. J.; Cooper, J. B. MAD Analyses of Yeast 5-Aminolaevulinate Dehydratase: Their Use in Structure Determination and in Defining the Metal-Binding Sites. Acta Crystallogr D Biol Crystallogr200056 (4), 421–430. https://doi.org/10.1107/S0907444900000597.

(42) 

Pilz, I.; Schwarz, E.; Vuga, M.; Beyersmann, D. Small Angle X-Ray Scattering Study on Bovine Porphobilinogen Synthase (5-Aminolaevulinate Dehydratase). Biol Chem Hoppe Seyler 1988, 369 (10), 1099–1103. https://doi.org/10.1515/bchm3.1988.369.2.1099.

(43) 

Wu, W. H.; Shemin, D.; Richards, K. E.; Williams, R. C. The Quaternary Structure of -Aminolevulinic Acid Dehydratase from Bovine Liver. Proceedings of the National Academy of Sciences 1974, 71 (5), 1767–1770. https://doi.org/10.1073/pnas.71.5.1767.

(44) 

Jaffe, E. K. Porphobilinogen Synthase: An Equilibrium of Different Assemblies in Human Health. In Progress in Molecular Biology and Translational Science; Elsevier, 2020; Vol. 169, pp 85–104. https://doi.org/10.1016/bs.pmbts.2019.11.003.

(45) 

Erdtman, E.; Bushnell, E. A. C.; Gauld, J. W.; Eriksson, L. A. Computational Insights into the Mechanism of Porphobilinogen Synthase. J. Phys. Chem. B 2010, 114 (50), 16860–16870. https://doi.org/10.1021/jp103590d.

(46) 

LoPachin, R. M.; Gavin, T.; DeCaprio, A.; Barber, D. S. Application of the Hard and Soft, Acids and Bases (HSAB) Theory to Toxicant–Target Interactions. Chem. Res. Toxicol. 2012, 25 (2), 239–251. https://doi.org/10.1021/tx2003257.

(47)

Penatti, C. A. A.; Bechara, E. J. H.; Demasi, M. δ-Aminolevulinic Acid-Induced Synaptosomal Ca2+Uptake and Mitochondrial Permeabilization. Archives of Biochemistry and Biophysics 1996, 335 (1), 53–60. https://doi.org/10.1006/abbi.1996.0481.

(48) 

Hroudová, J.; Singh, N.; Fišar, Z. Mitochondrial Dysfunctions in Neurodegenerative Diseases: Relevance to Alzheimer’s Disease. BioMed Research International20142014, 1–9. https://doi.org/10.1155/2014/175062.

(49) 

Kumar, V. S.; Gopalakrishnan, A.; Naziroglu, M.; Rajanikant, G. K. Calcium Ion – The Key Player in Cerebral Ischemia. CMC201421 (18), 2065–2075. https://doi.org/10.2174/0929867321666131228204246.

(50)

Tian, B.-X.; Erdtman, E.; Eriksson, L. A. Catalytic Mechanism of Porphobilinogen Synthase: The Chemical Step Revisited by QM/MM Calculations. J. Phys. Chem. B 2012, 116 (40), 12105–12112. https://doi.org/10.1021/jp304743c.

(51)

Jaffe, E. K. Porphobilinogen Synthase: An Equilibrium of Different Assemblies in Human Health. In Progress in Molecular Biology and Translational Science; Elsevier, 2020; Vol. 169, pp 85–104. https://doi.org/10.1016/bs.pmbts.2019.11.003.

(52) 

Jaffe, E. K. The Porphobilinogen Synthase Catalyzed Reaction Mechanism. Bioorganic Chemistry 2004, 32 (5), 316–325. https://doi.org/10.1016/j.bioorg.2004.05.010.

(53) 

Laurie, D.; Seeburg, P. Regional and Developmental Heterogeneity in Splicing of the Rat Brain NMDAR1 MRNA. J. Neurosci.199414 (5), 3180–3194. https://doi.org/10.1523/JNEUROSCI.14-05-03180.1994.

(54) 

Bryda, E. C. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research. Mo Med 2013, 110 (3), 207–211.

(55)

Ellenbroek, B.; Youn, J. Rodent Models in Neuroscience Research: Is It a Rat Race? Dis Model Mech 2016, 9(10), 1079–1087. https://doi.org/10.1242/dmm.026120.

(56)

Applications of NMR Spectroscopy; Rahman, A.-, Choudhary, M. I., Eds.; Elsevier: Amsterdam ; Boston, 2015.

(57)

Mittermaier, A. ZZ-Exchange. In Encyclopedia of Biophysics; Roberts, G. C. K., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 2796–2797. https://doi.org/10.1007/978-3-642-16712-6_354.

(58)

J Biomol NMR4, 727-734, 1994

(59) 

Rădulescu, A.; Lundgren, S. A Pharmacokinetic Model of Lead Absorption and Calcium Competitive Dynamics. Sci Rep 2019, 9 (1), 14225. https://doi.org/10.1038/s41598-019-50654-7.

(60) 

Abadin, H.; Ashizawa, A.; Stevens, Y.-W.; Llados, F.; Diamond, G.; Sage, G.; Citra, M.; Quinones, A.; Bosch, S. J.; Swarts, S. G. Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles; Agency for Toxic Substances and Disease Registry (US): Atlanta (GA), 2007.

(61) 

Rabinowitz, M. B.; Wetherill, G. W.; Kopple, J. D. Kinetic Analysis of Lead Metabolism in Healthy Humans. J Clin Invest 1976, 58 (2), 260–270. https://doi.org/10.1172/JCI108467.

(62) 

Marcus, A. H. Multicompartment Kinetic Models for Lead. Environmental Research 1985, 36 (2), 459–472. https://doi.org/10.1016/0013-9351(85)90038-6.

(63)

Oflaherty, E. J. Physiologically Based Models for Bone-Seeking Elements. Toxicology and Applied Pharmacology 1993, 118 (1), 16–29. https://doi.org/10.1006/taap.1993.1004.

(64) 

Hogan, K.; Marcus, A.; Smith, R.; White, P. Integrated Exposure Uptake Biokinetic Model for Lead in Children: Empirical Comparisons with Epidemiologic Data. Environmental Health Perspectives 1998, 106(suppl 6), 1557–1567. https://doi.org/10.1289/ehp.98106s61557.

(65) 

Leggett, R. W. An Age-Specific Kinetic Model of Lead Metabolism in Humans. Environ Health Perspect 1993, 101 (7), 598–616. https://doi.org/10.1289/ehp.93101598.

(66) 

Six, K. M.; Goyer, R. A. Experimental Enhancement of Lead Toxicity by Low Dietary Calcium. J Lab Clin Med1970, 76 (6), 933–942.

(67) 

Vašková, J.; Vaško, L.; Mudroň, P.; Haus, M.; Žatko, D.; Krempaská, K.; Stupák, M. Effect of Humic Acids on Lead Poisoning in Bones and on a Subcellular Level in Mitochondria. Environ Sci Pollut Res 2020, 27 (32), 40679–40689. https://doi.org/10.1007/s11356-020-10075-w.

(68) 

Baveye, P. C.; Wander, M. The (Bio)Chemistry of Soil Humus and Humic Substances: Why Is the “New View” Still Considered Novel After More Than 80 Years? Front. Environ. Sci.20197, 27. https://doi.org/10.3389/fenvs.2019.00027.

(69)

Boguta, P.; Sokołowska, Z. Interactions of Humic Acids with Metals. Acta Agroph. Monogr.20132, 1–113.

(70)

Gillis, B. S.; Arbieva, Z.; Gavin, I. M. Analysis of Lead Toxicity in Human Cells. BMC Genomics 2012, 13 (1), 344. https://doi.org/10.1186/1471-2164-13-344.

(71) 

Dignam, T.; Kaufmann, R. B.; LeStourgeon, L.; Brown, M. J. Control of Lead Sources in the United States, 1970-2017: Public Health Progress and Current Challenges to Eliminating Lead Exposure. Journal of Public Health Management and Practice 201925 (1), S13–S22. https://doi.org/10.1097/PHH.0000000000000889.

(72) 

Surveillance for elevated blood lead levels among children — United States, 1997–2001. https://www.cdc.gov/mmwr/preview/mmwrhtml/ss5210a1.htm (accessed Dec 15, 2021). 

(73) 

Dignam, T.; Kaufmann, R. B.; LeStourgeon, L.; Brown, M. J. Control of Lead Sources in the United States, 1970-2017: Public Health Progress and Current Challenges to Eliminating Lead Exposure. J Public Health Manag Pract 2019, 25 Suppl 1, Lead Poisoning Prevention, S13–S22. https://doi.org/10.1097/PHH.0000000000000889.

(74) 

Ngueta, G.; Abdous, B.; Tardif, R.; St-Laurent, J.; Levallois, P. Use of a Cumulative Exposure Index to Estimate the Impact of Tap Water Lead Concentration on Blood Lead Levels in 1- to 5-Year-Old Children (Montréal, Canada). Environ Health Perspect 2016, 124 (3), 388–395. https://doi.org/10.1289/ehp.1409144.

(75) 

Populations at higher risk https://www.cdc.gov/nceh/lead/prevention/populations.htm (accessed Oct 27, 2021).

(76)  

Dewalt, F. G.; Cox, D. C.; O’Haver, R.; Salatino, B.; Holmes, D.; Ashley, P. J.; Pinzer, E. A.; Friedman, W.; Marker, D.; Viet, S. M.; Fraser, A. Prevalence of Lead Hazards and Soil Arsenic in U.S. Housing. Journal of Environmental Health 2015, 78 (5), 22–29.

(77)  

Jochenschneider. Old Pipe Stock Photo. image of installation, ancient – 33287422. https://www.dreamstime.com/stock-photography-old-pipe-closeup-lead-installation-trash-image33287422 (accessed Dec 15, 2021). 

(78)

Close up shot of some metal pipes. https://www.istockphoto.com/photo/metal-pipes-gm96950167-12048155 (accessed Dec 15, 2021). 

1 Comment

  1. Bob Qian

    Some of your references don’t have a link to the website where you obtained the paper, but most of your references do. This is slightly inconsistent. Other than that, your references are golden!

Leave a Reply

Your email address will not be published.

© 2024 Lead Poisoning

Theme by Anders NorenUp ↑