Did you know there are 20,000 species of bees in the world? And that 4,000 of those species are native to North America? In celebration of World Bee Day, we highlight some of the bees TPI members have studied across the United States and in Costa Rica.
Common eastern bumble bees (Bombus impatiens) are important pollinators of greenhouse tomatoes, blueberries, and pumpkins.
Though the common eastern bumble bee is one of the more common bee species in the Northeastern US (as its name suggests), we still have a lot to learn! With help from Tufts undergrad and grad students, I am working to understand where queen eastern bumble beeshibernate. As it turns out, unlike most other species of bumble bees, these queen bees hibernate right next to the nest they were born in. So, if you are creating habitat for nesting bumble bees, you might be creating habitat for hibernating queens too! If you visit our pollinator gardens (while practicing safe social distancing) this spring, you’re likely to see these fuzzy bumble bees flying around.
Genevieve Pugesek, PhD Student, Tufts University
Yellow-faced bumble bees (Bombus vosnesenskii) pollinate many wild plants as well as crop plants such as tomatoes and berries.
For the past 5 years, I worked on this species in collaboration with Neal Williams (Assoc. Professor, University of California), Rosemary Malfi (now post-doc, UMass Amherst) and Natalie Kerr (now post-doc, Duke University). We found that yellow-faced bumble bee colonies especially need resources to forage on during early stages of colony development. In the same way that early childhood nutrition affects human health throughout their lives, early spring flowers help these bumble bee colonies grow! Spring resources allow colonies to produce larger worker bees that are better at foraging for resources, leading to higher resource return even after the spring pulse of flowers ends. The importance of spring resources has implications for bee conservation because native plants in California mostly flower during the wet spring, whereas irrigated crop plants mostly flower in the dry summer. If we want yellow-faced bumble bees to be around to pollinate summer crops, we need to keep spring flowers on the landscape.
Elizabeth Crone, Professor, Tufts University
Hibiscus bees (Ptilothrix bombiformis) pollinate plants in the Malvaceae family including cotton, hibiscus, and saltmarsh mallow.
I spent a summer surveying native bees along Virginia’s Eastern Shore and studying the effects of sea level rise on native bee communities. The hibiscus bee was the most common species found on farms, meadows, and salt marshes along the coast. On steamy summer mornings, this bumble bee doppelganger could be found buzzing around marsh hibiscus or visiting blooming cotton fields.
Jessie Thuma, PhD Student, Tufts University
Blueberry cellophane bees (Colletes validus) are specialists that pollinate blueberries.
Different bee species have different diets; some collect pollen from a wide variety of flowers (generalists) while other species forage on the flowers of only a few types of plants (specialists). I sampled pollen from blueberry cellophane bees to understand what types of floral resources this species uses throughout its flight season in May and June. After identifying pollen samples under a microscope, I found that, true to their name, these bees rarely collect pollen from plants other than blueberry bushes.
Max McCarthy, Undergraduate, Tufts University
Honey bees (Apis mellifera) are generalist forages known to pollinate our crops.
I study how honey bees regulate in-hive temperatures in order to protect temperature-sensitive eggs and larvae. In order to develop properly, honey bee larvae must be kept at 32 – 36 °C (about 89 – 96°F). With the help of NSF REU students, I found that when an area of a honey bee hive is exposed to heat stress, the queen stops laying eggs in the “too hot” area. Instead of raising young in this hot spot, worker bees store nectar (food!).
Isaac Weinberg, PhD Student, Tufts University
Squash bees (Peponapis pruinosa) are known for pollinating…you guessed it…squash.
As a lead field technician at UW-Madison, I worked with a team to investigate how the diversity and abundance of floral vegetation on small-scale organic farms impacted bee communities and crop flower visitation. We were interested in cucurbit (e.g. cucumbers, watermelons, squashes) pollination, as these crops rely solely on insect pollination. While I was fortunate to study a diversity of bees in this project, my heart was captured by Peponapis as the males scurried around giant squash flowers. Fun fact: When the squash flowers close mid-day, squash bee males nestle up and sleep in the protection of the closed flower until they reopen the following day.
Sylvie Finn, Incoming PhD Student, Tufts University
Yarrow’s fork-tongue bee (Caupolicana yarrowi) pollinates wild nightshade, and is parasitized by a cuckoo bee, Triepeolus grandis.
Yarrow’s fork-tongue is a large, ground-nesting solitary bee that inhabits high deserts of southwestern US and Mexico. Unlike most bees, it cannot be found during the day, but instead is active pre-dawn and post-dusk. In August 2018, several participants of the 2018 Bee Course and I woke up extra early to find nesting females. We found three nests and carefully excavated the long, sinuous tunnels to claim our prize: brood cells. Most cells contained just a Yarrow’s fork-tongue larva feeding on a slurry of pollen and nectar. In one cell, however, we also found an intruder: the larva of a cuckoo bee (Triepeolus grandis). With formidable mandibles, the cuckoo bee larva kills the host and develops on the stolen provisions. This may sound malicious, but it’s simply how the cuckoo bee lives. About 15% of all bees are cuckoos, meaning these pollinators would cease to exist without their host bees!
Nick Dorian, PhD Student, Tufts University
Stingless bees (Trigona spp.) are generalist tropical pollinators that forage on flowers and meat.
This past January, some TPI members traveled to Costa Rica with Tufts University’s Tropical Ecology and Conservation course. There, Nick and I studied mineral preferences of facultative “vulture bees,” stingless bees that forage at meat as well as flowers. We identified five species of bees (including Trigona silvestriana, pictured above) foraging at our baits and found that compared with unaltered baits (i.e. raw chicken), stingless bees tended to avoid baits soaked in calcium and potassium. In contrast, bees visited sodium-soaked baits just as often as unaltered baits. This suggests that like many herbivores, meat-foraging bees are likely limited by sodium and will suck up the salt wherever they can find it!
Rachael Bonoan, post-doctoral researcher, Tufts University
Orchid bees (Euglossa spp.) are known for pollinating orchids in the tropics.
Can you see the thin yellow object on the back of this shiny green orchid bee? This is a pollinium, a packet of pollen grains, likely from an orchid. Male orchid bees forage at flowers for nectar, which provides nutritional energy, and floral scents, which are used to court females. In Costa Rica, my research partner and I captured orchid bees and used tiny glass tubes to suck up the contents of the crop, where collected nectar is stored. We measured sugar content of the bee-collected nectar and found that bees caught in human-dominated open spaces had more dilute crop contents than those caught in the forest. This may be because the open spaces were sunnier and hotter, driving the bees to drink more water.
Atticus Murphy, PhD Student, Tufts University