(1) WHO Prevention of Noncommunicable Diseases. Obesity and Overweight.
(2) Goldman, D. Obesity, Second to Smoking as the Most Preventable Cause of US Deaths, Needs New Approaches. USC Schaeffer, 2020.
(3) Centers for Disease Control and Prevention. New Adult Obesity Maps https://www.cdc.gov/obesity/data/prevalence-maps.html (accessed Nov 14, 2020).
(4) The GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. New England Journal of Medicine 2017, 377 (1), 13–27. https://doi.org/10.1056/NEJMoa1614362.
(5) National Heart, Lung, and Blood Institute. Overweight and Obesity | NHLBI, NIH https://www.nhlbi.nih.gov/health-topics/overweight-and-obesity (accessed Oct 26, 2020).
(6) Metabolic Syndrome | NHLBI, NIH https://www.nhlbi.nih.gov/health-topics/metabolic-syndrome (accessed Nov 10, 2020).
(7) Cartier, A. The Inflammatory Profile Associated with Abdominal Obesity. 2010, 3 (2), 15–19.
(8) Catrysse, L.; van Loo, G. Inflammation and the Metabolic Syndrome: The Tissue-Specific Functions of NF-ΚB. Trends in Cell Biology 2017, 27 (6), 417–429. https://doi.org/10.1016/j.tcb.2017.01.006.
(9) Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB Signaling in Inflammation. Signal Transduction and Targeted Therapy 2017, 2 (1), 1–9. https://doi.org/10.1038/sigtrans.2017.23.
(10) Krüger, K.; Mooren, F. C.; Eder, K.; Ringseis, R. Immune and Inflammatory Signaling Pathways in Exercise and Obesity. Am J Lifestyle Med 2014, 10 (4), 268–279. https://doi.org/10.1177/1559827614552986.
(11) Varela, L.; Horvath, T. L. Leptin and Insulin Pathways in POMC and AgRP Neurons That Modulate Energy Balance and Glucose Homeostasis. EMBO reports 2012, 13 (12), 1079–1086. https://doi.org/10.1038/embor.2012.174.
(12) Xue, J.; Ideraabdullah, F. Y. An Assessment of Molecular Pathways of Obesity Susceptible to Nutrient, Toxicant and Genetically Induced Epigenetic Perturbation. J Nutr Biochem 2016, 30, 1–13. https://doi.org/10.1016/j.jnutbio.2015.09.002.
(13) Plagemann, A.; Harder, T.; Brunn, M.; Harder, A.; Roepke, K.; Wittrock‐Staar, M.; Ziska, T.; Schellong, K.; Rodekamp, E.; Melchior, K.; Dudenhausen, J. W. Hypothalamic Proopiomelanocortin Promoter Methylation Becomes Altered by Early Overfeeding: An Epigenetic Model of Obesity and the Metabolic Syndrome. The Journal of Physiology 2009, 587 (20), 4963–4976. https://doi.org/10.1113/jphysiol.2009.176156.
(14) Subramaniapillai, M.; McIntyre, R. S. A Review of the Neurobiology of Obesity and the Available Pharmacotherapies. CNS Spectr 2017, 22 (S1), 29–38. https://doi.org/10.1017/S1092852917000839.
(15) Rege, S. Neurobiology of Binge Eating Disorder – A Synopsis https://psychscenehub.com/psychinsights/neurobiology-of-binge-eating-disorder/ (accessed Oct 26, 2020).
(16) Markan, K. R.; Jurczak, M. J.; Brady, M. J. Stranger in a Strange Land: Roles of Glycogen Turnover in Adipose Tissue Metabolism. Molecular and Cellular Endocrinology 2010, 318 (1), 54–60. https://doi.org/10.1016/j.mce.2009.08.013.
(17) Avram, M. M.; Avram, A. S.; James, W. D. Subcutaneous Fat in Normal and Diseased States: 3. Adipogenesis: From Stem Cell to Fat Cell. Journal of the American Academy of Dermatology 2007, 56 (3), 472–492. https://doi.org/10.1016/j.jaad.2006.06.022.
(18) de Ferranti, S.; Mozaffarian, D. The Perfect Storm: Obesity, Adipocyte Dysfunction, and Metabolic Consequences. Clinical Chemistry 2008, 54 (6), 945–955. https://doi.org/10.1373/clinchem.2007.100156.
(19) da Costa, R. M.; Neves, K. B.; Mestriner, F. L.; Louzada-Junior, P.; Bruder-Nascimento, T.; Tostes, R. C. TNF-α Induces Vascular Insulin Resistance via Positive Modulation of PTEN and Decreased Akt/ENOS/NO Signaling in High Fat Diet-Fed Mice. Cardiovascular Diabetology 2016, 15 (1). https://doi.org/10.1186/s12933-016-0443-0.
(20) Lewitt, M. S.; Dent, M. S.; Hall, K. The Insulin-Like Growth Factor System in Obesity, Insulin Resistance and Type 2 Diabetes Mellitus. Journal of Clinical Medicine 2014, 3 (4), 1561–1574. https://doi.org/10.3390/jcm3041561.
(21) Mancuso, P. The Role of Adipokines in Chronic Inflammation. Immunotargets Ther 2016, 5, 47–56. https://doi.org/10.2147/ITT.S73223.
(22) Draznin, B. Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor Substrate-1 and Increased Expression of P85α: The Two Sides of a Coin. Diabetes 2006, 55 (8), 2392–2397. https://doi.org/10.2337/db06-0391.
(23) Liu, S.; Misquitta, Y. R.; Olland, A.; Johnson, M. A.; Kelleher, K. S.; Kriz, R.; Lin, L. L.; Stahl, M.; Mosyak, L. Crystal Structure of a Human IκB Kinase β Asymmetric Dimer. J. Biol. Chem. 2013, 288 (31), 22758–22767. https://doi.org/10.1074/jbc.M113.482596.
(24) Xu, G.; Lo, Y.-C.; Li, Q.; Napolitano, G.; Wu, X.; Jiang, X.; Dreano, M.; Karin, M.; Wu, H. Crystal Structure of Inhibitor of ΚB Kinase β. Nature 2011, 472 (7343), 325–330. https://doi.org/10.1038/nature09853.
(25) Karin, M.; Delhase, M. The IκB Kinase (IKK) and NF-ΚB: Key Elements of Proinflammatory Signalling. 2000, 12, 14.
(26) Carlsen, H.; Haugen, F.; Zadelaar, S.; Kleemann, R.; Kooistra, T.; Drevon, C. A.; Blomhoff, R. Diet-Induced Obesity Increases NF-ΚB Signaling in Reporter Mice. Genes Nutr 2009, 4 (3), 215–222. https://doi.org/10.1007/s12263-009-0133-6.
(27) Carlsen, H.; Moskaug, J. Ø.; Fromm, S. H.; Blomhoff, R. In Vivo Imaging of NF-ΚB Activity. The Journal of Immunology 2002, 168 (3), 1441–1446. https://doi.org/10.4049/jimmunol.168.3.1441.
(28) Lernbecher, T.; Müller, U.; Wirth, T. Distinct NF-ΚB/Rel Transcription Factors Are Responsible for Tissue-Specific and Inducible Gene Activation. Nature1993, 365 (6448), 767–770. https://doi.org/10.1038/365767a0.
(29) Kennedy, A.; Gettys, T. W.; Watson, P.; Wallace, P.; Ganaway, E.; Pan, Q.; Garvey, W. T. The Metabolic Significance of Leptin in Humans: Gender-Based Differences in Relationship to Adiposity, Insulin Sensitivity, and Energy Expenditure. J Clin Endocrinol Metab 1997, 82 (4), 1293–1300. https://doi.org/10.1210/jcem.82.4.3859.
(30) Benzler, J.; Ganjam, G. K.; Pretz, D.; Oelkrug, R.; Koch, C. E.; Legler, K.; Stöhr, S.; Culmsee, C.; Williams, L. M.; Tups, A. Central Inhibition of IKKβ/NF-ΚB Signaling Attenuates High-Fat Diet–Induced Obesity and Glucose Intolerance. Diabetes 2015, 64 (6), 2015–2027. https://doi.org/10.2337/db14-0093.
(31) Amslinger, S.; Al-Rifai, N.; Winter, K.; Wörmann, K.; Scholz, R.; Baumeister, P.; Wild, M. Reactivity Assessment of Chalcones by a Kinetic Thiol Assay. Org. Biomol. Chem. 2012, 11 (4), 549–554. https://doi.org/10.1039/C2OB27163J.
Recent Comments